DETERMINATION OF THE PRIME BOUND OF A GRAPH

ABDERRAHIM BOUSSAÏRI AND PIERRE ILLE

ABSTRACT. Given a graph \(G \), a subset \(M \) of \(V(G) \) is a module of \(G \) if for each \(v \in V(G) \setminus M \), \(v \) is adjacent to all the elements of \(M \) or adjacent to none of them. For instance, \(V(G) \), \(\emptyset \) and \(\{v\} \ (v \in V(G)) \) are modules of \(G \). Given a graph \(G \), \(\omega_M(G) \) (respectively \(\alpha_M(G) \)) denotes the largest cardinality of a clique (respectively a stable set) in \(G \). The largest cardinality of a clique (respectively a stable) set in \(G \) is a clique (respectively a stable) set in \(G \) is prime if \(|V(G)| \geq 4 \) and if all its modules are trivial. A graph \(G \) is prime if \(|V(G)| \geq 4 \) and if all its modules are trivial.

A graph \(G \) is prime if \(|V(G)| \geq 4 \) and if all its modules are trivial. The prime bound of \(G \) is a prime graph \(G \) with \(\max(\alpha_M(G), \omega_M(G)) \geq 2 \) and \(\log_2(\max(\alpha_M(G), \omega_M(G))) \) is not an integer, \(p(G) = \lceil \log_2(\max(\alpha_M(G), \omega_M(G))) \rceil \). Then, we prove that for every graph \(G \) such that \(\max(\alpha_M(G), \omega_M(G)) = 2^k \) where \(k \geq 1 \), \(p(G) = k \) if and only if \(G \) is not complete. Moreover \(p(G) = k+1 \) if and only if \(G \) is not complete. Lastly, we show that \(p(G) = 1 \) for every non prime graph \(G \) such that \(|V(G)| \geq 4 \) and \(\alpha_M(G) = \omega_M(G) = 1 \).

1. INTRODUCTION

A graph \(G = (V(G), E(G)) \) is constituted by a finite vertex set \(V(G) \) and an edge set \(E(G) \subseteq \binom{V(G)}{2} \). Given a set finite \(S \), \(K_S = (S, \binom{S}{2}) \) is the complete graph on \(S \) whereas \((S, \emptyset)\) is the empty graph. Let \(G \) be a graph. With each \(W \subseteq V(G) \) associate the subgraph \(G[W] = (W, \binom{W}{2} \cap E(G)) \) of \(G \) induced by \(W \). Given \(W \subseteq V(G) \), \(G[V(G) \setminus W] \) is also denoted by \(G - W \) and by \(G - w \) if \(W = \{w\} \). A graph \(H \) is an extension of \(G \) if \(V(H) \supseteq V(G) \) and \(H[V(G)] = G \). Given \(p \geq 0 \), a \(p \)-extension of \(G \) is an extension \(H \) of \(G \) such that \(|V(H) \setminus V(G)| = p \). The complement of \(G \) is the graph \(\overline{G} = (V(G), \binom{V(G)}{2} \setminus E(G)) \). A subset \(W \) of \(V(G) \) is a clique (respectively a stable set) in \(G \) if \(G[W] \) is complete (respectively empty). The largest cardinality of a clique (respectively a stable set) in \(G \) is the clique number (respectively the stability number) of \(G \), denoted by \(\omega(G) \) (respectively \(\alpha(G) \)). Given \(v \in V(G) \), the neighbourhood \(N_G(v) \) of \(v \) in \(G \) is the family \(\{w \in V(G) : \{v, w\} \in E(G)\} \). We consider \(N_G \) as the function

Received by the editors November 15, 2011, and in revised form January 28, 2014.

2000 Mathematics Subject Classification. 05C69.

Key words and phrases. Module, prime graph, prime extension, prime bound, modular clique number, modular stability number.
from \(V(G) \) to \(2^V(G) \) defined by \(v \mapsto N_G(v) \) for each \(v \in V(G) \). A vertex \(v \) of
\(G \) is isolated if \(N_G(v) = \emptyset \). The number of isolated vertices of \(G \) is denoted by \(i(G) \).

We use the following notation. Let \(G \) be a graph. For \(v \neq w \in V(G) \),
\[
(v, w)_G = \begin{cases} 0, & \text{if } \{v, w\} \notin E(G), \\ 1, & \text{if } \{v, w\} \in E(G). \end{cases}
\]

Given \(W \subseteq V(G) \), \(v \in V(G) \setminus W \) and \(i \in \{0, 1\} \), \((v, W)_G = i \) means \((v, w)_G = i \)
for every \(w \in W \). Given \(W, W' \subseteq V(G) \), with \(W \cap W' = \emptyset \), and \(i \in \{0, 1\} \),
\((W, W')_G = i \) means \((w, W')_G = i \) for every \(w \in W \). Given \(W \not\subseteq V(G) \) and
\(v \in V(G) \setminus W \), \(v \leftrightarrow_G W \) means that there is \(i \in \{0, 1\} \) such that \((v, W)_G = i \).
The negation is denoted by \(v \leftrightarrow_G \neg W \).

Given a graph \(G \), a subset \(M \) of \(V(G) \) is a module of \(G \) if for each \(v \in V(G) \setminus M \), we have \(v \leftrightarrow_G M \). For instance, \(V(G) \), \(\emptyset \) and \(\{v \mid v \in V(G) \} \) are modules of \(G \) called trivial. Clearly, if \(|V(G)| \leq 2 \), then all the modules of \(G \) are trivial. On the other hand, if \(|V(G)| = 3 \), then \(G \) admits a nontrivial module. A graph \(G \) is then said to be prime if \(|V(G)| \geq 4 \) and if all its
modules are trivial. For instance, given \(n \geq 4 \), the path \(\{1, \ldots, n\}, \{\{p, q\} : |p - q| = 1\} \) is prime. Given a graph \(G \), \(G \) and \(\overline{G} \) share the same modules. Thus \(G \) is prime if and only if \(\overline{G} \) is.

Given a set \(S \) with \(|S| \geq 2 \), \(K_S \) admits a prime \(\lceil \log_2(|S| + 1) \rceil \)-extension (see Sumner [8, Theorem 2.45] or Lemma 3.2 below). This is extended to any graph in [3, Theorem 3.7] and [2, Theorem 3.2] as follows.

Theorem 1.1. A graph \(G \), with \(|V(G)| \geq 2 \), admits a prime \(\lceil \log_2(|V(G)| + 1) \rceil \)-extension.

