Hyperball packings related to truncated cube and octahedron tilings in hyperbolic space
DOI:
https://doi.org/10.11575/cdm.v15i2.68165Abstract
In this paper, we study congruent and noncongruent hyperball (hypersphere) packings to the truncated regular cube and octahedron tilings. These are derived from the Coxeter truncated orthoscheme tilings $\{4,3,p\}$ $(6< p \in \mathbb{N})$ and $\{3,4,p\}$ $(4< p \in \mathbb{N})$, respectively, by their Coxeter reflection groups in hyperbolic space $\mathbb{H}^{3}$. We determine the densest hyperball packing arrangement and its density with congruent and noncongruent hyperballs.
We prove that the locally densest (noncongruent half) hyperball configuration belongs to the truncated cube with a density of approximately $0.86145$ if we allow $6< p \in \mathbb{R}$ for the dihedral angle $2\pi/p$. This local density is larger than the B\"or\"oczky--Florian density upper bound for balls and horoballs. But our locally optimal noncongruent hyperball packing configuration cannot be extended to the entire hyperbolic space $\mathbb{H}^3$. We determine the extendable densest noncongruent hyperball packing arrangement to the truncated cube tiling $\{4,3,p=7\}$ with a density of approximately $0.84931$.
References
bibitem{Be} Bezdek,~K.
Sphere Packings Revisited,
textit{Eur. J. Combin.}, {bf{27/6}} (2006), rm 864--883.
%
bibitem{B91} Bolyai,~J.
textit{The science of absolute space},
rm Austin, Texas (1891).
%
bibitem{B78} B"or"oczky,~K.
Packing of spheres in spaces of constant curvature,
textit{Acta Math. Acad. Sci. Hungar.}, {bf{32}} (1978), rm 243--261.
%
bibitem{B--F64} B"or"oczky,~K. ~-~ Florian,~A.
"Uber die dichteste Kugelpackung im hyperbolischen Raum, textit{Acta Math. Acad. Sci. Hungar.},
{bf{15}} (1964), rm 237--245.
%
bibitem{G--K--K} Fejes~T'oth,~G.~-~Kuperberg,~G.~-~Kuperberg,~W.
Highly Saturated Packings and Reduced Coverings,
textit{Monatsh. Math.}, {bf{125/2}} (1998), rm 127--145.
%
bibitem{FTL} Fejes~T'oth,~L.
Regular Figures,
textit{Macmillian (New York)}, 1964.
%
bibitem{IH85} Im Hof,~H.-C. A class of hyperbolic Coxeter groups,
textit{Expo. Math.}, (1985) bf{3} rm, 179--186.
%
bibitem{IH90} Im Hof,~H.-C. Napier cycles and hyperbolic Coxeter groups,
textit{Bull. Soc. Math. Belgique}, (1990) bf{42} rm, 523--545.
%
bibitem{K89} Kellerhals,~R. On the volume of hyperbolic polyhedra,
textit{Math. Ann.}, (1989) bf{245} rm, 541--569.
%
bibitem{K98} Kellerhals,~R. Ball packings in spaces of constant curvature and the simplicial density
function,
textit{J. Reine Angew. Math.}, (1998) bf{494} rm, 189--203.
%
bibitem{K92} Kellerhals,~R. Volumes of hyperbolic 5-orthoschemes and the trilogarithm,
textit{Comment. Math. Helv.}, (1992) bf{67} rm, 648--663.
%
bibitem{KSz} Kozma,~R.T., Szirmai,~J.
Optimally dense packings for fully asymptotic Coxeter tilings by horoballs of different types,
textit{Monatsh. Math.}, {bf{168/1}} (2012), rm 27--47.
%
bibitem{KSz14} Kozma,~R.T., Szirmai,~J.
New Lower Bound for the Optimal Ball Packing Density of Hyperbolic 4-space,
textit{Discrete Comput. Geom.}, {bf 53}, (2014), 182--198, DOI: 10.1007/s00454-014-9634-1.
%
bibitem{N16} N'emeth,~L.
On the hyperbolic Pascal pyramid,
textit{Beitr. Algebra Geom.}, {bf{57/4}} (2016), rm 913--927.
%
bibitem{Ro64} Rogers,~C.A.
Packing and Covering,
Cambridge Tracts in Mathematics and Mathematical Physics 54,
textit{Cambridge University Press}, (1964).
%
bibitem{S14} Stojanovi' c,~M.
Coxeter Groups as Automorphism Groups
of Solid Transitive 3-simplex Tilings,
textit{Filomat,} {bf{28/3}} (2014), 557--577, DOI 10.2298/FIL1403557S.
%
bibitem{S17} Stojanovi' c,~M.
Hyperbolic space groups and their supergroups for fundamental simplex tilings,
textit{Acta Math. Hungar.,} {bf{153/2}} (2017), 276--288, DOI: 10.1007/s10474-017-0761-z.
%
bibitem{Sz12} Szirmai,~J.
