On the enumeration of a class of toroidal graphs

Authors

  • Ashish Kumar Upadhyay Indian Institute of Technology Patna
  • Dipendu Maity Harish-Chandra Research Institute

DOI:

https://doi.org/10.11575/cdm.v13i1.62310

Keywords:

Toroidal Graphs, Semi-Equivelar Maps, Cycles

Abstract

We present enumerations of a class of toroidal graphs which are called semi-equivelar maps. Semi-equivelar maps are generalizations of equivelar maps. There are eight non-isomorphic types of semi-equivelar maps on the torus: $\{3^{3}, 4^{2}\}$, $\{3^{2}, 4, 3, 4\}$, $\{3, 6, 3, 6\}$, $\{3^{4}, 6\}$, $\{4, 8^{2}\}$, $\{3, 12^{2}\}$, $\{4, 6, 12\}$, $\{3, 4, 6, 4\}$. We attempt to classify all these maps.

References

A. Altshuler, Construction and enumeration of regular maps on the torus, Discrete Math. 4 (1973), 201-217.

J. A. Bondy and U. S. R. Murthy, Graph theory, Graduate Texts in Mathematics, vol. 244, Springer, 2008.

U. Brehm and W. Kuhnel, Equivelar maps on the torus, European J. Combin. 29 (2008), 1843-1861.

U. Brehm and E. Schulte, Handbook of discrete and computational geometry, ch. Polyhedral maps, pp. 345-358, CRC Press, NY, 1997.

W. Kurth, Enumeration of platonic maps on the torus, Discrete Math. 61 (1986), 71-83.

S. Negami, Uniqueness and faithfulness of embedding of toroidal graphs, Discrete Math. 44 (1983), 161-180.

A. K. Tiwari and A. K. Upadhyay, An enumeration of semi-equivelar maps on torus and klein bottle, to appear.

A. K. Upadhyay, A. K. Tiwari, and D. Maity, Semi-equivelar maps, Beitr. Algebra Geom. 55 (2014), 229-242.

Downloads

Published

2018-01-29

Issue

Section

Articles