We now introduce the notion of prime bound. Let \(G \) be a graph. The prime bound of \(G \) is the smallest integer \(p(G) \) such that \(G \) admits a prime \(p(G) \)-extension. Observe that \(p(G) = p(\overline{G}) \) for every graph \(G \). By Theorem 1.1, \(p(G) \leq \lceil \log_2(|V(G)| + 1) \rceil \). By considering the clique number and the stability number, Brignall [3, Conjecture 3.8] conjectured the following.

Conjecture 1.2. For a graph \(G \) with \(|V(G)| \geq 2 \),
\[
p(G) \leq \lceil \log_2(\max(\alpha(G), \omega(G)) + 1) \rceil.
\]

We answer the conjecture positively by refining the notions of clique number and of stability number as follows. Given a graph \(G \), the modular clique number \(\omega_M(G) \) of \(G \) is the largest cardinality of a clique in \(G \) which is also a module of \(G \). The modular stability number of \(G \) is \(\alpha_M(G) = \omega_M(\overline{G}) \). The following lower bound is simply obtained.

Lemma 1.3. For every graph \(G \) such that \(\max(\alpha_M(G), \omega_M(G)) \geq 2 \),
\[
p(G) \geq \lceil \log_2(\max(\alpha_M(G), \omega_M(G))) \rceil.
\]

Theorem 3.2 of [2] is proved by induction on the number of vertices. Using the main arguments of this proof, we improve Theorem 1.1 as follows.
Theorem 1.4. For every graph G such that $\max(\alpha_M(G), \omega_M(G)) \geq 2$,
\[p(G) \leq \lceil \log_2(\max(\alpha_M(G), \omega_M(G)) + 1) \rceil. \]

Theorem 1.4 is proved using an induction argument as well. A direct construction of a suitable extension is provided in [1, Theorem 2]. The following is an immediate consequence of Lemma 1.3 and Theorem 1.4.

Corollary 1.5. For every graph G such that $\max(\alpha_M(G), \omega_M(G)) \geq 2$,
\[\lceil \log_2(\max(\alpha_M(G), \omega_M(G))) \rceil \leq p(G) \leq \lceil \log_2(\max(\alpha_M(G), \omega_M(G)) + 1) \rceil. \]

Let G be graph such that $\max(\alpha_M(G), \omega_M(G)) \geq 2$. On the one hand, it follows from Corollary 1.5 that
\[p(G) = \lceil \log_2(\max(\alpha_M(G), \omega_M(G))) \rceil \]
when
\[\max(\alpha_M(G), \omega_M(G)) \notin \{2^k : k \geq 1\}. \]
On the other, if $\max(\alpha_M(G), \omega_M(G)) = 2^k$, where $k \geq 1$, then $p(G) = k$ or $k + 1$. The next theorem allows us to determine this.

Theorem 1.6. For every graph G such that $\max(\alpha_M(G), \omega_M(G)) = 2^k$ where $k \geq 1$,
\[p(G) = k + 1 \text{ if and only if } i(G) = 2^k \text{ or } i(\overline{G}) = 2^k. \]

Lastly, we show that $p(G) = 1$ for every non prime graph G such that $|V(G)| \geq 4$ and $\alpha_M(G) = \omega_M(G) = 1$ (see Proposition 5.2).

2. Preliminaries

Given a graph G, the family of the modules of G is denoted by $\mathcal{M}(G)$. Furthermore set $\mathcal{M}_{\geq 2}(G) = \{M \in \mathcal{M}(G) : |M| \geq 2\}$. We begin with the well known properties of the modules of a graph (for example, see [4, Theorem 3.2, Lemma 3.9]).

Proposition 2.1. Let G be a graph.

1. Given $W \subseteq V(G)$,
\[\{M \cap W : M \in \mathcal{M}(G)\} \subseteq \mathcal{M}(G[W]). \]
2. Given a module $M \in \mathcal{M}(G)$,
\[\mathcal{M}(G[M]) = \{N \in \mathcal{M}(G) : N \subseteq M\}. \]
3. Given $M, N \in \mathcal{M}(G)$ with $M \cap N = \emptyset$, there is $i \in \{0, 1\}$ such that
\[(M, N)_G = i. \]

Given a graph G, a partition P of $V(G)$ is a modular partition of G if $P \subseteq \mathcal{M}(G)$. Let P be such a partition. Given $M \neq N \in P$, there is $i \in \{0, 1\}$ such that $(M, N)_G = i$ by (3) of Proposition 2.1. This justifies the following definition: The quotient of G by P is the graph G/P defined on $V(G/P) = P$ by $(M, N)_{G/P} = (M, N)_G$ for $M \neq N \in P$. We use the following properties of the quotient (for example, see [4, Theorems 4.1–4.3, Lemma 4.1]).

Proposition 2.2. Given a graph G, consider a modular partition P of G.

1. Given $W \subseteq V(G)$, if $|W \cap X| = 1$ for each $X \in P$, then $G[W]$ and G/P are isomorphic.
(2) For every $M \in \mathcal{M}(G)$, \{ $X \in P : M \cap X \neq \emptyset$ \} $\in \mathcal{M}(G/P)$.

(3) For every $Q \in \mathcal{M}(G/P)$, $\cup Q \in \mathcal{M}(G)$.

The following strengthening of the notion of module is introduced to present the modular decomposition theorem (see Theorem 2.4 below). Given a graph G, a module M of G is said to be strong provided that for every $N \in \mathcal{M}(G)$, if $M \cap N \neq \emptyset$, then $M \subseteq N$ or $N \subseteq M$. The family of the strong modules of G is denoted by $\mathcal{S}(G)$. Furthermore set

$$S_{=2}(G) = \{ M \in \mathcal{S}(G) : |M| \geq 2 \}.$$

We recall the following well known properties of the strong modules of a graph (for example, see [4, Theorem 3.3]).

Proposition 2.3. Let G be a graph. For every $M \in \mathcal{M}(G)$,

$$\mathcal{S}(G[M]) = \{ N \in \mathcal{S}(G) : N \not\subseteq M \} \cup \{ M \}.$$

With each graph G, we associate the family $\Pi(G)$ of the maximal proper and nonempty strong modules of G under inclusion. For convenience set

$$\Pi_1(G) = \{ M \in \Pi(G) : |M| = 1 \} \text{ and } \Pi_{=2}(G) = \{ M \in \Pi(G) : |M| \geq 2 \}.$$

The modular decomposition theorem is stated as follows.

