ON UNIFORMLY RESOLVABLE \(\{K_2, P_k\} \)-DESIGNS WITH \(k = 3, 4 \)

MARIO GIONFRIDDO AND SALVATORE MILICI

Abstract. Given a collection of graphs \(\mathcal{H} \), a uniformly resolvable \(\mathcal{H} \)-design of order \(v \) is a decomposition of the edges of \(K_v \) into isomorphic copies of graphs from \(\mathcal{H} \) (also called blocks) in such a way that all blocks in a given parallel class are isomorphic to the same graph from \(\mathcal{H} \). We consider the case \(\mathcal{H} = \{K_2, P_k\} \) with \(k = 3, 4 \), and prove that the necessary conditions on the existence of such designs are also sufficient.

1. Introduction

Given a collection of graphs \(\mathcal{H} \), an \(\mathcal{H} \)-design of order \(v \) is a decomposition of the edges of \(K_v \) into isomorphic copies of graphs from \(\mathcal{H} \), the copies of \(H \in \mathcal{H} \) in the decomposition are called blocks. An \(\mathcal{H} \)-design is called resolvable if it is possible to partition the blocks into classes \(P_i \) such that every point of \(K_v \) appears exactly once in some block of each \(P_i \).

A resolvable \(\mathcal{H} \)-decomposition of \(K_v \) is sometimes also referred to as an \(\mathcal{H} \)-factorization of \(K_v \). The case where \(\mathcal{H} \) is a single edge \((K_2) \) is known as a 1-factorization of \(K_v \) and it is well known to exist if and only if \(v \) is even. A single class of a 1-factorization, a pairing of all points, is also known as a 1-factor or a perfect matching. A resolvable \(\mathcal{H} \)-design is called uniform if every block of the class is isomorphic to the same graph from \(\mathcal{H} \). Of particular note is the result of Rees [10] which finds necessary and sufficient conditions for the existence of uniformly resolvable \(\{K_2, K_3\} \)-designs of order \(v \). Uniformly resolvable decompositions of \(K_v \) have also been studied in [2, 3, 4, 5, 6, 7, 8, 9, 12, 11, 14, 13].

In what follows, we will denote by \([a_1, \ldots, a_k]\), \(k \geq 2 \), the path \(P_k \) having vertex set \(\{a_1, \ldots, a_k\} \) and edge set \(\{(a_1, a_2), (a_2, a_3), \ldots, (a_{k-1}, a_k)\} \). If \(v \) is even and \(k \in \{3, 4\} \), let \((K_2, P_k)\)-URD\((v; r, s)\) denote a uniformly resolvable decomposition of \(K_v \) into \(r \) classes containing only copies of 1-factors and \(s \) classes containing only copies of paths \(P_k \). Let \(\text{URD}(v; K_2, P_k) \) denote the set of all pairs \((r, s)\) such that there exists a \((K_2, P_k)\)-URD\((v; r, s)\).

Received by the editors September 12, 2014, and in revised form January 10, 2015.
2010 Mathematics Subject Classification. 05B05.
Key words and phrases. Resolvable graph decomposition; uniformly resolvable designs; paths.

Research supported by MIUR-PRIN 2012 (Italy) and INDAM-GNSAGA (Italy).
Given \(v \equiv 0 \pmod{6} \), define \(J_1(v) \) according to the following table:

<table>
<thead>
<tr>
<th>(v)</th>
<th>(J_1(v))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (mod 12)</td>
<td>{(v - 1 - 4x, 3x), x = 0, 1, \ldots, (v - 4)/4}</td>
</tr>
<tr>
<td>6 (mod 12)</td>
<td>{(v - 1 - 4x, 3x), x = 0, 1, \ldots, (v - 2)/4}</td>
</tr>
</tbody>
</table>

Table 1. The set \(J_1(v) \).

Given \(v \equiv 0 \pmod{4} \), define \(J_2(v) \) according to the following table:

<table>
<thead>
<tr>
<th>(v)</th>
<th>(J_2(v))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (mod 12)</td>
<td>{(v - 1 - 3x, 2x), x = 0, 1, \ldots, (v - 3)/3}</td>
</tr>
<tr>
<td>4 (mod 12)</td>
<td>{(v - 1 - 3x, 2x), x = 0, 1, \ldots, (v - 1)/3}</td>
</tr>
<tr>
<td>8 (mod 12)</td>
<td>{(v - 1 - 3x, 2x), x = 0, 1, \ldots, (v - 2)/3}</td>
</tr>
</tbody>
</table>

Table 2. The set \(J_2(v) \).

