Reversed Dickson polynomials of the (k+1)-th kind over finite fields, II

Authors

  • Neranga Fernando Department of Mathematics, Knox College

DOI:

https://doi.org/10.55016/ojs/cdm.v20i2.62715

Keywords:

Finite field, permutation polynomial, Dickson polynomial, reversed Dickson polynomial

Abstract

Let $p$ be an odd prime. In this paper, we study the permutation behaviour of the reversed Dickson polynomials of the $(k+1)$-th kind $D_{n,k}(1,x)$ when $n=p^{l_1}+3$, $n=p^{l_1}+p^{l_2}+p^{l_3}$, and $n=p^{l_1}+p^{l_2}+p^{l_3}+p^{l_4}$, where $l_1, l_2$, $l_3$, and $l_4$ are nonnegative integers. A generalization to $n=p^{l_1}+p^{l_2}+\cdots +p^{l_i}$ is also shown. We find some conditions under which $D_{n,k}(1,x)$ is not a permutation polynomial over finite fields for certain values of $n$ and $k$. We also present a generalization of a recent result regarding $D_{p^l-1,1}(1,x)$ and present some algebraic and arithmetic properties of $D_{n,k}(1,x)$.

Downloads

Download data is not yet available.

References

R. A. Brualdi, Introductory Combinatorics, Fifth edition. Pearson Prentice Hall, Upper Saddle River, NJ, 2010. xii+605 pp.

S. Hong, X. Qin, W. Zhao, Necessary conditions for reversed Dickson polynomials of the second kind to be permutational, Finite Fields Appl. 37 (2016), 54 -- 71.

N. Fernando, Reversed Dickson polynomials of the (k+1)-th kind over finite fields, J. Number Theory 172 (2017), 234 -- 255.

N. Fernando, Reversed Dickson polynomials of the (k+1)-th kind over finite fields, II, arXiv:1706.01391.

N. Fernando, A note on permutation binomials and trinomials over finite fields, New Zealand J. Math. 48 (2018), 25-29.

N. Fernando, Reversed Dickson polynomials of the third kind. arXiv:1602.04545

X. Hou, G. L. Mullen, J. A. Sellers, J. L. Yucas, Reversed Dickson polynomials over finite fields, Finite Fields Appl. 15 (2009), 748 -- 773.

R. Lidl and H. Niederreiter, Finite Fields, 2nd ed.,
Cambridge Univ. Press, Cambridge, 1997.

R. Lidl, G. L. Mullen, G. Turnwald, Dickson polynomials, Longman Scientific and Technical, Essex, United Kingdom, 1993.

Q. Wang, J. L. Yucas, Dickson polynomials over finite fields, Finite Fields Appl. 18 (2012), 814 -- 831.

Downloads

Published

2025-10-28

Issue

Section

Articles