Theorem 2.4 (Gallai [5, 6]). For a graph G with $|V(G)| \geq 2$, the family $\Pi(G)$ realizes a modular partition of G. Moreover, the corresponding quotient $G/\Pi(G)$ is complete, empty or prime.

Let G be a graph with $|V(G)| \geq 2$. As a direct consequence of the definition of a strong module, we obtain that the family $\mathcal{S}(G) \setminus \{ \emptyset \}$ endowed with inclusion is a tree called the modular decomposition tree [7] of G. Given $M \in \mathcal{S}_{=2}(G)$, it follows from Proposition 2.3 that $\Pi(G[M]) \subseteq \mathcal{S}(G)$. Furthermore, given $W \subseteq V(G)$, the family $\{ M \in \mathcal{S}(G) : M \supseteq W \}$ endowed with inclusion is a total order. Its smallest element is denoted by \overline{W}.

Let G be a graph with $|V(G)| \geq 2$. Using Theorem 2.4, we label $S_{=2}(G)$ by the function λ_G defined as follows. For each $M \in S_{=2}(G)$,

$$\lambda_G(M) = \begin{cases}
\blacklozenge & \text{if } G[M]/\Pi(G[M]) \text{ is complete}, \\
\circ & \text{if } G[M]/\Pi(G[M]) \text{ is empty}, \\
\blacklozenge & \text{if } G[M]/\Pi(G[M]) \text{ is prime}.
\end{cases}$$

3. Some prime extensions

Lemma 3.1. Let S and S' be disjoint and finite sets such that $|S| \geq 2$ and $|S'| = \lceil \log_2(|S| + 1) \rceil$. There exists a prime graph G defined on $V(G) = S \cup S'$ such that S and S' are stable sets in G.

Proof. If $|S| = 2$, then $|S'| = 2$ and we can choose a path on 4 vertices for G. Assume that $|S| \geq 3$. As $|S'| = \lceil \log_2(|S| + 1) \rceil$, $2^{|S'| - 1} \leq |S|$ and hence $|S'| \leq |S|$. Thus there exists a bijection $\psi_{S'}$ from S' onto $S'' \subseteq S$. Consider the injection $f_{S''} : S'' \rightarrow 2^{|s'| - \{\emptyset\}}$ defined by $s'' \mapsto S' \setminus \{(\psi_{S'})^{-1}(s'')\}$. Since
\[|S'| = \lfloor \log_2(|S| + 1) \rfloor, \quad |S| < 2^{|S'|} \] and there exists an injection \(f_S \) from \(S \) into \(2^{S'} \setminus \{\emptyset\} \) such that \((f_S)_{|S''} = f_{S''} \). Lastly, consider the graph \(G \) defined on \(V(G) = S \cup S' \) such that \(S' \) are stable sets in \(G \) and \((N_G)_{|S} = f_S \). We prove that \(G \) is prime. If \(|S'| = 3 \), then \(|S'| = 2 \) and \(G \) is a path on 5 vertices which is prime. Assume that \(|S'| \geq 4 \) and hence \(|S'| \geq 3 \). Let \(M \in \mathcal{M}_2(G) \).

First, if \(M \subseteq S \), then we would have \(f_S(u) = f_S(v) \) for any \(u \neq v \in M \). Thus \(M \cap S' = \emptyset \).

Second, suppose that \(M \subseteq S' \). Recall that for each \(s \in S \), either \(M \cap N_G(s) = \emptyset \) or \(M \subseteq N_G(s) \). Given \(u \in M \), consider the function \(f : S \rightarrow 2^{(S \setminus M) \cup \{u\}} \setminus \{\emptyset\} \) defined by

\[
 f(s) = \begin{cases}
 N_G(s), & \text{if } M \cap N_G(s) = \emptyset, \\
 (N_G(s) \setminus M) \cup \{u\}, & \text{if } M \subseteq N_G(s),
\end{cases}
\]

for every \(s \in S \). Since \((N_G)_{|S} \) is injective, \(f \) is also and we would obtain that \(|S| < 2^{|S'|} \). It follows that \(M \cap S = \emptyset \).

Third, suppose that \(S' \setminus M = \emptyset \). We have \((S \cap M, S' \setminus M)_G = (S' \cap M, S' \setminus M)_G = 0 \). Given \(s' \in S' \cap M \), \(N_G(\psi_{S'}(s')) = S' \setminus \{s'\} \). In particular \(S' \cap M \subseteq N_G(\psi_{S'}(s')) \). Furthermore \((\psi_{S'}(s'), S' \cap M)_G = (\psi_{S'}(s'), S \cap M)_G = 0 \). Therefore \(S' \cap M = \{s'\} \). Similarly, we prove that \(|S' \cap M| = 1 \) which would imply that \(|S'| = 2 \). It follows that \(S' \subseteq M \).

Lastly, suppose that \(S \setminus M = \emptyset \). For each \(s \in S \setminus M = \emptyset \), we have \((s, S')_G = (s, S \cap M)_G = 0 \) and hence \(N_G(s) = \emptyset \). It follows that \(S \subseteq M \) and \(M = S \cup S' \).

Lemma 3.2. Let \(C \) and \(S' \) be disjoint and finite sets such that \(|C| \geq 2 \) and \(|S'| = \lfloor \log_2(|C| + 1) \rfloor \). There exists a prime graph \(G \) defined on \(V(G) = C \cup S' \) such that \(C \) is a clique and \(S' \) is a stable set in \(G \).

Proof. There exists a bijection \(\psi_{S'} \) from \(S' \) onto \(S'' \subseteq C \). Consider the injection \(f_{S''} : S'' \rightarrow 2^{S'} \setminus \{S'\} \) defined by \(s'' \mapsto \{(\psi_{S'})^{-1}(s'')\} \). Let \(f_C \) be any injection from \(C \) into \(2^{S'} \setminus \{S'\} \) such that \((f_C)_{|S''} = f_{S''} \). Lastly, consider the graph \(G \) defined on \(V(G) = C \cup S' \) such that \(C \) is a clique in \(G \), \(S' \) is a stable set in \(G \) and \(N_G(c) \cap S'' = f_C(c) \) for each \(c \in C \). We prove that \(G \) is prime. Let \(M \in \mathcal{M}_2(G) \). As in the proof of Lemma 3.1, we have \(M \cap C = \emptyset \) and \(M \cap S' = \emptyset \).

