Circuit partitions and signed interlacement in 4-regular graphs

Authors

  • Lorenzo Traldi Lafayette College

DOI:

https://doi.org/10.55016/ojs/cdm.v20i2.62407

Keywords:

4-regular graph, circuit partition, cycle space, Euler system, interlacement

Abstract

Let $F$ be a 4-regular graph. Each circuit partition $P$ of $F$ has a corresponding touch-graph $Tch(P)$; the circuits in $P$ correspond to vertices of $Tch(P)$, and the vertices of $F$ correspond to edges of $Tch(P)$. We discuss the connection between modified versions of the interlacement matrix of an Euler system of $F$ and the cycle space of $Tch(P)$, over $GF(2)$ and $\mathbb{R}$.

Downloads

Download data is not yet available.

Author Biography

Lorenzo Traldi, Lafayette College

Professor of Mathematics

References

\bibitem {A2}R. Arratia, B. Bollob\'{a}s, and G. B. Sorkin, \emph{The
interlace polynomial of a graph}, J. Combin. Theory Ser. B \textbf{92} (2004), 199-233.

\bibitem {A}R. Arratia, B. Bollob\'{a}s, and G. B. Sorkin, \emph{A
two-variable interlace polynomial}, Combinatorica \textbf{24} (2004), 567-584.

\bibitem {Be}I. Beck, \emph{Cycle decomposition by transpositions}, J. Combin.
Theory Ser. A \textbf{23} (1977), 198-207.

\bibitem {BM}I. Beck and G. Moran, \emph{Introducing disjointness to a
sequence of transpositions}, Ars Combin. \textbf{22} (1986), 145-153.

\bibitem {B}B. Bollob\'{a}s, \textit{Modern Graph Theory}, Springer-Verlag,
New York, 1998.

\bibitem {Bold}A. Bouchet, \emph{Caract\'{e}risation des symboles crois\'{e}s
de genre nul}, C. R. Acad. Sci. Paris S\'{e}r. A-B \textbf{274} (1972), A724-A727.

\bibitem {Bi1}A. Bouchet, \emph{Isotropic systems}, European J. Combin.
\textbf{8} (1987), 231-244.

\bibitem {Bi2}A. Bouchet, \emph{Graphic presentation of isotropic systems}, J.
Combin. Theory Ser. B \textbf{45} (1988), 58-76.

\bibitem {Bu}A. Bouchet, \emph{Unimodularity and circle graphs}, Discrete
Math. \textbf{66} (1987), 203-208.

\bibitem {Br}H. R. Brahana, \emph{Systems of circuits on two-dimensional
manifolds}, Ann. Math. \textbf{23} (1921), 144-168.

\bibitem {CL}M. Cohn and A. Lempel, \emph{Cycle decomposition by disjoint
transpositions}, J. Combin. Theory Ser. A \textbf{13} (1972), 83-89.

\bibitem {GS}Q.\ Ge and D.\ \v{S}tefankovi\v{c}, \emph{The complexity of
counting Eulerian tours in 4-regular graphs}, Algorithmica \textbf{63} (2012), 588--601.

\bibitem {J1}F. Jaeger, \emph{On some algebraic properties of graphs}, in:
\emph{Progress in Graph Theory} (Waterloo, Ont., 1982), Academic Press,
Toronto, 1984, pp. 347-366.

\bibitem {Jo}J. Jonsson, \emph{On the number of Euler trails in directed
graphs}, Math. Scand. \textbf{90} (2002), 191-214.

\bibitem {Kau}L. H. Kauffman, \emph{State models and the Jones polynomial},
Topology \textbf{26} (1987), 395-407.

\bibitem {KR}J. Keir and R. B. Richter, \emph{Walks through every edge exactly
twice II}, J. Graph Theory \textbf{21} (1996), 301-309.

\bibitem {K}A. Kotzig, \emph{Eulerian lines in finite 4-valent graphs and
their transformations}, in: \emph{Theory of Graphs} (Proc. Colloq., Tihany,
1966), Academic Press, New York, 1968, pp. 219-230.

