On the combinatorics of modified lattice paths and generalized $q$--series

Authors

  • Meenakshi Rana Thapar University
  • Megha Goyal Punjabi University, Patiala

DOI:

https://doi.org/10.11575/cdm.v13i1.62469

Keywords:

$q$--series, split $(n t)$--color partitions, combinatorial identities, weighted lattice paths, modified lattice paths

Abstract

Recently, Agarwal and Sachdeva, 2017, proved two Rogers- Ramanujan type identities for modified lattice paths by establishing a bijection between split (n + t)-color partitions and the modified lattice paths. In this paper, we interpret four generalized basic series combinatorially in terms of modied lattice paths by using a similar bijection. This leads to four new Rogers{Ramanujan type identities for modified lattice paths.

Author Biographies

Meenakshi Rana, Thapar University

Assistant Professor,

School of Mathematics,

Thapar University,

Patiala-147001, India

Megha Goyal, Punjabi University, Patiala

Assistant Professor,

Basic and Applied Sciences,

Punjabi University,

Patiala-147002, India

 

References

1. L. Addario-Berry and B. Reed, Horizons of Combinatorics, Bolyai Society Mathematical Studies, vol. 17, ch. Ballot theorems, old and new, pp. 9-35, Springer Berlin Heidelberg, 2008.

2. A. K. Agarwal, A note on n(x; y)-reflected lattice paths, Fibonacci Q. 25 (1987), no. 4, 317-319.

3. A. K. Agarwal, New classes of infinite 3-way partition identity, Ars Combin. 44 (1996), 33-54.

4. A. K. Agarwal and G. E. Andrews, Hook differences and lattice paths, J. Statist. Plann. Inference 14 (1986), no. 1, 5-14.

5. A. K. Agarwal and G. E. Andrews, Rogers-Ramanujan identities for partitions with \N copies of N", J. of Combin. Theory 45 (1987), no. 1, 40-49.

6. A. K. Agarwal, G. E. Andrews, and D. M. Bressoud, The Bailey lattice, J. Indian Math. Soc. 51 (1987), 57-73.

7. A. K. Agarwal and D. M. Bressoud, Lattice paths and multiple basic hypergeometric series, Pacific J. Math. 136 (1989), no. 2, 209-228.

8. A. K. Agarwal and M. Goyal, Lattice paths and Rogers identities, Open J. of Discrete Mathematics 1 (2011), 89-95.

9. A. K. Agarwal and M. Rana, Two new combinatorial interpretations of a fifth order mock theta function, J. Indian Math. Soc. New Ser. (2009), 11-24.

10. A. K. Agarwal and R. Sachdeva, Basic series identities and combinatorics, Ramanujan J. 42 (2017), 725-746.

11. A. K. Agarwal and G. Sood, Split (n+t)-color partitions and Gordon-McIntosh eight order mock theta functions, Electron. J. Comb. 21 (2014), no. 2, #P2.46.

12. D. Andre, Solution directe du probleme resolu par M. Bertrand, Comptes rendus hebdomadaires des seances de l'academie des sciences Paris 105 (1887), 436-437.

13. G. E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and its Applications, vol. 2, Addison-Wesley, 1978.

14. J. Bertrand, Solution d'un probleme, Comptes rendus hebdomadaires des seances de l'academie des sciences Paris 105 (1887), 369.

15. B. Gordon and R. J. McIntosh, Some eight order mock theta functions, J. London Math. Soc. 62 (2000), no. 2, 321-335.

16. M. Goyal, New combinatorial interpretations of some Rogers-Ramanujan type identities, Contrib. Discrete Math. 11 (2017), no. 2, 43-57.

17. M. Goyal, On combinatorial extensions of Rogers-Ramanujan type identities, Contrib. Discrete Math. 12 (2017), no. 2, 33-51.

18. M. Goyal and A. K. Agarwal, On a new class of combinatorial identities, Ars Combin. 127 (2016), 65-77.

19. K. Humphreys, A history and a survey of lattice path enumeration, J. Statist. Plann. Inference 140 (2010), 2237-2254.

20. P. A. MacMahon, Memoir on the theory of the compositions of numbers, Philos. Trans. R. Soc. Lond., Ser. A 184 (1893), 835-901.

21. P. A. MacMahon, Memoir on the theory of the partitions of numbers, Philos. Trans. R. Soc. Lond., Ser. A 209 (1909), 153-175.

22. P. A. MacMahon, Combinatory Analysis, Chelsea Publishing Co., New York, 1960.

23. M. Rana, J. K. Sareen, and D. Chawla, On generalized q-series and split (n+t)-color partitions, to appear.

24. R. Sachdeva and A. K. Agarwal, Modified lattice paths and Gordon-McIntosh eight order mock theta functions, Communicated.

25. J. K. Sareen and M. Rana, Four-way combinatorial interpretations of some Rogers-Ramanujan type identities, Ars Combin. 133 (2017), 17-35.

26. G. Sood and A. K. Agarwal, Rogers-Ramanujan identities for split (n + t)-color partitions, J. Comb. Number Theory 7 (2015), no. 2, 141-151.

Downloads

Published

2018-01-29

Issue

Section

Articles