Now, suppose that \(C \setminus M \neq \emptyset \). We have \((C \cap M, S' \setminus M)_G = (S' \cap M, S' \setminus M)_G = 0 \). Given \(t' \in S' \setminus M \), \(N_G(\psi_{S'}(t')) \cap S' = \{t'\} \). Thus \(\psi_{S'}(t') \in C \setminus M \). But \((\psi_{S'}(t'), S' \setminus M)_G = (\psi_{S'}(t'), C \setminus M)_G = 1 \) which contradicts \(N_G(\psi_{S'}(t')) \cap S' = \{t'\} \). It follows that \(S'' \subseteq M \).

Lastly, suppose that \(C \setminus M = \emptyset \). For each \(c \in C \setminus M \neq \emptyset \), we have \((c, S')_G = (c, C \cap M)_G = 1 \) and hence \(N_G(c) \cap S' = S' \). It follows that \(C \subseteq M \) and \(M = C \cup S' \).

The question of prime extensions of a prime graph is not detailed enough in [2]. For instance, the number of prime 1-extensions of a prime graph
given in [2] is not correct. Moreover, Corollary 3.4 below is used without a precise proof.

Lemma 3.3. Let G be a prime graph. Given $a \notin V(G)$, there exist exactly

$$2^{|V(G)|} - 2|V(G)| - 2$$

distinct prime extensions of G to $V(G) \cup \{a\}$.

Proof. Consider any graph H defined on $V(H) = V(G) \cup \{a\}$ such that $H[V(G)] = G$. We prove that H is not prime if and only if

$$N_H(a) \in \{\emptyset, V(G)\} \cup \{N_G(v) : v \in V(G)\} \cup \{N_G(v) \cup \{v\} : v \in V(G)\}.$$

To begin, assume that $N_H(a) \in \{\emptyset, V(G)\} \cup \{N_G(v) : v \in V(G)\} \cup \{N_G(v) \cup \{v\} : v \in V(G)\}$. If $N_H(a) = \emptyset$ or $V(G)$, then $V(G)$ is a nontrivial module of H. If there is $v \in V(G)$ such that $N_H(a) \setminus \{v\} = N_G(v)$, then $\{a, v\}$ is a nontrivial module of H.

Conversely, assume that H admits a nontrivial module M. By Proposition 2.1,(1), $M \setminus \{a\} \in \mathcal{M}(G)$. As G is prime, $M \setminus \{a\} \neq \emptyset$ and $M \not\subseteq V(H)$, either $|M \setminus \{a\}| = 1$ or $M = V(G)$. In the second instance, $N_H(a) = \emptyset$ or $V(G)$. In the first, there is $v \in V(G)$ such that $M = \{a, v\}$. Thus $N_H(a) = N_G(v)$ or $N_G(v) \cup \{v\}$. To conclude, observe that

$$|\emptyset, V(G)\} \cup \{N_G(v) : v \in V(G)\} \cup \{N_G(v) \cup \{v\} : v \in V(G)\}| = 2^{|V(G)|} - 2|V(G)| - 2$$

because G is prime.

□

Corollary 3.4. Let G be a prime graph. For any $a \neq b \notin V(G)$, there exists a prime extension H of G to $V(G) \cup \{a, b\}$ such that $(a, b)_H = 0$.

Proof. Since $|V(G)| \geq 4$, $2^{|V(G)|} - 2|V(G)| - 2 \geq 2$. Consequently there is an extension H of G to $V(G) \cup \{a, b\}$ such that $(a, b)_H = 0$, $N_H(a) \neq N_H(b)$ and

$$N_H(a), N_H(b) \notin \{\emptyset, V(G)\} \cup \{N_G(v) : v \in V(G)\} \cup \{N_G(v) \cup \{v\} : v \in V(G)\}.$$

By the proof of Lemma 3.3, $H - a$ and $H - b$ are prime. We show that H is prime also. Let $M \in \mathcal{M}(H - a)$. By Proposition 2.1,(1), $M \setminus \{a\} \in \mathcal{M}(H - a)$. As $H - a$ is prime and $M \setminus \{a\} \neq \emptyset$, either $|M \setminus \{a\}| = 1$ or $M \setminus \{a\} = V(H) \setminus \{a\}$. In the first, there is $v \in V(G) \cup \{b\}$ such that $M = \{a, v\}$. If $v = b$, then $N_H(a) = N_H(b)$. If $v \in V(G)$, then $\{a, v\}$ would be a nontrivial module of $H - b$. Consequently $M \setminus \{a\} = V(H) \setminus \{a\}$. Since $H - b$ is prime, $a \leftrightarrow_H V(G)$ and hence $a \in M$. Thus $M = V(H)$. □

4. Proof of Theorem 1.4

Let G be a graph with $|V(G)| \geq 2$. By [2, Theorem 3.2], there exists a prime extension H of G such that

$$2 \leq |V(H) \setminus V(G)| \leq \lceil \log_2(|V(G)| + 1) \rceil$$
and \(V(H) \setminus V(G) \) is a stable set in \(H \). We can consider the smallest integer \(q(G) \) such that \(q(G) \geq 2 \) and \(G \) admits a prime \(q(G) \)-extension \(H \) such that \(V(H) \setminus V(G) \) is a stable set in \(H \).

The results below, from Proposition 4.1 to Corollary 4.4, are suggested by the proof of [2, Theorem 3.2].

We introduce a basic construction. Consider a graph \(G \) and a modular partition \(P \) of \(G \) such that \(P \subseteq S(G) \) and \(P \cap S_{22}(G) \neq \emptyset \). Let \(X \in P \cap S_{22}(G) \) such that

\[
q(G[X]) = \max(\{q(G[Y]) : Y \in P \cap S_{22}(G)\}).
\]

Consider a set \(S \) such that \(S \cap V(G) = \emptyset \) and \(|S| = q(G[X]) \). There exists a prime \(q(G[X]) \)-extension \(H_X \) of \(G[X] \) to \(X \cup S \) such that \(S \) is a stable set in \(H_X \). Since \(X \) is not a module of \(H_X \), there is \(s_X \in S \) such that \(s_X \leftrightarrow H_X X \).