In this paper, the main purpose is to investigate the existence problem of a \((K_2, P_k)\)-URD\((v; r, s)\) of \(K_v \) for \(k = 3, 4 \). We completely solve the spectrum problem for such design; i.e., characterize the existence of uniformly resolvable \(\{K_2, P_k\}\)-designs of order \(v \), by proving the following result:

Main Theorem.

(i) A \((K_2, P_3)\)-URD\((v; r, s)\) exists if and only if \(v \equiv 0 \pmod{6} \) and \(\text{URD}(v; K_2, P_3) = J_1(v) \).

(ii) A \((K_2, P_4)\)-URD\((v; r, s)\) exists if and only if \(v \equiv 0 \pmod{4} \) and \(\text{URD}(v; K_2, P_3) = J_2(v) \).

2. Preliminaries and Necessary Conditions

In this section we will introduce some useful definitions, results, and give necessary conditions for the existence of a uniformly resolvable decomposition of \(K_v \) into \(r \) classes of 1-factors and \(s \) classes of paths \(P_k \), \(k = 3, 4 \). For missing terms or results that are not explicitly explained in the paper, the reader is referred to [1] and its online updates. For some results below, we also cite this handbook instead of the original papers. A (resolvable) \(H \)-decomposition of the complete multipartite graph with \(u \) parts each of size \(g \) is known as a resolvable group divisible design \(H \)-RGDD of type \(g^u \), the parts of size \(g \) are called the groups of the design. When \(H = K_n \) we will call it an \(n-(R)GDD \). A \((K_2, P_k)\)-URGDD \((r, s)\) of type \(g^u \) is a uniformly resolvable decomposition of the complete multipartite graph with \(u \) parts each of size \(g \) into \(r \) classes containing only copies of 1-factors and \(s \) classes containing only copies of paths \(P_k \).

If the blocks of an \(H \)-GDD of type \(g^u \) can be partitioned into partial parallel classes, each of which contain all points except those of one group, we refer to the decomposition as a *frame*.
A incomplete resolvable \((K_2, P_4)\)-decomposition of \(K_v\) with a hole of size \(h\) is an \((K_2, P_4)\)-decomposition of \(K_{v+h} - K_h\) in which there are two types of classes, full classes and partial classes which cover every point except those in the hole (the points of \(K_h\) are referred to as the hole). Specifically a \((K_2, P_4)\)-IURD\((v + h, h; [r_1, s_1], [\bar{r}_1, \bar{s}_1])\) is a uniformly resolvable \((K_2, P_4)\)-decomposition of \(K_{v+h} - K_h\) with \(r_1\) 1-factors which cover only the points not in the hole, \(\bar{r}_1\) partial classes of paths \(P_4\) which cover only the points not in the hole, \(\bar{s}_1\) full classes of paths \(P_4\) which cover every point of \(K_{v+h}\).

Lemma 2.1. If there exists a \((K_2, P_3)\)-URD\((v; r, s)\) of \(K_v\), then \(v \equiv 0 \pmod{6}\) and \((r, s) \in J_1(v)\).

Proof. The condition \(v \equiv 0 \pmod{6}\) is trivial. Let \(D\) be a \((K_2, P_3)\)-URD\((v; r, s)\) of \(K_v\). Counting the edges of \(K_v\) that appear in \(D\) we obtain

\[
\frac{rv}{2} + \frac{2sv}{3} = \frac{v(v-1)}{2},
\]

and hence

\[
3r + 4s = 3(v-1).
\]

This equation implies that \(3r \equiv 3(v-1) \pmod{4}\) and \(4s \equiv 3(v-1) \pmod{3}\). Then we obtain

- \(r \equiv 3 \pmod{4}\) and \(s \equiv 0 \pmod{3}\) for \(v \equiv 0 \pmod{12}\),
- \(r \equiv 1 \pmod{4}\) and \(s \equiv 0 \pmod{3}\) for \(v \equiv 6 \pmod{12}\).

