Uniformly resolvable $(C_4, K_{1,3})$-designs of order v and

Authors

  • Mario Gionfriddo
  • Selda Kucukcifci Koc University Mathematics Department
  • Salvatore Milici
  • E Sule Yazici

DOI:

https://doi.org/10.11575/cdm.v13i1.62548

Keywords:

Design Theory, Resolvable graph decomposition, Uniform resolutions,

Abstract

In this paper we consider the uniformly resolvable decompositions of the complete graph $\lambda K_v$ into subgraphs where each resolution class contains only blocks isomorphic to the same graph. We consider the cases in which all the resolution classes are either $C_4$ or $K_{1,3}$. We prove that this type of system does not exist for $\lambda$ odd and determine completely the spectrum for $\lambda=2$.

Downloads

Download data is not yet available.

Author Biography

Selda Kucukcifci, Koc University Mathematics Department

Department of Mathematics, Koc University

References

1. P. Adams, E. Billington, D. Bryant, and S. El-Zanati, On the Hamilton-Waterloo problem, Graphs Combin. 18 (2002), 31-51.

2. B. Alspach, P. J. Shellenberg, D. R. Stinson, and D.Wagner, The Oberwolfach problem and factors of uniform length, J. Combin. Theory Ser. A 52 (1989), 20-43.

3. L. Berardi, M. Gionfriddo, and R. Rota, Balanced and strongly balanced Pk-designs, Discrete Math. 312 (2012), 633-636.

4. D. Bryant and P. Danziger, On bipartite 2-factorizations of K_n-I and the Oberwolfach problem, J. Graph Theory 68 (2011), 22-37.

5. D. Bryant, P. Danziger, and W. Pettersson, Bipartite 2-factorizations of complete multipartite graphs, J. Graph Theory 78 (2015), 287-294.

6. D. Bryant and V. Scharaschkin, Complete solutions to the Oberwolfach problem for an infinite set of orders, J. Combin. Theory Ser. B 78 (2009), 904-918.

7. C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial Designs, Chapman and Hall/CRC, Boca Raton, FL, 2007, Online updates www.emba.uvm.edu/~dinitz/newresults.html.

8. P. Danziger, G. Quattrocchi, and B. Stevens, The Hamilton-Waterloo problem for cycle sizes 3 and 4, J. Combin. Des. 12 (2004), 221-232.

9. J. H. Dinitz and A. C. H. Ling, The Hamilton-Waterloo problem: The case of triangle-factors and one Hamilton cycle, J. Combin. Des. 17 (2009), no. 2, 160-176.

10. J. H. Dinitz, A. C. H. Ling, and P. Danziger, Maximum uniformly resolvable designs with block sizes 2 and 4, Discrete Math. 309 (2009), 4716-4721.

11. M. Gionfriddo, S. S. Kucukcifci, and L. Milazzo, Balanced and strongly balanced 4-kite designs, Util. Math. 91 (2013), 121-129.

12. M. Gionfriddo, L. Milazzo, and V. Voloshin, Hypergraphs and Designs, Mathematics Research Developments, Nova Science Publishers Inc, 2014.

13. M. Gionfriddo and S. Milici, On the existence of uniformly resolvable decompositions of k_v and k_v-i into paths and kites, Discrete Math. 313 (2013), 2830-2834.

14. M. Gionfriddo and S. Milici, Uniformly resolvable H-designs with H = {P_3, P_4}; P_4, Australas. J. Combin. 60 (2014), no. 3, 325-332.

15. M. Gionfriddo and S. Milici, Uniformly resolvable {K_2,P_k}-designs with k = {3, 4}, Contr. Discrete Math. 10 (2015), no. 1, 126-133.

16. P. Horak, R. Nedela, and A. Rosa, The Hamilton-Waterloo problem: the case of Hamilton factors and triangle-factors, Discrete Math. 284 (2004), 181-188.

17. E. Kohler, Das Oberwolfacher problem, Mitt. Math. Gesellsch. Hamburg 10 (1973), 124-129.

18. S. Kucukcifci, G. Lo Faro, S. Milici, and A. Tripodi, Resolvable 3-star designs, Discrete Math. 338 (2015), 608-614.

19. S. Kucukcifci, S. Milici, and Zs. Tuza, Maximum uniformly resolvable decompositions of k_v into 3-stars and 3-cycles, Discrete Math. 338 (2015), 1667-1673.

20. J. Liu, The equipartite Oberwolfach problem with uniform tables, J. Combin. Theory Ser. A 101 (2003), 20-34.

21. J. Liu and D. R. Lick, On lambda-fold equipartite Oberwolfach problem with uniform table sizes, Ann. Combin. 7 (2003), 315-323.

22. S. Milici, A note on uniformly resolvable decompositions of K_v and K_v-I into 2-stars and 4-cycles, Australas. J. Combin. 56 (2013), 195-200.

23. S. Milici and Zs. Tuza, Uniformly resolvable decompositions of K_v into P_3 and K_3 graphs, Discrete Math. 331 (2014), 137-141.

24. W. L. Piotrowski, The solution of the bipartite analogue of the Oberwolfach problem, Discrete Math. 97 (1991), 339-356.

25. R. Rees, Uniformly resolvable pairwise balanced designs with block sizes two and three, J. Combin. Theory Ser. A 45 (1987), 207-225.

26. E. Schuster, Uniformly resolvable designs with index one and block sizes three and five and up to five with blocks of size five, Discrete Math. 309 (2009), 4435-4442.

27. E. Schuster, Uniformly resolvable designs with index one and block sizes three and four-with three or five parallel classes of block size four, Discrete Math. 309 (2009), 2452-2465.

28. E. Schuster, Small uniformly resolvable designs for block sizes 3 and 4, J. Combin. Des. 21 (2013), 481-523.

29. E. Schuster and G. Ge, On uniformly resolvable designs with block sizes 3 and 4, Des. Codes Cryptogr. 57 (2010), 47-69.

30. T. Traetta, A complete solution to the two-table Oberwolfach problems, J. Combin. Theory Ser. A. 120 (2013), 984-997.

Downloads

Published

2018-01-29

Issue

Section

Articles