α-Resolvable λ-fold G-designs

Authors

  • Mario Gionfriddo Università di Catania
  • Giovanni Lo Faro Università di Messina
  • Salvatore Milici Università di Catania
  • Antoinette Tripodi Università di Messina

DOI:

https://doi.org/10.11575/cdm.v12i1.62344

Keywords:

α-resolvable G-design, α-parallel class

Abstract

A λ-fold G-design is said to be α-resolvable if its blocks can be partitioned into classes such that every class contains each vertex exactly α times. In this paper we study the existence problem of an α-resolvable λ-fold G-design oforder v in the case when G is any connected subgraph of K_4 and prove that the necessary conditions for its existence are also sufficient.

Author Biographies

Mario Gionfriddo, Università di Catania

Dipartimento di Matematica e Informatica

Giovanni Lo Faro, Università di Messina

Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra

Salvatore Milici, Università di Catania

Dipartimento di Matematica e Informatica

Antoinette Tripodi, Università di Messina

Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra

References

J. C. Bermond, K. Heinrich and M. L. Yu, Existence of resolvable path designs, Eur. J. Combin. 11 (1990), 205–211.

C. J. Colbourn, D. R. Stinson and L. Zhu, More frames with block size four, J. Combin. Math. Combin. Comput. 23 (1997), 3–20.

G. Ge and A. C. H. Ling, On the Existence of Resolvable (K_4 − e) Designs, J. Comb. Des. 15 (2007), 502–510.

M. Gionfriddo, G. Lo Faro, S. Milici and A. Tripodi, Resolvable (K_v−e) -designs of order v and index λ, submitted.

M. Gionfriddo, G. Lo Faro, S. Milici and A. Tripodi, The spectrum of α-resolvable λ-fold (K4 − e)-designs, submitted.

H. Hanani, On resolvable balanced incomplete block designs, J. Comb. Theory A 17 (1974), 275–289.

H. Hanani, D. K. Ray-Chaudhuri and R. M. Wilson, On resolvable designs,
Discrete Math. 3 (1972), 343–357.

J. D. Horton, Resolvable path designs, J. Comb. Theory A 39 (1985) 117–131.

D. Jungnickel, R. C. Mullin and S. A. Vanstone, The spectrum of α-resolvable block designs with block size 3, Discrete Math. 97 (1991), 269–277.

S. Kucukcifci, G. Lo Faro, S. Milici and A. Tripodi, Resolvable 3-star designs, Discrete Math. 338 (2015), 608–614.

S. Kucukcifci, S. Milici and Z. Tuza, Maximum uniformly resolvable decompositions of K_v and K_v − I into 3-stars and 3-cycles, Discrete Math. 338 (2015), 1667–1673.

G. Lo Faro, S. Milici and A. Tripodi, Uniformly resolvable decompositions of K_v into paths on two, three and four vertices, Discrete Math. 338 (2015), 2212–2219.

G. Lo Faro and A. Tripodi, The Doyen-Wilson theorem for kite systems, Discrete Math. 306 (2006), 2695–2701.

G. Lo Faro and A. Tripodi, Embeddings of λ-fold kite systems, λ ≥ 2, Australas. J. Combin. 36 (2006), 143 –150.

S. Milici, A note on uniformly resolvable decompositions of K_v and K_v − I into 2-stars and 4-cycles, Australas. J. Combin. 56 (2013), 195–200.

S. Milici and Z. Tuza, Uniformly resolvable decompositions of K_v into P_3 and K_3 graphs, Discrete Math. 331 (2014), 137–141.

R. Su and L. Wang, Minimum resolvable covering of K_v with copies of K_4 − e, Graphs Combinator. 27 (2011), 883–896.

M. J. Vasiga, S. Furino and A. C. H. Ling, The spectrum of α-resolvable designs with block size four, J. Comb. Des. 9 (2001), 1–16.

L. Wang and R. Su On the existence of maximum resolvable (K4 − e)-packings, Discrete Math. 310 (2010), 887–896.

L. Wang, Completing the Spectrum of Resolvable (K_4 − e)-Designs, Ars Combinatoria 105 (2012), 289–291.

M. X. Wen and T. Z. Hong, α-Resolvable Cycle Systems for Cycle Length 4, J. Mathematical Research Exposition 29 (2009), 1102–1106.

Y. Zhang and B. Du, α-Resolvable Group Divisible Designs with Block Size Three, J. Comb. Des. 13 (2005), 139–151.

Downloads

Published

2017-09-27

Issue

Section

Articles