Letting now \(s = 3x\), the equation (2) yields \(r = (v-1) - 4x\). Since \(r\) and \(s\) cannot be negative, and \(x\) is an integer, the value of \(x\) has to be in the range as given in the definition of \(J_1(v)\). This completes the proof. \(\Box\)

Lemma 2.2. If there exists a \((K_2, P_4)\)-URD\((v; r, s)\) of \(K_v\) then \(v \equiv 0 \pmod{4}\) and \((r, s) \in J_2(v)\).

Proof. The condition \(v \equiv 0 \pmod{4}\) is trivial. Let \(D\) be a \((K_2, P_4)\)-URD\((v; r, s)\) of \(K_v\). Counting the edges of \(K_v\) that appear in \(D\) we obtain

\[
\frac{rv}{2} + \frac{3sv}{4} = \frac{v(v-1)}{2},
\]

and hence

\[
2r + 3s = 2(v-1).
\]

This equation implies that

\[
2r \equiv 2(v-1) \pmod{3}\) and \(3s \equiv 2(v-1) \pmod{2}.
\]

Then we obtain

- \(r \equiv 2 \pmod{3}\) and \(s \equiv 0 \pmod{2}\) for \(v \equiv 0 \pmod{12}\),
- \(r \equiv 0 \pmod{3}\) and \(s \equiv 0 \pmod{2}\) for \(v \equiv 4 \pmod{12}\),
- \(r \equiv 1 \pmod{3}\) and \(s \equiv 0 \pmod{2}\) for \(v \equiv 8 \pmod{12}\).
Theorem 2.4.

Proof. Lemma 3.1. Let $v \equiv 0 \pmod{6}$, $(r, s) \in \{(v - 1 - 2x, x), x = 1, 2, \ldots, \frac{v-2}{2}\}$, with the two exceptions $(v, s) = (6, 2), (12, 5)$.

Theorem 2.4. Let $v \equiv 0 \pmod{3}, v \geq 9$. The union of any two edge-disjoint parallel classes of 3-cycles of K_v can be decomposed into three parallel classes of P_3.

We also need the following definitions. Let (s_1, t_1) and (s_2, t_2) be two pairs of non-negative integers. Define $(s_1, t_1) + (s_2, t_2) = (s_1 + s_2, t_1 + t_2)$. If X and Y are two sets of pairs of non-negative integers, then $X + Y$ denotes the set $\{(s_1, t_1) + (s_2, t_2) : (s_1, t_1) \in X, (s_2, t_2) \in Y\}$. If X is a set of pairs of non-negative integers and h is a positive integer, then $h \cdot X$ denotes the set of all pairs of non-negative integers which can be obtained by adding any h elements of X together (repetitions of elements of X are allowed).

3. Small cases

Lemma 3.1. $URD(6; K_2, P_3) = \{(5, 0), (1, 3)\}$.

Proof. The case $(5, 0)$ corresponds to a 1-factorization of the complete bipartite graph K_6 which is known to exist [1]. For the case $(1, 3)$, let $V(K_{12}) = \mathbb{Z}_6$, and the classes as listed below:

\[
\{\{0, 1\}, \{2, 3\}, \{4, 5\}\}, \{\{1, 4, 5\}, \{2, 3, 6\}\}, \{\{3, 1, 5\}, \{4, 2, 6\}\}, \{\{1, 6, 4\}, \{2, 5, 3\}\}.
\]

Lemma 3.2. There exists a (K_2, P_4)-URGDD(r, s) of type 6^2 with $(r, s) \in \{(0, 4), (3, 2), (6, 0)\}$.

Proof. The case $(6, 0)$ corresponds to a 1-factorization of the complete bipartite graph $K_{6,6}$ which is known to exist [1]. The case $(0, 4)$ corresponds to a (K_2, P_4)-URGDD(0, 4) which is known to exist [15]. For the case $(3, 2)$ take the groups to be $\{1, 2, 3, 4, 5, 6, 7, 8\}, \{a, b, c, d, e, f\}$ and the classes listed below:

\[
\{\{1, c\}, \{2, d\}, \{3, e\}, \{4, f\}, \{5, a\}, \{6, b\}\},
\{\{1, d\}, \{2, c\}, \{3, f\}, \{4, e\}, \{5, b\}, \{6, a\}\},
\{\{1, b\}, \{2, e\}, \{3, c\}, \{4, a\}, \{5, f\}, \{6, d\}\},
\{\{1, a, 2, b\}, \{3, d, 4, c\}, \{5, e, 6, f\}\}, \{\{4, b, 3, a\}, \{6, c, 5, d\}, \{e, 1, f, 2\}\}.
\]
Lemma 3.3. \(URD(12; K_2, P_4) = \{(11, 0), (8, 2), (5, 4), (2, 6)\} \).

