A THEOREM ON FRACTIONAL ID-(g,f)-FACTOR-CRITICAL GRAPHS

SIZHONG ZHOU, ZHIREN SUN, AND YANG XU

Abstract. Let a, b and r be three nonnegative integers with $2 \leq a \leq b - r$, let G be a graph of order p satisfying the inequality $p(a + r) \geq (a + b - 3)(2a + b + r) + 1$, and let g and f be two integer-valued functions defined on $V(G)$ satisfying $a \leq g(x) \leq f(x) - r \leq b - r$ for every $x \in V(G)$. A graph G is said to be fractional ID-(g,f)-factor-critical if $G - I$ contains a fractional (g,f)-factor for every independent set I of G. In this paper, we prove that G is fractional ID-(g,f)-factor-critical if $\text{bind}(G)((a + r)p - (a + b - 2)) > (2a + b + r - 1)(p - 1)$, which is a generalization of a previous result of Zhou.

1. Introduction

The graphs considered here are finite undirected graphs which have neither loops nor multiple edges. Let $G = (V(G), E(G))$ be a graph, where $V(G)$ and $E(G)$ denote its vertex set and edge set. For every $x \in V(G)$, we denote by $d_G(x)$ the degree of x and by $N_G(x)$ the set of vertices adjacent to x in G. For a subset S of $V(G)$, we write $N_G(S) = \bigcup_{x \in S} N_G(x)$, $G[S]$ for the subgraph of G induced by S, and we define $G - S = G[V(G) \setminus S]$.

The minimum degree of G is denoted by $\delta(G)$, while a subset S of $V(G)$ is said to be independent if $G[S]$ has no edges. The binding number of G is denoted by $\text{bind}(G)$ and defined as

$$\text{bind}(G) = \min \left\{ \frac{|N_G(X)|}{|X|} : \emptyset \neq X \subseteq V(G), N_G(X) \neq V(G) \right\}.$$

Let g and f be two nonnegative integer-valued functions defined on $V(G)$ satisfying $g(x) \leq f(x)$ for any $x \in V(G)$. A spanning subgraph F of G is a
(g, f)-factor if \(g(x) \leq d_F(x) \leq f(x) \) for any \(x \in V(G) \). Assume there exists a function \(h : E(G) \to [0, 1] \) such that
\[
g(x) \leq \sum_{e \ni x} h(e) \leq f(x)
\]
for every vertex \(x \) of \(G \). The spanning subgraph of \(G \) induced by the set of edges \(\{ e : e \in E(G), h(e) > 0 \} \) is called a fractional \((g, f)\)-factor of \(G \) with indicator function \(h \).

Definition 1.1. A graph \(G \) is said to be fractional ID-\((g, f)\)-factor-critical if \(G - I \) contains a fractional \((g, f)\)-factor for every independent set \(I \) of \(G \).

A fractional ID-(f, f)-factor-critical graph is a fractional ID-f-factor-critical graph. If \(f(x) \equiv k \), then we say a fractional ID-k-factor-critical graph instead of a fractional ID-f-factor-critical graph. For any function \(f(x) \) and \(S \subseteq V(G) \), we define
\[
f(S) = \sum_{x \in S} f(x).
\]
In particular, note that
\[
d_G(S) = \sum_{x \in S} d_G(x).
\]
A huge amount of work has been done concerning factors and fractional factors in graphs (see [1, 4, 5, 6, 8]). In [3] Chang, Liu, and Zhu first investigated the fractional ID-k-factor-critical graph and obtained a minimum degree condition for a graph to be a fractional ID-k-factor-critical graph. This result is summarized below:

Theorem 1.2 (Chang, Liu, and Zhu [3]). Let \(k \) be a positive integer and \(G \) be a graph of order \(p \) with \(p \geq 6k - 8 \). If \(\delta(G) \geq 2p/3 \), then \(G \) is fractional ID-k-factor-critical.

In [11] Zhou, Xu, and Sun proved the following result on the fractional ID-k-factor-critical graphs:

Theorem 1.3 (Zhou, Xu, and Sun [11]). Let \(G \) be a graph, and let \(k \) be an integer with \(k \geq 1 \). If
\[
\alpha(G) \leq \frac{4k(\delta(G) - k + 1)}{k^2 + 6k + 1},
\]
then \(G \) is fractional ID-k-factor-critical.