\bibitem {L2}M. Las Vergnas, \emph{On Eulerian partitions of graphs}, in:
\emph{Graph Theory and Combinatorics} (Proc. Conf., Open Univ., Milton Keynes,
1978), Res. Notes in Math., 34, Pitman, Boston, Mass.-London, 1979, pp. 62--75.

\bibitem {L1}M. Las Vergnas, \emph{Eulerian circuits of 4-valent graphs
imbedded in surfaces}, in: \emph{Algebraic Methods in Graph Theory}, Vol. I,
II (Szeged, 1978), Colloq. Math. Soc. J\'{a}nos Bolyai, 25, North-Holland,
Amsterdam-New York, 1981, pp. 451--477.

\bibitem {L}M. Las Vergnas, \emph{Le polyn\^{o}me de Martin d'un graphe
Eul\'{e}rien}, Ann. Discrete Math. \textbf{17} (1983), 397-411.

\bibitem {Lau}J. Lauri, \emph{On a formula for the number of Euler trails for
a class of digraphs}, Discrete Math. \textbf{163} (1997), 307-312.

\bibitem {MP}N. Macris and J. V. Pul\'{e}, \emph{An alternative formula for
the number of Euler trails for a class of digraphs}, Discrete Math.
\textbf{154} (1996), 301-305.

\bibitem {Ma}P. Martin, \emph{Enum\'{e}rations eul\'{e}riennes dans les
multigraphes et invariants de Tutte-Grothendieck}, Th\`{e}se, Grenoble (1977).

\bibitem {Me}B.\ Mellor, \emph{A few weight systems arising from intersection
graphs}, Michigan Math. J. \textbf{51} (2003), 509-536.

\bibitem {M}G. Moran, \emph{Chords in a circle and linear algebra over GF(2)},
J. Combin. Theory Ser. A \textbf{37} (1984), 239-247.

\bibitem {P}P. A. Pevzner, \emph{DNA physical mapping and alternating Eulerian
cycles in colored graphs}, Algorithmica \textbf{13} (1995) 77-105.

\bibitem {RR}R. C. Read and P. Rosenstiehl, \emph{On the Gauss crossing
problem}, in: \emph{Combinatorics} (Proc. Fifth Hungarian Colloq., Keszthely,
1976), Vol. II, Colloq. Math. Soc. J\'{a}nos Bolyai, 18, North-Holland,
Amsterdam-New York, 1978, pp. 843-876.

\bibitem {R}R. B. Richter, \emph{Walks through every edge exactly twice}, J.
Graph Theory \textbf{18} (1994), 751-755.

\bibitem {So}E.\ Soboleva, \emph{Vassiliev knot invariants coming from Lie
algebras and 4-invariants}, J. Knot Theory Ramifications \textbf{10} (2001), 161-169.

\bibitem {S}S. Stahl, \emph{On the product of certain permutations}, European
J.\ Combin. \textbf{8} (1987), 69-72.

\bibitem {Tbn}L.\ Traldi, \emph{Binary nullity,\ Euler circuits and
interlacement polynomials}, European J. Combin. \textbf{32} (2011), 944-950.

\bibitem {T5}L. Traldi, \emph{On the linear algebra of local complementation},
Linear Alg. Appl. \textbf{436} (2012), 1072--1089.

\bibitem {Tnew}L. Traldi, \emph{Interlacement in 4-regular graphs: a new
approach using nonsymmetric matrices}, Contrib. Discrete Math. \textbf{9}
(2014), 85-97.

\bibitem {U}E. Ukkonen, \emph{Approximate string-matching with q-grams and
maximal matches}, Theoret. Comput. Sci. \textbf{92} (1992) 191-211.

\bibitem {Z}L.\ Zulli, \emph{A matrix for computing the Jones polynomial of a
knot}, Topology \textbf{34} (1995), 717-729.

Downloads

Published

2025-10-28

Issue

Section

Articles