Proof. The case \((11, 0)\) corresponds to a 1-factorization of the complete graph \(K_{12}\) which is known to exist [1]. The rest of the cases are given explicitly below.

- \((8, 2), (5, 4)\).
 Take a \((K_2, P_4)\)-URGDD\((r, s)\) of type 6\(^2\) with \((r, s) \in \{(0, 4), (3, 2)\}\), which come from Lemma 3.2. Fill in each of the groups of size 6 with the same 1-factorization of \(K_6\). This gives a \((K_2, P_4)\)-URD\((12; r, s)\) for each \((r, s) \in \{(5, 0) + 4 \ast \{(0, 4), (3, 2), (6, 0)\}\}\).

- \((2, 6)\).
 Let \(V(K_{12}) = \{0, 1, \ldots, 11\}\) be the vertex set and the classes listed below:
 \[
 \{0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]\}, \{1, 3, 0, 2], [5, 7, 4, 6], [9, 11, 8, 10]\},
 \{0, 4, 1, 5], [8, 6, 9, 7], [10, 2, 11, 3]\}, \{1, 7, 0, 6], [2, 8, 3, 9], [11, 5, 10, 4]\},
 \{9, 4, 8, 5], [11, 0, 10, 1], [3, 6, 2, 7]\}, \{2, 5, 3, 4], [8, 1, 9, 0], [10, 7, 11, 6]\},
 \{0, 8], [1, 11], [2, 4], [3, 7], [6, 10], [5, 9]\},
 \{0, 5], [1, 6], [2, 9], [3, 10], [4, 11], [7, 8]\}.

\(\Box \)

Lemma 3.4. There exists a \((K_2, P_4)\)-IURD\((8, 2; [1, 0], [r, s])\) with \((r, s) \in \{(6, 0), (3, 2), (0, 4)\}\).

Proof. Let the point set be \(V = \{a, b, 0, 1, 2, 3, 4, 5\}\) and let \(\{a, b\}\) be the hole. Let \(\mathcal{F} = \{F_1, F_2, \ldots, F_7\}\) be a 1-factorization of \(K_8\) such that \(\{a, b\} \in F_1\).

- A \((K_2, P_4)\)-IURD\((8, 2; [1, 0], [6, 0])\)
 \(F_1 - \{a, b\}, \{F_2, \ldots, F_7\}\).

- A \((K_2, P_4)\)-IURD\((8, 2; [1, 0], [3, 2])\)
 \(F_1 - \{a, b\}, \{0, b\}, \{1, 5\}, \{2, a\}, \{3, 4\}, \{4, b\}, \{a, 5\}, \{2, 3\}, \{0, 1\}\}, \{0, 3\}, \{b, 5\}, \{2, 1\}, \{3, 0\}\),
 \(\{0, a, 1, b\}, \{3, 5, 2, 4\}\}]. \{2, b, 3, a\}, [5, 0, 4, 1\}.

- A \((K_2, P_4)\)-IURD\((8, 2; [1, 0], [0, 4])\)
 \(F_1 - \{a, b\}, \{0, a, 1, b\}, [3, 5, 2, 4\}]. \{2, b, 3, a\}, [5, 0, 4, 1\}.
 \{2, a, 5, b\}, [1, 0, 3, 4\}]. \{0, b, 4, a\}, [5, 1, 2, 3\}.

\(\Box \)

Lemma 3.5. \(URD(8; K_2, P_4) = \{(7, 0), (4, 2), (1, 4)\} \).

Proof. The assertion follows from Lemma 3.4. \(\Box \)

4. Main results

Lemma 4.1. For every \(v \equiv 0 \pmod{6}\) \(J_1(v) \subseteq URD(v; K_2, P_3)\).