Furthermore, if there is \(v \in S \) such that \((v, X)_{H_X} = 0 \), then \(V(H_X) \setminus \{v\} \) would be a nontrivial module of \(H_X \). Thus \(\{v \in S : v \leftrightarrow H_X X\} = \{v \in S : (v, X)_{H_X} = 1\} \). As \(S \) is a stable set in \(H_X \), \(\{v \in S : (v, X)_{H_X} = 1\} \) is a module of \(H_X \). It follows that

\[
\begin{align*}
\{v \in S : v \leftrightarrow H_X X\} &= \{v \in S : (v, X)_{H_X} = 1\}, \\
\{v \in S : v \leftrightarrow H_X X\} &\leq 1, \\
s_X &\in S \setminus \{v \in S : v \leftrightarrow H_X X\}.
\end{align*}
\]

Now, for each \(Y \in (P \cap S_{22}(G)) \setminus \{X\} \), there is a prime \(q(G[Y]) \)-extension \(H_Y \) of \(G[Y] \) to \(Y \cup S_Y \) such that \(\{v \in S : v \leftrightarrow H_X X\} \subseteq S_Y \subseteq S \) and \(S_Y \) is a stable set in \(H_Y \). Consider the extension \(H \) of \(G \) and of \(H_X \) to \(V(G) \cup S \) satisfying

- for each \(Y \in (P \cap S_{22}(G)) \setminus \{X\} \), \(H[Y \cup S_Y] = H_Y \);
- for each \(v \in V(G) \) such that \(\{v\} \subseteq P \), \((v, S \setminus \{s_X\})_H = 0 \) and \((v, s_X)_H = 1 \).

Proposition 4.1. Given a graph \(G \), consider a modular partition \(P \) of \(G \) such that \(P \subseteq S(G) \) and \(P \cap S_{22}(G) \neq \emptyset \). If the corresponding extension \(H \) is not prime, then all the nontrivial modules of \(H \) are included in \(\{v \in V(G) : \{v\} \subseteq P\} \).

Proof. Let \(M \) be a nontrivial module of \(H \). By Proposition 2.1.(1), \(M \cap (X \cup S) \in \mathcal{M}(H[X \cup S]) \). Since \(H[X \cup S] \) is prime, we have \(M \supseteq X \cup S \), \(|M \cap (X \cup S)| = 1 \), or \(M \cap (X \cup S) = \emptyset \).

For a first contradiction, suppose that \(M \supseteq X \cup S \). Given \(v \in V(G) \), if \(\{v\} \subseteq P \), then \(v \leftrightarrow H S \) so that \(v \notin M \). Thus \(\{v \in V(G) : \{v\} \subseteq P\} \subseteq M \). Let \(Y \in P \cap S_{22}(G) \). By Proposition 2.1.(1), \(M \cap (Y \cup S_Y) \in \mathcal{M}(H[Y \cup S_Y]) \).

Since \(H[Y \cup S_Y] \) is prime and since \(S_Y \subseteq M \cap (Y \cup S_Y) \), \(Y \subseteq M \). Therefore \(\bigcup(P \cap S_{22}(G)) \subseteq M \) and we would have \(M = V(H) \).

For a second contradiction, suppose that \(|M \cap (X \cup S)| = 1 \). Consider \(v \in S \setminus X \) such that \(M \cap (X \cup S) = \{v\} \). Suppose that \(v \in X \). We have \(M \subseteq V(G) \) and \(M \in \mathcal{M}(G) \) by Proposition 2.1.(1). As \(X \subseteq S(G) \) and \(v \in X \cap M, X \subseteq M \) or \(M \subseteq X \). In both cases, we would have \(|M \cap (X \cup S)| \geq 2 \).
Suppose that \(v \in S \). There is \(Y \in P \setminus \{X\} \) such that \(Y \cap M \neq \emptyset \). Let \(y \in Y \cap M \).

Since \(y \not\in_G X, u \not\in_{H_S} X \) and hence \(v \neq s_X \). If \(y \in P \cap \mathcal{S}_{G_2}(G) \), then \(v \in S_Y \) and \(M \cap (Y \cup S_Y) \) would be a nontrivial module of \(H[Y \cup S_Y] \). If \(Y = \{y\} \), then \((y, s_X)_H = 1 \). Thus \((v, s_X)_H = 1 \) and \(S \) would not be a stable set in \(H \).

It follows that \(M \cap (X \cup S) = \emptyset \). By Proposition 2.1.(1), \(M \in \mathcal{M}(G) \).

Suppose for a contradiction that there is \(Y \in (P \cap \mathcal{S}_{G_2}(G) \setminus \{X\}) \) such that \(Y \cap M \neq \emptyset \). As \(Y \in \mathcal{S}(G) \), \(Y \subseteq M \) or \(M \subseteq Y \). In both cases, \(M \cap (Y \cup S_Y) \) would be a nontrivial module of \(H[Y \cup S_Y] \). It follows that \(Y \cap M = \emptyset \).

Therefore \(M \subseteq \{v \in V(G) : \{v\} \in P\} \).

Corollary 4.2. Given a graph \(G \) such that \(G/\Pi(G) \) is prime, we have

\[
q(G) \leq \begin{cases}
2, & \text{if } \Pi_{G_2}(G) = \emptyset, \\
\max\{q(G[X]) : X \in \Pi_{G_2}(G)\}, & \text{if } \Pi_{G_2}(G) \neq \emptyset.
\end{cases}
\]

Proof. If \(G \) is prime, then \(q(G) = 2 \) by Corollary 3.4. Assume that \(G \) is not prime, that is, \(\Pi_{G_2}(G) \neq \emptyset \). Let \(H \) be the extension of \(G \) associated with \(\Pi(G) \). Suppose that \(H \) admits a nontrivial module \(M \). By Proposition 4.1, \(\{\{u\} : u \in M\} \in \Pi_1(G) \). Thus \(M \in \mathcal{M}(G) \) by Proposition 2.1.(1). By Proposition 2.2.(2), \(\{\{u\} : u \in M\} \) would be a nontrivial module of \(G/\Pi(G) \).

Proposition 4.3. Given a graph \(G \) such that \(G/\Pi(G) \) is complete or empty, we have

\[
q(G) \leq \max(2, \lceil \log_2(|\Pi_1(G)| + 1) \rceil),
\]

or

\[
q(G) \leq \max\{q(G[X]) : X \in \Pi_{G_2}(G)\}.
\]

Proof. Assume that \(G/\Pi(G) \) is empty. If \(\Pi(G) = \Pi_1(G) \), then \(G \) is empty by Proposition 2.2.(1), and it suffices to apply Lemma 3.1. Assume that \(\Pi_{G_2}(G) \neq \emptyset \) and set

\[
W_2 = \bigcup \Pi_{G_2}(G).
\]

Let \(H \) be the extension of \(G \) associated with \(\Pi(G) \). Recall that \(V(H) = V(G) \cup S, V(G) \cap S = \emptyset \) and \(|S| = q(G[X]) \) where \(X \in \Pi_{G_2}(G) \) such that \(q(G[X]) = \max\{q(G[Y]) : Y \in \Pi_{G_2}(G)\} \). Moreover \(H[X \cup S] \) is prime.

