Adjusting a conjecture of Erdős

Authors

  • Walter Carnielli
  • Pietro K. Carolino

DOI:

https://doi.org/10.11575/cdm.v6i1.62011

Abstract

We investigate a conjecture of Paul Erdős, the last unsolved problem among those proposed in his landmark paper [2]. The conjecture states that there exists an absolute constant $C > 0$ such that, if $v_1, \dots, v_n$ are unit vectors in a Hilbert space, then at least $C \frac{2n}{n}$ of all $\epsilon \in \{-1,1\}^n$ are such that $|\sum_{i=1}^n \epsilon_i v_i| \leq 1$. We disprove the conjecture. For Hilbert spaces of dimension $d > 2,$ the counterexample is quite strong, and implies that a substantial weakening of the conjecture is necessary. However, for $d = 2,$ only a minor modification is necessary, and it seems to us that it remains a hard problem, worthy of Erdős. We prove some weaker related results that shed some light on the hardness of the problem.

Downloads

Download data is not yet available.

Downloads

Published

2011-04-06

Issue

Section

Articles