Pell Coding and Pell Decoding Methods with Some Applications

Authors

  • Nihal Tas Balikesir University
  • Sumeyra Ucar Balikesir University
  • Nihal Yilmaz Ozgur Balikesir University

DOI:

https://doi.org/10.11575/cdm.v15i1.62606

Abstract

We develop a new coding and decoding method using the generalized Pell $(p,i)$-numbers for $p=1$. The relations among the code matrix elements, error detection, and correction have been established for coding theory when $p=i=1$. We give two new blocking algorithms using Pell numbers and generalized Pell $(p,i)$-numbers for $p=1$.

References

\bibitem{basu} M. Basu, B. Prasad, \emph{The generalized relations among the
code elements for Fibonacci coding theory, }Chaos, Solitons Fractals 41
(2009), no. 5, 2517--2525.

\bibitem{esmaeili} M. Esmaeili, M. Esmaeili, \emph{A Fibonacci-polynomial
based coding method with error detection and correction}, Comput. Math.
Appl. 60 (2010), no. 10, 2738--2752.

\bibitem{Kilic-2009} E. K\i l\i \c{c}, \emph{The generalized Pell} $(p,i)$%
\emph{-numbers and their Binet formulas, combinatorial representations,
sums, }Chaos, Solitons Fractals 40 (2009), 2047--2063.

\bibitem{koshy-pell} T. Koshy, \emph{Pell and Pell-Lucas numbers with
applications}, Springer, Berlin (2014).

\bibitem{prajat} S. Prajapat, A. Jain, R. S. Thakur, \emph{A Novel Approach
For Information Security With Automatic Variable Key Using Fibonacci }$\emph{%
Q}$\emph{-Matrix,} IJCCT 3 (2012), no. 3, 54--57.

\bibitem{prasad-lucas} B. Prasad, \emph{Coding Theory on Lucas }$p$\emph{\
Numbers, Discrete Mathematics}, Algorithms and Applications 8 (2016), no.4,
17 pages.

\bibitem{stakhov1999-2} A. Stakhov, V. Massingue, A. Sluchenkov, \emph{%
Introduction into Fibonacci Coding and Cryptography, }Osnova, Kharkov (1999).

\bibitem{stakhov 2006} A. P. Stakhov, \emph{Fibonacci matrices, a
generalization of the Cassini formula and a new coding theory, }Chaos,
Solitons Fractals 30 (2006), no. 1, 56--66.

\bibitem{Tarle} B. S. Tarle, G. L. Prajapati, \emph{On the information
security using Fibonacci series, }International Conference and Workshop on
Emerging Trends in Technology (ICWET 2011)-TCET, Mumbai, India.

\bibitem{Tas} N. Ta\c{s}, S. U\c{c}ar, N. Y. \"{O}zg\"{u}r, \"{O}. \"{O}.
Kaymak, \emph{A new coding/decoding algorithm using Fibonacci numbers},
Discrete Mathematics, Algorithms and Applications 10 (2018), no. 2.

\bibitem{ucar} S. U\c{c}ar, N. Ta\c{s}, N. Y. \"{O}zg\"{u}r, \emph{A new
cryptography model via Fibonacci and Lucas numbers}, arXiv:1709.10355
[cs.CR].

\bibitem{ucar2} S. U\c{c}ar, N. Y. \"{O}zg\"{u}r, \emph{Right Circulant
Matrices with Generalized Fibonacci and Lucas Polynomials and Coding Theory}%
, arXiv:1801.01766 [math.CO].

\bibitem{Wang} F. Wang, J. Ding, Z. Dai, Y. Peng, \emph{An application of
mobile phone encryption based on Fibonacci structure of chaos, }2010 Second
WRI World Congress on Software Engineering.

Downloads

Published

2020-05-11

Issue

Section

Articles