Zhou studied the relationship between binding number and the fractional ID-k-factor-critical graph in [10] and proved the following theorem:

Theorem 1.4 (Zhou [10]). Let \(k \) be an integer with \(k \geq 2 \), and let \(G \) be a graph of order \(p \) with \(p \geq 6k - 9 \). If
\[
\text{bind}(G) > \frac{(3k - 1)(p - 1)}{kp - 2k + 2},
\]
then \(G \) is fractional ID-k-factor-critical.
In this work, we generalize the fractional ID-k-factor-critical graph to the fractional ID-(g, f)-factor-critical graph and obtain a binding number condition for a graph to be fractional ID-(g, f)-factor-critical:

Theorem 1.5. Let a, b, and r be three integers such that $2 \leq a \leq b - r$ and $r \geq 0$, let G be a graph of order p, where

$$p \geq \frac{(a + b - 3)(2a + b + r) + 1}{a + r},$$

and let both g and f be nonnegative integer-valued functions defined on $V(G)$, where $a \leq g(x) \leq f(x) - r \leq b - r$ for any $x \in V(G)$. If

$$\text{bind}(G) > \frac{(2a + b + r - 1)(p - 1)}{(a + r)p - (a + b - 2)},$$

then G is fractional ID-(g, f)-factor-critical.

We obtain the following corollary by setting $r = 0$ in Theorem 1.5:

Corollary 1.6. Let a and b be two integers with $2 \leq a \leq b$, and let G be a graph of order p, where

$$p \geq \frac{(a + b - 3)(2a + b) + 1}{a},$$

and let g and f be nonnegative integer-valued functions defined on $V(G)$ such that $a \leq g(x) \leq f(x) \leq b$ for any $x \in V(G)$. If

$$\text{bind}(G) > \frac{(2a + b - 1)(p - 1)}{ap - (a + b - 2)},$$

then G is fractional ID-(g, f)-factor-critical.

If $g(x) \equiv f(x)$ in Corollary 1.6, then we have the following result:

Corollary 1.7. Let a and b be two integers satisfying $2 \leq a \leq b$, and let G be a graph of order p with

$$p \geq \frac{(a + b - 3)(2a + b) + 1}{a},$$

and let f be a nonnegative integer-valued function defined on $V(G)$, where $a \leq f(x) \leq b$ for any $x \in V(G)$. If

$$\text{bind}(G) > \frac{(2a + b - 1)(p - 1)}{ap - (a + b - 2)},$$

then G is fractional ID-f-factor-critical.

2. **Proof of Theorem 1.4**

The following result was first obtained by Anstee [2], and it is very useful for proving Theorem 1.5. An alternative proof was provided by Liu and Zhang in [7].
Lemma 2.1 (Anstee [2], Liu and Zhang [7]). Let G be a graph. Then G has a fractional (g,f)-factor if and only if for every subset S of $V(G)$,

$$\delta_G(S,T) = f(S) + d_{G-S}(T) - g(T) \geq 0,$$

where $T = \{x : x \in V(G) \setminus S, d_{G-S}(x) \leq g(x)\}$.

In [9] Woodall presented the following result, which will also be used in the proof of Theorem 1.5:

Lemma 2.2 (Woodall [9]). Let c be a positive real number and let G be a graph of order p with $\text{bind}(G) > c$. Then

$$\delta(G) \geq p - \frac{p-1}{\text{bind}(G)} > p - \frac{p-1}{c}.$$

Proof of Theorem 1.5. Let X be an independent set of G and $H = G - X$. In order to prove Theorem 1.5, by Definition 1.1 we only need to prove that H admits a fractional (g,f)-factor.

Suppose that H has no fractional (g,f)-factor. Then from Lemma 2.1, there exists some subset S of $V(H)$ satisfying

$$\delta_H(S,T) = f(S) + d_{H-S}(T) - g(T) \leq -1, \tag{1}$$

where $T = \{x : x \in V(H) \setminus S, d_{H-S}(x) \leq g(x)\}$.

Henceforth we write $\text{bind}(G) = \lambda$. In terms of Lemma 2.2 and the hypotheses of Theorem 1.5, we obtain the inequality

$$\delta(G) \geq p - \frac{p-1}{\lambda} > \frac{(a+b-1)p+a+b-2}{2a+b+r-1}. \tag{2}$$

Assume, in order to derive a contradiction, that $T = \emptyset$. Then using Equation (1) we derive that

$$-1 \geq \delta_H(S,T) = f(S) \geq 0,$$

which is a contradiction. Therefore $T \neq \emptyset$.

In the following, we set $h = \min \{d_{H-S}(x) : x \in T\}$. Obviously, $0 \leq h \leq b - r$. We now must prove the following claims:

Claim 2.3. $|S| \geq \delta(G) - |X| - h$.

