The exact maximal energy of integral circulant graphs with prime power order

Authors

  • Juergen Sander
  • Torsten Sander

DOI:

https://doi.org/10.11575/cdm.v8i2.62187

Keywords:

Math, Discrete, Cayley graphs, integral graphs, circulant graphs, graph energy

Abstract

The energy of a graph was introduced by {\sc Gutman} in 1978 as the sum of the absolute values of the eigenvalues of its adjacency matrix. We study the energy of integral circulant graphs, also called gcd graphs,
which can be characterized by their vertex count $n$ and a set $\cal D$ of divisors of $n$ in such a way that they have vertex set $\mathbb{Z}/n\mathbb{Z}$ and edge set $\{\{a,b\}:\, a,b\in\mathbb{Z}/n\mathbb{Z},\, \gcd(a-b,n)\in {\cal D}\}$.

Given an arbitrary prime power $p^s$, we determine all divisor sets maximising the energy of an integral circulant graph of order $p^s$. This enables us to compute the maximal energy $\Emax{p^s}$ among all integral circulant graphs of order $p^s$.

References

\bibitem{AHM}

O. Ahmadi and N. Alon and I.F. Blake and I.E. Shparlinski,

Graphs with integral spectrum,

Linear Algebra Appl. {\bf 430} (2009), 547-552.

------------------------------------------------

\bibitem{AKH} R. Akhtar and M. Boggess and T. Jackson-Henderson and I. Jim{\'e}nez and R. Karpman and A. Kinzel and D. Pritikin,

On the unitary Cayley graph of a finite ring,

Electron. J. Combin. {\bf 16} (2009), Research Paper R117, 13 pp. (electronic).

--------------------------------------------------

\bibitem{BAP} R.B. Bapat and S. Pati,

Energy of a graph is never an odd integer,

Bull. Kerala Math. Assoc. {\bf 1} (2004), 129-132.

--------------------------------------------------

\bibitem{BAS3} M. Ba\v{s}i\'c and M.D. Petkovi\'c,

{Perfect state transfer in integral circulant graphs of non-square-free order},

Linear Algebra Appl. {\bf 433} (2010), 149-163

----------------------------------------------------

\bibitem{BEA} N. de Beaudrap,

{On restricted unitary {C}ayley graphs and symplectic transformations modulo {$n$}},

Electron. J. Combin. {\bf 17} (2010), Research Paper R69, 26 pp. (electronic).

-----------------------------------------------------

\bibitem{BER} P. Berrizbeitia and R. E. Giudici,

{On cycles in the sequence of unitary Cayley graphs},

Discrete Math. {\bf 282} (2004), 239-243.

----------------------------------------------------

\bibitem{BRU} R.A. Brualdi,

Energy of a graph, AIM Workshop Notes, 2006.

------------------------------------------------------

\bibitem{DAV} P. J. Davis,

{Circulant matrices},

John Wiley \&\ Sons, New York-Chichester-Brisbane, 1979.

-----------------------------------------------------

\bibitem{DEJ} I. J. Dejter and R. E. Giudici,

{On unitary Cayley graphs},

J. Combin. Math. Combin. Comput. {\bf 18} (1995), 121-124.

------------------------------------------------------

\bibitem{DRO} A. Droll,

{A classification of {R}amanujan unitary {C}ayley graphs},

Electron. J. Combin. {\bf 17} (2010), Research Note N29, 6 pp. (electronic).

------------------------------------------------------

\bibitem{GUT} I. Gutman,

{The energy of a graph},

Ber. Math.-Stat. Sekt. Forschungszent. Graz {\bf 103}, 1978.

--------------------------------------------------

\bibitem{ILI} A. Ili\'{c},

The energy of unitary Cayley graphs,

Linear Algebra Appl. {\bf 431} (2009), 1881-1889.

----------------------------------------------------

\bibitem{KIA} D. Kiani and M.M.H. Aghaei and Y. Meemark and B. Suntornpoch,

The energy of unitary Cayley graphs and gcd-graphs,

Linear Algebra Appl. {\bf 435} (2011), 1336-1343.

----------------------------------------------------

\bibitem{KLO} W. Klotz and T. Sander,

Some properties of unitary Cayley graphs,

Electron. J. Combin. {\bf 14} (2007), Research Paper R45, 12 pp. (electronic).

---------------------------------------------------

\bibitem{KLO2} W. Klotz and T. Sander,

{Integral {C}ayley graphs over abelian groups},

Electron. J. Combin. {\bf 17} (2010), Research Paper R81, 13 pp. (electronic).

----------------------------------------------------

\bibitem{KOO} J.H. Koolen and V. Moulton,

{Maximal energy graphs},

Adv. Appl. Math. {\bf 26} (2001), 47-52.

---------------------------------------------------

\bibitem{PET} M.D. Petkovi\'c and M. Ba\v{s}i\'c,

{Further results on the perfect state transfer in integral circulant graphs},

Comput. Math. Appl. {\bf 61} (2011), 300-312

----------------------------------------------------

\bibitem{PIR} S. Pirzada and I. Gutman,

Energy of a graph is never the square root of an odd integer,

Appl. Analysis and Discr. Math. {\bf 2} (2008), 118-121.

---------------------------------------------------

\bibitem{RAM} H.N. Ramaswamy and C.R. Veena,

{On the Energy of Unitary Cayley Graphs},

Electron. J. Combin. {\bf 16} (2009), Research Note N24, 8 pp. (electronic).

-----------------------------------------------

\bibitem{SA1} J.W. Sander and T. Sander,

{The energy of integral circulant graphs with prime power order},

Appl. Anal. Discrete Math. {\bf 5} (2011), 22-36.

--------------------------------------------------

\bibitem{SA2} J.W. Sander and T. Sander,

{Integral circulant graphs of prime power order with maximal energy},

Linear Algebra Appl. {\bf 435} (2011), 3212-3232.

------------------------------------------------

\bibitem{SA3} J.W. Sander and T. Sander,

{The maximal energy of classes of integral circulant graphs},

Discrete Appl. Math. {\bf 160} (2012), 2015-2029.

------------------------------------------------

\bibitem{SHP} I. Shparlinski,

{On the energy of some circulant graphs},

Linear Algebra Appl. {\bf 414} (2006), 378-382.

-----------------------------------------------

\bibitem{SO} W. So,

Integral circulant graphs,

Discrete Math. {\bf 306} (2005), 153-158.

Downloads

Published

2013-12-29

Issue

Section

Articles