If \(|\Pi_1(G)| \leq 1 \), then \(H \) is prime by Proposition 4.1 so that \(q(G) \leq \max(\{q(G[Y]) : Y \in \Pi_{G_2}(G)\}) \). Assume that \(|\Pi_1(G)| \geq 2 \) and set

\[
W_1 = V(G) \setminus W_2.
\]

By Lemma 3.1, there exists a prime extension \(H_1 \) of \(G[W_1] \) to \(W_1 \cup S_1 \) such that \(|S_1| = \lceil \log_2(|W_1| + 1) \rceil \) and \(S_1 \) is stable in \(H_1 \). As \(G/\Pi(G) \) is empty, \(\Pi_{G_2}(G) \in \mathcal{M}(G/\Pi(G)) \). By Proposition 2.2.(3), \(W_2 \in \mathcal{M}(G) \). Thus \(\Pi_{G_2}(G) \subseteq \mathcal{S}(G[W_2]) \) by Proposition 2.3. It follows from Proposition 4.1 that \(H[W_2 \cup S] \) is prime. We construct suitable extensions of \(G \) according to whether \(|S_1| \leq |S| \) or not.
To begin, suppose \(|S_1| \leq |S|\). We can assume that
\[\{v \in S : v \leftrightarrow_{H[X \cup S]} X \} \subseteq S_1 \subseteq S \]
and consider an extension \(H'\) of \(H_1\) and \(H[W_2 \cup S]\) to \(V(G) \cup S\). We show that \(H'\) is prime. Let \(M \in \mathcal{M}_{22}(H')\). By Proposition 2.1.(1), \(M \cap (W_2 \cup S) \in \mathcal{M}(H[W_2 \cup S])\). Since \(H[W_2 \cup S]\) is prime, \(M \cap (W_2 \cup S) = \emptyset\), \(|M \cap (W_2 \cup S)| = 1\) or \(M \supseteq (W_2 \cup S)\).

- Suppose for a contradiction that \(M \cap (W_2 \cup S) = \emptyset\). By Proposition 2.1.(1), \(M\) would be a nontrivial module of \(H_1\).
- Suppose for a contradiction that \(|M \cap (W_2 \cup S)| = 1\) and consider \(w \in W_2 \cup S\) such that \(M \cap (W_2 \cup S) = \{w\}\). First, suppose that \(w \in W_2\) and consider \(Y \in \Pi_{22}(G)\) such that \(w \in Y\). By Proposition 2.1.(1), \(M \in \mathcal{M}(G)\). As \(Y \subseteq S(G)\) and \(w \in X \cap M, X \subseteq M\) or \(M \subseteq X\). In both cases, we would have \(|M \cap (W_2 \cup S)| \geq 2\). Second, suppose that \(w \in S\) and consider \(v \in W_1 \cap M\). Since \(v \leftrightarrow_{G} X, w \leftrightarrow_{H[W_2 \cup S]} X\) and hence \(w \in S_1\). It follows from Proposition 2.1.(1) that \(M\) would be a nontrivial module of \(H_1\).

Consequently \(M \supseteq (W_2 \cup S)\). By Proposition 2.1.(1), \(M \cap (W_1 \cup S_1) \in \mathcal{M}(H_1)\).

As \(H_1\) is prime and \(M \cap (W_1 \cup S_1) \subseteq S_1\), \(M \cap (W_1 \cup S_1) = (W_1 \cup S_1)\) so that \(M = V(H')\).

Now, assume that \(|S_1| > |S|\). We can assume that \(S \not\subseteq S_1\) and we consider the unique extension \(H''\) of \(H_1\) and \(H[W_2 \cup S]\) to \(V(G) \cup S_1\) such that
\[
(W_2, S_1 \setminus S)_{H''} = 0.
\]
We show that \(H''\) is prime. Let \(M \in \mathcal{M}_{22}(H'')\). We obtain \(M \cap (W_1 \cup S_1) = \emptyset\), \(|M \cap (W_1 \cup S_1)| = 1\) or \(M \supseteq (W_1 \cup S_1)\). If \(M \cap (W_1 \cup S_1) = \emptyset\), then \(M\) would be a nontrivial module of \(H[W_2 \cup S]\).

Suppose for a contradiction that \(|M \cap (W_1 \cup S_1)| = 1\) and consider \(w \in W_1 \cup S_1\) such that \(M \cap (W_1 \cup S_1) = \{w\}\). There is \(v \in W_2 \cap M\). Let \(Y \in \Pi_{22}(G)\) such that \(v \in Y\).

- Suppose that \(w \in W_1\). By Proposition 2.1.(1), \(M \in \mathcal{M}(G)\). Since \(Y \subseteq S(G)\) and since \(\cap M \neq \emptyset\) and \(w \in M \setminus Y, Y \subseteq M\). It follows from Proposition 2.1.(1) that \(M \cap (W_2 \cup S)\) would be a nontrivial module of \(H[W_2 \cup S]\).
- Suppose that \(w \in S_1\). By Proposition 2.1.(1), \(M \cap (W_2 \cup S) \in \mathcal{M}(H[W_2 \cup S])\). As \(H[W_2 \cup S]\) is prime, \(v \in M \cap W_2\) and \(M \cap S \subseteq \{w\}\), \(M \cap (W_2 \cup S) = \{v\}\) hence \(w \in S_1 \setminus S\). For every \(u \in W_2 \setminus \{v\}\), we have \((u,v)_{G} = (u,w)_{H''} = 0\) by (4.1). Since \((v,W_1)_{G} = 0\), we would have \(N_{G}(v) = \emptyset\) and hence \(\{v\} \in \Pi_{1}(G)\).

It follows that \(M \supseteq (W_1 \cup S_1)\). By Proposition 2.1.(1), \(M \cap (W_2 \cup S) \in \mathcal{M}(H[W_2 \cup S])\). As \(H[W_2 \cup S]\) is prime and \(M \cap (W_2 \cup S) \subseteq S\), \(M \cap (W_2 \cup S) = (W_2 \cup S)\) so that \(M = V(H'')\).

Finally, observe that when \(G/\Pi(G)\) is complete, we can proceed as previously by replacing (4.1) by \((W_2, S_1 \setminus S)_{H''} = 1\). \(\square\)
The next result follows from Corollary 4.2 and Proposition 4.3 by induction on the number of vertices.

