An elementary, geometric proof of the non-existence of a projective plane of order 6

Authors

DOI:

https://doi.org/10.11575/cdm.v15i1.62718

Abstract

We present a fairly elementary, self-contained proof of the nonexistence of a finite projective plane of order $6$. Our approach is motivated by theory of binary codes but does not appeal to it directly.

References

\bibitem{B89}
Bichara, A.:
An elementary proof of the nonexistence of a projective plane of order six.
Mitt. Math. Sem. Giessen No. 192 (1989), 89--93

\bibitem{BKV11}
Burger A.P., Kidd M.P., van Vuuren J.H.:
A graph-theoretic proof of the non-existence of self-orthogonal Latin squares of order 6.
Discrete Mathematics 311 (2011) 1223--1228

\bibitem{BruRys49}
Bruck, R.H., Ryser, H.J.:
The nonexistence of certain finite projective planes.
Canadian Journal of Mathematics, 1949

\bibitem{Eul1782}
Euler, L.:
Recherches sur une nouvelle espece de quarres magiques,
Verh. Zeeuwsch. Genootsch. Wetensch Vlissengen, 9 (1782) 85--239

\bibitem{Lev42}
Levi, F.W.:
Finite geometrical systems.
Calcutta, 1942

\bibitem{S84}
Stinson, D.R.:
A short proof of the nonexistence of a pair of orthogonal Latin square of order six.
J. Combin. Theory Ser. A 36 (1984), no. 3, 373–-376

\bibitem{Ter00}
Tarry, G.:
Le probl\'eme des $36$ officiers.
C.R. Assoc. Fr. Av. Sci. 1 (1900) 122--123; 2 (1901) 170--203

Downloads

Published

2020-05-11

Issue

Section

Articles