Proof. We choose $x_1 \in T$ with $d_{H-S}(x_1) = h$. Clearly, we have

$$\delta(G) \leq d_G(x_1) \leq d_{G-X-S}(x_1) + |X| + |S|$$

$$= d_{H-S}(x_1) + |X| + |S| = h + |X| + |S|,$$

which implies

$$|S| \geq \delta(G) - |X| - h.$$

This completes the proof of Claim 2.3. \hfill \Box

Claim 2.4. $|X| \leq p - \delta(G)$.
Proof. Obviously, \(d_G(x) \geq \delta(G)\) for any \(x \in V(G)\). Consequently, \(d_G(x) \geq \delta(G)\) for any \(x \in X\). Because \(X\) is an independent set of \(G\) we have
\[
p \geq d_G(x) + |X| \geq \delta(G) + |X|
\]
for all \(x \in X\), which implies
\[
|X| \leq p - \delta(G).
\]
This proves Claim 2.4.

We now consider the following two cases regarding the value of \(h\):

Case 1: \(h = 0\):

In this case, we first prove the following claim:

Claim 2.5. \(\lambda \leq a + b - 1\).

Proof. Suppose that \(\lambda > a + b - 1\). In view of Equation (2) and \(2 \leq a \leq b - r\), we obtain
\[
\delta(G) \geq p - \frac{p - 1}{\lambda} > \frac{(a + b - 2)p}{a + b - 1} > \frac{(a + b)p}{2a + b + r}.
\]
Combining this with Equation (1), the inequality \(p \geq |X| + |S| + |T|\), and Claims 2.3 and 2.4, we have:
\[
-1 \geq \delta_H(S, T) = f(S) + d_{H-S}(T) - g(T) \\
\geq (a + r)|S| - (b - r)|T| \\
\geq (a + r)|S| - (b - r)(p - |X| - |S|) \\
= (a + b)|S| - (b - r)p + (b - r)|X| \\
\geq (a + b)(\delta(G) - |X|) - (b - r)p + (b - r)|X| \\
= (a + b)\delta(G) - (b - r)p - (a + r)|X| \\
\geq (a + b)\delta(G) - (b - r)p - (a + r)(p - \delta(G)) \\
= (2a + b + r)\delta(G) - (a + b)p > 0,
\]
which is a contradiction. This completes the proof of Claim 2.5.

Now set \(Y = \{x : x \in T, d_{H-S}(x) = 0\}\). Note that \(Y \neq \emptyset\) and \(N_G(V(G) \setminus (X \cup S)) \cap Y = \emptyset\), which gives \(|N_G(V(G) \setminus (X \cup S))| \leq p - |Y|\). Thus,
\[
\text{bind}(G) = \lambda \leq \frac{|N_G(V(G) \setminus (X \cup S))|}{|V(G) \setminus (X \cup S)|} \leq \frac{p - |Y|}{p - |X| - |S|},
\]
that is,
\[
|S| \geq \left(1 - \frac{1}{\lambda}\right)p - |X| + \frac{1}{\lambda}|Y|.
\]
It then follows from Equation (1) and the inequality \(|X| + |S| + |T| \leq p\) that:

\[
-1 \geq \delta_H(S, T) = f(S) + d_{H-S}(T) - g(T) \\
\geq (a + r)|S| + |T| - |Y| - (b - r)|T| \\
= (a + r)|S| - (b - r - 1)|T| - |Y| \\
\geq (a + r)|S| - (b - r - 1)(p - |X| - |S|) - |Y| \\
= (a + b - 1)|S| - (b - r - 1)p + (b - r - 1)|X| - |Y|.
\]

Invoking Equation (3) then gives that:

\[
(a + b - 1)|S| - (b - r - 1)p + (b - r - 1)|X| - |Y| \\
\geq (a + b - 1) \left(\left(1 - \frac{1}{\lambda} \right) p - |X| + \frac{|Y|}{\lambda} \right) + (b - r - 1)(|X| - p) - |Y| \\
= (a + r)p - \frac{(a + b - 1)p}{\lambda} - (a + r)|X| + \left(\frac{a + b - 1}{\lambda} - 1 \right) |Y|.
\]