Corollary 4.4. Given a graph G with $|V(G)| \geq 2$,
- $q(G) = 2$ if for every $X \in \mathcal{S}_2(G)$ such that $\lambda_G(X) \in \{\circ, \bullet\}$, we have $|\Pi_1(G[X])| \leq 1$;
- $q(G) \leq \max\{|\log_2(|\Pi_1(G[Y])| + 1)| : Y \in \mathcal{S}_2(G), \lambda_G(Y) \in \{\circ, \bullet\}\}$ if there is $X \in \mathcal{S}_2(G)$ such that $\lambda_G(X) \in \{\circ, \bullet\}$ and $|\Pi_1(G[X])| \geq 2$.

Given the second assertion of Corollary 4.4, Theorem 1.4 follows from the next transcription in terms of the modular decomposition tree. Let G be a graph. Denote by $\mathcal{M}(G)$ the family of the maximal elements of $\mathcal{M}_2(G)$ under inclusion which are cliques or stable sets in G.

Proposition 4.5. Let G be a graph. Given $M \subseteq V(G)$, we have $M \in \mathcal{M}(G)$ if and only if $M \in \mathcal{M}_2(G)$, $\lambda_G(M) \in \{\circ, \bullet\}$ and $M = \{v \in \overline{M} : \{v\} \in \Pi(G[\overline{M}])\}$.

Proof. To begin, consider $M \in \mathcal{M}(G)$ and assume that M is a stable set in G. By Proposition 2.1.(1), $M \in \mathcal{M}(G[\overline{M}])$. Set

$$Q = \{X \in \Pi(G[\overline{M}]) : X \cap M \neq \emptyset\}.$$

By definition of \overline{M}, $|Q| \geq 2$ and hence $M = \bigcup Q$ because $Q \subseteq \mathcal{S}(G[\overline{M}])$. Furthermore, $Q \subseteq \mathcal{S}(G[M])$ by Proposition 2.3. As all the strong modules of an empty graph are trivial, we obtain $|X| = 1$ for each $X \in Q$, that is,

$$M \subseteq \{v \in \overline{M} : \{v\} \in \Pi(G[\overline{M}])\}.$$

By Proposition 2.2.(2), $Q \in \mathcal{M}(G[\overline{M}]/\Pi(G[\overline{M}]))$. For a contradiction, suppose that $\lambda_G(\overline{M}) = \emptyset$. Since $Q \in \mathcal{M}_2(G[\overline{M}]/\Pi(G[\overline{M}]))$, $Q \subseteq \Pi(G[\overline{M}])$ and hence $M = \overline{M}$. As $|X| = 1$ for each $X \in Q$, $G[\overline{M}]/\Pi(G[\overline{M}])$ and $G[\overline{M}]$ are isomorphic by Proposition 2.2.(1). It would follow that $G[M]$ is prime. Consequently $\lambda_G(\overline{M}) \in \{\circ, \bullet\}$. Given $v \neq w \in M$, we have $(\{v\}, \{w\})_{G[\overline{M}]/\Pi(G[\overline{M}])} = (v, w)_G = 0$. Thus

$$\lambda_G(\overline{M}) = \emptyset.$$

Since $\lambda_G(\overline{M}) = \emptyset$, we have $\Pi_1(G[\overline{M}]) \notin \mathcal{M}(G[\overline{M}]/\Pi(G[\overline{M}]))$. By Proposition 2.2.(3), $\bigcup \Pi_1(G[\overline{M}]) \notin \mathcal{M}(G[\overline{M}]/\Pi(G[\overline{M}])$ and hence $\bigcup \Pi_1(G[\overline{M}]) \notin \mathcal{M}(G)$ by Proposition 2.1.(2). Given $v \neq w \in \bigcup \Pi_1(G[\overline{M}])$, we have

$$(v, w)_G = (\{v\}, \{w\})_{G[\overline{M}]/\Pi(G[\overline{M}])} = 0.$$

Therefore $\bigcup \Pi_1(G[\overline{M}])$ is a stable set of G. As $M \subseteq \bigcup \Pi_1(G[\overline{M}])$, $M = \bigcup \Pi_1(G[\overline{M}])$ by maximality of M. It follows that

$$M \subseteq \{v \in \overline{M} : \{v\} \in \Pi(G[\overline{M}])\}.$$

Conversely, consider $M \in \mathcal{M}_2(G)$ such that $\lambda_G(\overline{M}) = \emptyset$ and $M = \{v \in \overline{M} : \{v\} \in \Pi(G[\overline{M}])\}$. As $\lambda_G(\overline{M}) = \emptyset$, $\Pi_1(G[\overline{M}]) \notin \mathcal{M}(G[\overline{M}]/\Pi(G[\overline{M}]))$. However, $\bigcup \Pi_1(G[\overline{M}])$ is a stable set in G. As $M \subseteq \bigcup \Pi_1(G[\overline{M}])$, $M = \bigcup \Pi_1(G[\overline{M}])$ by maximality of M. It follows that

$$M \subseteq \{v \in \overline{M} : \{v\} \in \Pi(G[\overline{M}])\}.$$
By Proposition 2.2.(3), $M = \bigcup \Pi_1(G[M]) \in \mathcal{M}(G[M])$ and hence $M \in \mathcal{M}(G)$ by Proposition 2.1.(2). Since $(v, w)_G = (\{v\}, \{w\})_{G[M]/\Pi(G[M])} = 0$ for all $v \neq w \in M$, M is a stable set in G. There exists $N \in \mathcal{M}(G)$ such that $N \supseteq M$. As M is a stable set in G, N is as well. By what precedes, $N = \{v \in \widehat{N} : \{v\} \in \Pi(G[\widehat{N}])\}$. We have $\widehat{M} \not\subseteq \widehat{N}$ because $M \not\subseteq N$. Furthermore $\widehat{M} \in \mathcal{S}(G[\widehat{N}])$ by Proposition 2.3. Given $v \in M$, we obtain $\{v\} \not\subseteq \widehat{M} \subseteq \widehat{N}$. Since $\{v\} \in \Pi(G[\widehat{N}])$, $\widehat{M} = \widehat{N}$. Therefore $M = N$ because $M = \{v \in \widehat{M} : \{v\} \in \Pi(G[\widehat{M}])\}$ and $N = \{v \in \widehat{N} : \{v\} \in \Pi(G[\widehat{N}])\}$.