Horoball packings to the totally asymptotic regular simplex in the hyperbolic n-space,
emph{Aequat. Math.}, {bf 85} (2013), 471-482, DOI: 10.1007/s00010-012-0158-6.
%
bibitem{Sz06-1} Szirmai,~J. The $p$-gonal prism tilings and their optimal hypersphere packings in the hyperbolic
-space,
textit{Acta Math. Hungar.} {bf{111 (1-2)}} (2006), 65--76.
%
bibitem{Sz06-2} Szirmai,~J. The regular prism tilings and their optimal hyperball packings in the hyperbolic $n$-space,
textit{Publ. Math. Debrecen} {bf{69 (1-2)}} (2006), 195--207.
%
bibitem{Sz13-3} Szirmai,~J. The optimal hyperball packings related to the smallest compact arithmetic $5$-orbifolds,
textit{Kragujevac J. Math.}, {bf 40(2)} (2016), 260-270, DOI: 10.5937/KgJMath1602260S.
%
bibitem{Sz13-4} Szirmai,~J. The least dense hyperball covering to the regular prism tilings in the hyperbolic $n$-space,
textit{Ann. Mat. Pur. Appl.}, {bf 195} (2016), 235-248, DOI: 10.1007/s10231-014-0460-0.
%
bibitem{Sz14} Szirmai,~J. Hyperball packings in hyperbolic $3$-space,
textit{Mat. Vesn.}, {bf 70/3} (2018), 211--221.
%
bibitem{Sz15} Szirmai,~J. Horoball packings related to the 4-dimensional hyperbolic 24 cell honeycomb ${3,4,3,4}$,
textit{Filomat}, {bf{32 (1)}} (2018), 87-100, DOI: 10.2298/FIL1801087S.
%
bibitem{Sz17} Szirmai,~J. Packings with horo- and hyperballs generated by simple frustum orthoschemes,
textit{Acta Math. Hungar.}, {bf 152/2} (2017), 365--382, DOI:10.1007/s10474-017-0728-0.
%
bibitem{Sz17-1} Szirmai,~J. Density upper bound of congruent and non-congruent hyperball packings generated by truncated regular simplex tilings,
textit{Rendiconti del Circolo Matematico di Palermo Series 2}, {bf 67} (2018), 307--322, DOI: 10.1007/s12215-017-0316-8.
%
bibitem{Sz17-2} Szirmai,~J. Decomposition method related to saturated hyperball packings,
textit{Ars Mathematica Contemporanea}, {bf{16}} (2019), 349--358, DOI: 10.26493/1855-3974.1485.0b1.
%
bibitem{V79} Vermes,~I. Ausf"ullungen der hyperbolischen Ebene durch kongruente Hyperzykelbereiche,
textit{Period. Math. Hungar.} (1979) {bf{10/4}}, 217--229.
%
bibitem{V81} Vermes,~I. Über regul"are Überdeckungen der Bolyai-Lobatschewskischen Ebene durch kongruente Hyperzykelbereiche,
textit{Period. Math. Hungar.} (1981) {bf{25/3}}, 249--261.
Downloads
Published
Issue
Section
License
This copyright statement was adapted from the statement for the University of Calgary Repository and from the statement for the Electronic Journal of Combinatorics (with permission).
The copyright policy for Contributions to Discrete Mathematics (CDM) is changed for all articles appearing in issues of the journal starting from Volume 15 Number 3.
Author(s) retain copyright over submissions published starting from Volume 15 number 3. When the author(s) indicate approval of the finalized version of the article provided by the technical editors of the journal and indicate approval, they grant to Contributions to Discrete Mathematics (CDM) a world-wide, irrevocable, royalty free, non-exclusive license as described below:
The author(s) grant to CDM the right to reproduce, translate (as defined below), and/or distribute the material, including the abstract, in print and electronic format, including but not limited to audio or video.
The author(s) agree that the journal may translate, without changing the content the material, to any medium or format for the purposes of preservation.
The author(s) also agree that the journal may keep more than one copy of the article for the purposes of security, back-up, and preservation.
In granting the journal this license the author(s) warrant that the work is their original work and that they have the right to grant the rights contained in this license.
The authors represent that the work does not, to the best of their knowledge, infringe upon anyone’s copyright.
If the work contains material for which the author(s) do not hold copyright, the author(s) represent that the unrestricted permission of the copyright holder(s) to grant CDM the rights required by this license has been obtained, and that such third-party owned material is clearly identified and acknowledged within the text or content of the work.
The author(s) agree to ensure, to the extent reasonably possible, that further publication of the Work, with the same or substantially the same content, will acknowledge prior publication in CDM.
The journal highly recommends that the work be published with a Creative Commons license. Unless otherwise arranged at the time the finalized version is approved and the licence granted with CDM, the work will appear with the CC-BY-ND logo. Here is the site to get more detail, and an excerpt from the site about the CC-BY-ND. https://creativecommons.org/licenses/
Attribution-NoDerivs
CC BY-ND
This license lets others reuse the work for any purpose, including commercially; however, it cannot be shared with others in adapted form, and credit must be provided to you.