A method to determine algebraically integral Cayley digraphs on finite abelian group

  • Fei Li Anhui University of Finance and Economics

Abstract

Researchers in the past have studied eigenvalues of Cayley digraphs or graphs. We are interested in characterizing Cayley digraphs on a finite commutative group $G$ whose eigenvalues are algebraic integers in a given number field $K.$ We succeed in finding a method to do so. The number of such Cayley digraphs are computed.

Author Biography

Fei Li, Anhui University of Finance and Economics
School of Statistics and Applied Mathematics´╝îlecturer

References

1. RC. Alperin, BL. Peterson, Integral Sets and Cayley Graphs of Finite Groups.
Electron. J. Combin, 2012,19: P44.
--------------------------------------------------------------------
2. J.Sander, T.Sander, The Exact Maxamal Energy of Integral Circulant
Graphs with Prime Power Order. Contributions to Discrete Mathematics, 2013, 8(2):19-40.
-----------------------------------------------------------------------
3. K. Babai, Spectra of Cayley Graphs. Journal of Combinatorial Theory,
Series B, 1979, 27: 180-189.
------------------------------------------------------------------------
4. K. Balinska, D.Cvetkovic, Z.Radosavljevic, S.Simic, D.Stevanovic, A Survey on Integral Graphs. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat, 2002,13: 42-65.
-----------------------------------------------------------------------
5. N. Biggs, Algebraic Graph theory. Amsterdam: North-Holland, 1985.
----------------------------------------------------------------------
6. W. G.Bridges, R. A.Mena, Rational G-matrices with rational eigenvalues. Journal of Combinatorial Theory, Series A, 1982,32(2): 264-280.
-----------------------------------------------------------------------
7. F. Esser, F. Harary, Digraphs with real and Gaussian spectra. Discrete Appl. Math, 1980, 2: 113-124.
----------------------------------------------------------------------
8. C. Godsil, G. Royle, Algebraic Graph theory. New York: Springer-Verlag, 2001.
----------------------------------------------------------------------
9. F. Harary, A. Schwenk, Which graphs have integral spectra, in: R. Bari, F. Harary (Eds.), Graphs and Combinatorics. Berlin: Springer-Verlag, 1974.
-----------------------------------------------------------------------
10. J. P. Serre, Linear Representations of Finite Groups.
New York: Springer-Verlag, 1977.
----------------------------------------------------------------------
11. Y. Xu, J. X. Meng, Gaussian integral circulant digraphs. Discrete Mathematics, 2011, 311: 45-50.
-----------------------------------------------------------------------
12. S. Lang, Algebra. 3rd edition, New York: Springer-verlag, 2002.
-----------------------------------------------------------------------
13. Fei Li, Circulant Digraphs Integral over Number Fields. Discrete Mathematics, 2013, 313: 821-823.
-----------------------------------------------------------------------
14. W. So, Integral circulant graphs, Discrete Mathematics, 2005, 306: 153-158.
-----------------------------------------------------------------------
15. Xiangdong Hou, On the G-Matrices with Entries and Eigenvalues in Q(i),
Graphs and Combinatorics, 1992, 8:53-64.
Published
2020-07-30
Section
Articles