Proof. For \(v = 6\) the conclusion follows from Lemma 3.1. For \(v \geq 12\), take a \((K_2, K_3)\)-URD\((v; v - 1 - 4t, 2t)\) with \(t \in \{0, 1, \ldots, (v - 4)/4\}\) for \(v \equiv 0 \pmod{12}\) and \(t \in \{0, 1, \ldots, (v - 2)/4\}\) for \(v \equiv 6 \pmod{12}\), which exists
by Theorem 2.3. Applying Theorem 2.4 we obtain a \((K_2, P_3)\)-URD\((v; v - 1 - 4t, 3t)\).

\[\square \]

Lemma 4.2. For every \(v \equiv 4 \pmod{12} \), \(J_2(v) \subseteq URD(v; K_2, P_4) \).

Proof. Let \(R_1, R_2, \ldots, R_{v-1} \) be the parallel classes of a resolvable \(\{K_4\}\)-design \(R \) of order \(v \). Place on each block of a given resolution class of \(R \) the same \((K_2, P_4)\)-URD\((4; r, s)\) with \((r, s) \in \{(3, 0), (0, 2)\}\). Since \(R \) contains \((v - 1)/3\) parallel classes the result is a \((K_2, P_4)\)-URD\((v; r, s)\) of \(K_v \) for each \((r, s) \in (v - 1)/3 \ast \{(3, 0), (0, 2)\}\). This implies

\[URD(v; K_2, P_4) \supseteq \left\{ \frac{v - 1}{3} \ast \{(3, 0), (0, 2)\} \right\}. \]

Since

\[\frac{v - 1}{3} \ast \{(3, 0), (0, 2)\} = \left\{ (v - 1 - 3x, 2x), x = 0, \ldots, \frac{v - 1}{3} \right\} = J_2(v), \]

we obtain the proof. \[\square \]

Lemma 4.3. For every \(v \equiv 0 \pmod{12} \), \(J_2(v) \subseteq URD(v; K_2, P_4) \).

Proof. For \(v = 12 \) the conclusion follows from Lemma 3.3. For \(v \geq 24 \) start with a 2-RGDD \(G \) of type \(2^{12} r, s \) [1]. Give weight 6 to each point of this 2-GDD and place on each edge of a given resolution class the same \((K_2, P_4)\)-URGDD\((r, s)\) of type \(6^2 \), with \((r, s) \in \{(6, 0), (3, 2), (0, 4)\}\), which exists by Lemma 3.2. Fill the groups of sizes 12 with the same \((K_2, P_4)\)-URD\((12; r, s)\), with \((r, s) \in \{(11, 0), (8, 2), (5, 4), (2, 6)\}\), which exists by Lemma 3.3. Since \(G \) contains \((v - 12)/6\) resolution classes the result is a \((K_2, P_4)\)-URD\((v; r, s)\) of \(K_v \) for each \((r, s) \in \{(11, 0), (8, 2), (5, 4), (2, 6)\} + (v - 12)/6 \ast \{(6, 0), (3, 2), (0, 4)\}\). This implies

\[URD(v; K_2, P_4) \supseteq \left\{ \{(11, 0), (8, 2), (5, 4), (2, 6)\} + \frac{(v - 12)}{6} \ast \{(6, 0), (3, 2), (0, 4)\} \right\}. \]

Since

\[\frac{v - 12}{6} \ast \{(6, 0), (3, 2), (0, 4)\} = \left\{ (v - 12 - 3x, 2x), x = 0, \ldots, \frac{v - 12}{3} \right\}, \]

it easy to see that

\[\left\{ \{(11, 0), (8, 2), (5, 4), (2, 6)\} + \frac{(v - 12)}{6} \ast \{(6, 0), (3, 2), (0, 4)\} \right\} = J_2(v). \]

This completes the proof. \[\square \]

