Resolvability in Hypergraphs

Authors

  • Imran Javaid Center for advanced studies in Pure and Applied Mathematics, Bahauddin Zakariya University Multan, Pakistan
  • Azeem Haider Department of Mathematics, Jazan University, Jazan.
  • Muhammad Salman Department of Mathematics, The Islamia University of Bahawalpur, Punjab, Bahawalpur, 63100, Pakistan.
  • Sadaf Mehtab

DOI:

https://doi.org/10.55016/ojs/cdm.v18i2.62607

Keywords:

metric dimension, partition dimension, hypergraphs

Abstract

This article presents an extension of the study of metric and partition dimension to hypergraphs. We give sharp lower bounds for the metric and partition dimension of hypergraphs in general and give exact values under specified conditions.

Author Biographies

Imran Javaid, Center for advanced studies in Pure and Applied Mathematics, Bahauddin Zakariya University Multan, Pakistan

Associate Professor, Center for advanced studies in Pure and Applied Mathematics, BZU

Azeem Haider, Department of Mathematics, Jazan University, Jazan.

Assistant Professor, Department of Mathematics

Muhammad Salman, Department of Mathematics, The Islamia University of Bahawalpur, Punjab, Bahawalpur, 63100, Pakistan.

Assistant Professor, Department of Mathematics, IUB

References

S. Ahmad, M. A. Chaudhry, I. Javaid, M. Salman, On the metric dimension of generalized Petersen graphs, {\em Quaestiones Mathematicae} {\bf 36}(2013), 421--435.

J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, D. R. Wood, On the metric dimension of cartesian product
of graphs, {\em SIAM J. of Disc. Math.} {\bf 21}(2)(2007), 423--441.

G. Chartrand, E. Salehi, P. Zhang, The partition dimension of a
graph, {\em Aequationes Math.} {\bf 59}(2000), 45--54.

G. Chartrand, E. Salehi, P. Zhang, On the partition dimension of a
graph, {\em Congr. Numer.} {\bf 130}(1998), 157--168.

G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, {\em Disc.
Appl. Math.} {\em 105}(2000), 99--113.

M. A. Chaudhry, I. Javaid, M. Salman, Fault-Tolerant metric and
partition dimension of graphs, {\em Util. Math.} {\bf 83}(2010), 187--199.

M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, {\em Freeman, W H., San Francisco}, 1979.

F. Harary, R. A. Melter, On the metric dimension of a graph, {\em Ars
Combin.} {\bf 2}(1976), 191--195.

C. Hernando, M. Mora, I. M. Pelayo, C. Seara, D. R. Wood, Extremal
Graph Theory for metric dimension and diameter, {\em Elect. Notes in
Disc. Math.} {\bf 29}(2007), 339--343.

I. Javaid, M. Salman, M. A. Chaudhry, S. Shokat, Fault-Tolerance
in Resolvability, {\em Util. Math.} {\bf 80}(2009), 263--275.

I. Javaid, M. T. Rahim, K. Ali, Families of regular graphs with
constant metric dimension, {\em Util. Math.} {\bf 75}(2008), 21--33.

S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs,
{\em Disc. Appl. Math.} {\bf 70} (1996), 217--229.

M. Salman, I. Javaid, M. A. Chaudhry, Resolvability in circulant
graphs, {\em Acta. Math. Sinica, Englich Series.} {\bf 28}(9)(2012), 1851--1864.

P. J. Slater, Leaves of trees, {\em Congr. Numer.} {\bf 14}(1975), 549--559.

Downloads

Published

2023-12-31

Issue

Section

Articles