New parity results of sums of partitions and squares in arithmetic progressions

Authors

  • Weiding Hu
  • Olivia Yao
  • Taoyan zhao

DOI:

https://doi.org/10.11575/cdm.v14i1.62644

Keywords:

Number Theory

Abstract

Recently, Ballantine and Merca proved that if $ (a,b) \in \{(6,8),\ (8,12),\ (12,24),\ (15,40),\\ (16,48),\ (20,120),\ (21,168)\}$, then $\sum_{ak+1 \ {\rm square}}p(n-k)\equiv 1\ ({\rm mod}\ 2)$ if and only if $bn+1$ is a square. In this paper, we investigate
septuple $(a_1,a_2,a_3,a_4,a_5,a_6,a_7)\in \mathbb{N}^5\times \mathbb{Q}^2$ for which $\sum_{a_1k+a_2 \ {\rm square}}p(a_3a_4^\alpha n+a_6 a_4^\alpha+a_7-k)
\equiv 1\ ({\rm mod}\ 2)$ if and only if $a_5n+1$ is a square.
We prove some new parity results of sums of partitions and squares in arithmetic progressions which are analogous to the results due to Ballantine and Merca.

References

Z. Ahmed and N.D. Baruah, New congruences for $l $-regular
partitions for $l\in\{5, 6, 7, 49\}$,
Ramanujan J. 40 (2014) 649--668.

-----------------------------------------------------------

C. Ballantine and M. Merca,
Parity of sums of partition numbers and squares
in arithmetic progressions, Ramanujan J., to appear (DOI:
10.1007/s11139-016-9845-6).

-----------------------------------------------------------


B.C. Berndt, Ramanujan's Notebooks, Part III,
Springer, New York,
1991.

-----------------------------------------------------------



N. Calkin, N. Drake, K. James, S. Law, P. Lee, D. Penniston and J.
Radder, Divisibility properties of the $5$-regular and $13$-regular
partition functions, Integers 8 (2008) \#A60
(see:http://www.ces.clemson.edu/~janoski/reu/2010/FiveRegularParity-2008-04-29.pdf).

-----------------------------------------------------------


M.D. Hirschhorn, On the residue mod 2 and 4 of $p(n)$,
Acta Arith.
38 (1980) 105--109.

-----------------------------------------------------------


M.D. Hirschhorn, On the parity of $p(n)$ II,
J. Combin.
Theory Ser. (A) 62 (1993)
128--138.

-----------------------------------------------------------


M.D. Hirschhorn and J.A. Sellers,
Elementary proofs of parity
results for 5-regular partitions,
Bull. Aust. Math. Soc. 81 (2010)
58--63.

-----------------------------------------------------------


O. Kolberg, Note on the parity of the partition function, Math.
Scand. 7 (1959) 377--378.

-----------------------------------------------------------

M. Newman, Periodicity modulo $m$ and divisibility properties of the
partition function, Trans. Amer. Math. Soc. 97 (1960) 225--236.


-----------------------------------------------------------

J.L. Nicolas, I.Z. Ruzsaand A. S\'{a}rk\"{o}zy,
On the parity of
additive representation functions (appendix by J.-P. Serre), J.
Number Theory 73 (1998) 292--317.


-----------------------------------------------------------

K. Ono, Parity of the partition function in
arithmetic progressions,
J. Reine Angew. Math. 472 (1996) 1--15.

-----------------------------------------------------------

K. Ono, Odd values of the partition function, Discrete Math. 169
(1997) 263--268.

-----------------------------------------------------------

T.R. Parkin and D. Shanks,
On the distribution of parity in the
partition function, Math. Comp. 21 (1967) 466--480.


-----------------------------------------------------------

C.S. Radu, A proof of Subbarao's conjecture,
J. Reine Angew. Math.
672 (2012) 161--175.

-----------------------------------------------------------
M.V. Subbarao,
Some remarks on the partition function, Amer. Math.
Month. 73 (1966) 851--854.



-----------------------------------------------------------
E.X.W. Xia,
Congruences modulo 9 and 27 for overpartitions,
Ramanujan J. 42 (2017) 301--323.




-----------------------------------------------------------
E.X.W. Xia and O.X.M. Yao, Analogues of Ramanujan's partition
identities, Ramanujan J. 31 (2013) 373--396.

Downloads

Published

2019-12-26

Issue

Section

Articles