Lemma 4.4. For every \(v \equiv 8 \pmod{12} \), \(J_2(v) \subseteq URD(v; K_2, P_4) \).
Proof. For \(v = 8 \) the conclusion follows from Lemma 3.5. For \(v > 8 \) start with a 2–frame \(F \) of type \(1 + \frac{v^2}{2} \) [14] with groups \(G_i, \ i = 1, \ldots, (v - 2)/6 \). Let \(p_i \) be the partial parallel class which miss the group \(G_i \). Expand each point 6 times and add a set \(H \) of 2 ideal points \(a_1, a_2 \). For each \(i = 1, \ldots, (v - 2)/6 \), place on \(G_i \times \{1, \ldots, 6\} \cup H \) the same \((K_2, P_4)\)-\text{URD}(8, 2; (1, 0), [x, y]) \(D_i \) of \(K_8 - K_2 \) with \((x, y) \in \{(6, 0), (3, 2), (0, 4)\}\), which exists by Lemma 3.4, in such a way the hole covers the point of \(H \). For each \(i = 1, \ldots, (v - 2)/6 \), place on each block of the \(p_i \) partial parallel class the same \((K_2, P_4)\)-\text{URGDD}(r_2, s_2) of type \(6^2 \) with \((r_2, s_2) \in \{(6, 0), (3, 2), (0, 4)\}\), which exists by Lemma 3.2.

Add the edge \(\{a_1, a_2\} \) of \(H \) to the partial classes of \(D_i \) and form, on \(\cup_{i = 1}^{v/6} G_i \times \{1, \ldots, 6\} \cup H \), 1 class of 1-factors. For each \(i = 1, \ldots, (v - 2)/6 \), add the full classes of \(D_i \) to the classes of \(p_i \) and form \(r_3 \) classes of 1-factors and \(s_3 \) classes of \(P_4 \)-factors with \((r_3, s_3) \in \{(6, 0), (3, 2), (0, 4)\}\). Since each group \(G_i \) is missed by 1 partial parallel class of \(F \) we obtain a \((K_2, P_4)\)-\text{URD} \((v; r, s)\) for each \((r, s) \in \{(1, 0) + (v - 2)/6 \ast \{(6, 0), (3, 2), (0, 4)\}\}\). This implies

\[
URD(v; K_2, P_4) \supseteq \left\{(1, 0) + \frac{v - 2}{6} \ast \{(0, 4), (3, 2), (6, 0)\}\right\}.
\]

Since

\[
\frac{v - 2}{6} \ast \{(0, 4), (3, 2), (6, 0)\} = \left\{(v - 1 - 3x, 2x), x = 0, \ldots, \frac{v - 2}{3}\right\},
\]

it easy to see that \(\{(1, 0) + (v - 2)/6 \ast \{(6, 0), (3, 2), (0, 4)\}\} = J_2(v) \). This completes the proof.

\(\Box\)

5. Conclusion

We are now in a position to prove the main result of the paper.

Theorem 5.1. For every \(v \equiv 0 \pmod{6} \), we have \(URD(v; K_2, P_3) = J_1(v) \) and, for every \(v \equiv 0 \pmod{4} \), we have \(URD(v; K_2, P_4) = J_2(v) \).

Proof. Necessity follows from Lemmas 2.1 and 2.2. Sufficiency follows from Lemmas 4.1, 4.2, 4.3 and 4.4. This completes the proof. \(\Box\)

Remark: Note that the existence of uniformly resolvable \(\{K_2, P_k\} \)-designs with \(k > 4 \) is very difficult to study and it is currently under investigation.

References

ON UNIFORMLY RESOLVABLE \(\{K_2, P_k\}\)-DESIGNS WITH \(k = 3, 4 \) 133

5. _____, Uniformly resolvable \(\mathcal{H} \)-designs with \(\mathcal{H} = \{P_3, P_4\} \), Australas. J. Comb. 60 (2014), no. 3, 325–332.
9. S. Milici and Zs. Tuza, Uniformly resolvable decompositions of \(K_v \) into \(P_3 \) and \(K_3 \) graphs, Discrete Math. 331 (2014), 137–141.
11. E. Schuster, Uniformly resolvable designs with index one and block sizes three and five and up to five with blocks of size five, Discrete Math. 309 (2009), 4435–4442.
12. _____, Uniformly resolvable designs with index one and block sizes three and four with three or five parallel classes of block size four, Discrete Math. 309 (2009), 2452–2465.

Dipartimento di Matematica e Informatica, Università di Catania, CATANIA, ITALY
E-mail address: gionfriddo@dmi.unict.it

Dipartimento di Matematica e Informatica, Università di Catania, CATANIA, ITALY
E-mail address: milici@dmi.unict.it