Claim 2.5 and the fact that \(Y \neq \emptyset\) imply together the inequality

\[
(a + r)p - \frac{(a + b - 1)p}{\lambda} - (a + r)|X| + \left(\frac{a + b - 1}{\lambda} - 1 \right) |Y| \\
\geq (a + r)p - \frac{(a + b - 1)p}{\lambda} - (a + r)|X| + \frac{a + b - 1}{\lambda} - 1;
\]

applying Claim 2.4 then yields the following:

\[
(a + r)p - \frac{(a + b - 1)p}{\lambda} - (a + r)|X| + \frac{a + b - 1}{\lambda} - 1 \\
\geq (a + r)p - \frac{(a + b - 1)p}{\lambda} - (a + r)(p - \delta(G)) + \frac{a + b - 1}{\lambda} - 1 \\
= - \frac{(a + b - 1)p}{\lambda} + (a + r)\delta(G) + \frac{a + b - 1}{\lambda} - 1.
\]

Using Equation (2) allows us to conclude

\[
- \frac{(a + b - 1)p}{\lambda} + (a + r)\delta(G) + \frac{a + b - 1}{\lambda} - 1 \\
\geq -(a + r)p + (a + r) \left(p - \frac{p - 1}{\lambda} \right) + \frac{a + b - 1}{\lambda} - (a + b - 1) \\
= - \frac{(2a + b + r - 1)(p - 1)}{\lambda} + (a + r)p - (a + b - 1),
\]

which implies

\[
\lambda \leq \frac{(2a + b + r - 1)(p - 1)}{(a + r)p - (a + b - 2)},
\]

contradicting the hypotheses of Theorem 1.5.

Case 2: \(1 \leq h \leq b - r\);
According to Equation (1), Claims 2.3 and 2.4, and the inequality \(p \geq |S| + |T| + |X| \), we obtain:

\[
\begin{align*}
-1 & \geq \delta_H(S, T) = f(S) + d_{H-S}(T) - g(T) \\
& \geq (a + r)|S| - (b - r - h)|T| \\
& \geq (a + r)|S| - (b - r - h)(p - |X| - |S|) \\
& = (a + b - h)|S| + (b - r - h)|X| - (b - r - h)p \\
& \geq (a + b - h)(\delta(G) - |X| - h) + (b - r - h)|X| - (b - r - h)p \\
& = (a + b - h)\delta(G) - (a + r)|X| - h(a + b - h) - (b - r - h)p \\
& \geq (2a + b + r - h)\delta(G) - h(a + b - h) - (a + b - h)p,
\end{align*}
\]

that is,

\[
\delta(G) \leq \frac{(a + b - h)(p + h) - 1}{2a + b + r - h}.
\] (4)

If \(h = 1 \) in Equation (4), then we have

\[
\delta(G) \leq \frac{(a + b - 1)(p + 1) - 1}{2a + b + r - 1},
\]

which contradicts Equation (2). Hence we assume \(2 \leq h \leq b - r \). Let

\[
F(h) = \frac{(a + b - h)(p + h) - 1}{2a + b + r - h}.
\]

Using

\[
p \geq \frac{(a + b - 3)(2a + b + r) + 1}{a + r},
\]

we calculate \(F'(h) < 0 \), implying that \(F(h) \) attains its maximum value at \(h = 2 \). Therefore we have

\[
\delta(G) \leq F(2) = \frac{(a + b - 2)(p + 2) - 1}{2a + b + r - 2}.
\] (5)

Since

\[
p \geq \frac{(a + b - 3)(2a + b + r) + 1}{a + r},
\]

we prove easily that

\[
\frac{(a + b - 2)(p + 2) - 1}{2a + b + r - 2} \leq \frac{(a + b - 1)p + a + b - 2}{2a + b + r - 1}.
\]

Combining this with Equation (5), we obtain

\[
\delta(G) \leq \frac{(a + b - 1)p + a + b - 2}{2a + b + r - 1},
\]

which contradicts Equation (2). This completes the proof of Theorem 1.5. \(\square \)
Finally, we present the following problem:

Problem. Is it possible to weaken the binding number condition

\[
\text{bind}(G) > \frac{(2a + b + r - 1)(p - 1)}{(a + r)p - (a + b - 2)}
\]

for the existence of fractional ID-\((g, f)\)-factor-critical graphs in Theorem 1.5?

Acknowledgements

The authors thank the anonymous referees and the managing editor for their helpful comments and suggestions in improving this paper.

References

School of Mathematics and Physics, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang, Jiangsu 212003, P. R. China

E-mail address: zsz_cumt@163.com

School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu 210046, P. R. China

E-mail address: 05119@njnu.edu.cn

Department of Mathematics, Qingdao Agricultural University, Qingdao, Shandong 266109, P. R. China

E-mail address: xuyang_825@126.com