Let G be a graph such that $\max(\alpha_M(G), \omega_M(G)) \geq 2$. Consider $M \in \mathcal{M}(G)$. By Proposition 4.5, $\lambda_G(\widehat{M}) \in \{\circ, \bullet\}$ and $|\Pi_1(G[\widehat{M}])| = |M| \geq 2$. By Corollary 4.4, $p(G) \leq q(G) \leq \max(\{[\log_2(|\Pi_1(G[Y])| + 1)] : Y \in \mathcal{S}_{\geq 2}(G), \lambda_G(Y) \in \{\circ, \bullet\}\})$.

By Proposition 4.5,
\[
\max(\{[\log_2(|\Pi_1(G[Y])| + 1)] : Y \in \mathcal{S}_{\geq 2}(G), \lambda_G(Y) \in \{\circ, \bullet\}\})
\]
equals
\[
\max(\{[\log_2(|M| + 1)] : M \in \mathcal{M}(G)\}).
\]

Clearly
\[
\max(\{[\log_2(|M| + 1)] : M \in \mathcal{M}(G)\}) = [\log_2(\max(\alpha_M(G), \omega_M(G)) + 1)]
\]
and consequently we recover Theorem 1.4,
\[
p(G) \leq [\log_2(\max(\alpha_M(G), \omega_M(G)) + 1)].
\]

To obtain Corollary 1.5, we prove Lemma 1.3.

Proof of Lemma 1.3. Let G be a graph such that $\max(\alpha_M(G), \omega_M(G)) \geq 2$. There exists $S \in \mathcal{M}(G)$ such that $|S| = \max(\alpha_M(G), \omega_M(G))$ and S is a clique or a stable set in G. Given an integer $p < \log_2(\max(\alpha_M(G), \omega_M(G)))$, consider any p-extension H of G. We must prove that H is not prime. We have $2^{|V(H) \setminus V(G)|} < |S|$ so that the function $S \rightarrow 2^{|V(H) \setminus V(G)|}$, defined by $s \mapsto N_H(s) \cap (V(H) \setminus V(G))$ is not injective. There are $s \neq t \in S$ such that $v \leftrightarrow_H \{s, t\}$ for every $v \in V(H) \setminus V(G)$. As S is a module of G, we have $v \leftrightarrow_H \{s, t\}$ for every $v \in V(G) \setminus S$. Since S is a clique or a stable set in G, $\{s, t\}$ is a nontrivial module of H.

When a graph or its complement admits isolated vertices, we obtain the following.

Lemma 4.6. Given a graph G, if $\iota(G) \neq 0$ or $\iota(\overline{G}) \neq 0$, then
\[
p(G) \geq [\log_2(\max(\iota(G), \iota(\overline{G})) + 1)].
\]
For every graph G, assume that $\iota(G) \geq \iota(\overline{G})$. Given $p < \lceil \log_2(\iota(G) + 1) \rceil$, consider any p-extension H of G. We have $2^{\lvert V(H) \setminus V(G) \rvert} \leq \iota(G)$ and we verify that H is not prime.

For each $x \in V(G)$ such that $N_{G}(x) = \emptyset$, we have $N_{H}(x) \subseteq V(H) \setminus V(G)$. Thus $(N_{H})_{\{v \in V(G) : N_{G}(v) = \emptyset\}}$ is a function from $\{v \in V(G) : N_{G}(v) = \emptyset\}$ to $2^{V(H) \setminus V(G)}$. As observed in the proof of Lemma 3.1, if $(N_{H})_{\{v \in V(G) : N_{G}(v) = \emptyset\}}$ is not injective, then $\{x, y\}$ is a nontrivial module of H when $x \neq y \in \{v \in V(G) : N_{G}(v) = \emptyset\}$ with $N_{H}(x) = N_{H}(y)$. So assume that $(N_{H})_{\{v \in V(G) : N_{G}(v) = \emptyset\}}$ is injective.

As $2^{\lvert V(H) \setminus V(G) \rvert} \leq \iota(G)$, we obtain that $(N_{H})_{\{v \in V(G) : N_{G}(v) = \emptyset\}}$ is bijective. Thus there is $x \in \{v \in V(G) : N_{G}(v) = \emptyset\}$ such that $N_{H}(x) = \emptyset$. Therefore $V(H) \setminus \{x\}$ is a nontrivial module of H and H is not prime. \hfill \Box

The next result is a simple consequence of Proposition 4.5 which is useful in proving Theorem 1.6.

Corollary 4.7. Given a graph G such that $\max(\alpha_{M}(G), \omega_{M}(G)) \geq 2$, the elements of $M(G)$ are pairwise disjoint.

Proof. Consider $M, N \in M(G)$ such that $M \cap N \neq \emptyset$. Let $v \in M \cap N$. Since $M, N \in S(G)$ and $v \in M \cap N$, $M \subseteq N$ or $N \subseteq M$. For instance, assume that $M \subseteq N$. By Proposition 2.3, $M \in S(G[N])$. Furthermore $\{v\} \in \Pi(G[N])$ by Proposition 4.5. As $\{v\} \subsetneq M \subseteq N$, we obtain $M = N$.

Lastly, $M = \{w \in M : \{w\} \in \Pi(G[M])\}$ and $N = \{w \in N : \{w\} \in \Pi(G[N])\}$ by Proposition 4.5. Thus $M = N$. \hfill \Box

5. **Proof of Theorem 1.6**

Given a graph G, denote by $P(G)$ the family of $M \in M(G)$ such that $G[M]$ is prime. For every $M \in P(G)$, $M \in S(G)$ because $G[M]$ is prime. It follows that the elements of $P(G)$ are pairwise disjoint. Thus the elements of $M(G) \cup P(G)$ are also by Corollary 4.7. Set

$I(G) = V(G) \setminus ((\bigcup M(G)) \cup (\bigcup P(G)))$.

We prove Theorem 1.6 when $\max(\alpha_{M}(G), \omega_{M}(G)) = 2$.

Proposition 5.1. For every graph G such that $\max(\alpha_{M}(G), \omega_{M}(G)) = 2$,

$$p(G) = 2 \text{ if and only if } \iota(G) = 2 \text{ or } \iota(\overline{G}) = 2.$$

Proof. It follows from Lemma 1.3 and Theorem 1.4 that $p(G) = 1$ or 2. To begin, assume that $\iota(G) = 2$ or $\iota(\overline{G}) = 2$. By Lemma 4.6, $p(G) \geq 2$ and hence $p(G) = 2$. Conversely, assume that $p(G) = 2$. Let $a \notin V(G)$. As $\max(\alpha_{M}(G), \omega_{M}(G)) = 2$, $[N] = 2$ for each $N \in M(G)$. Let $N_{0} \in M(G)$. For $N \in P(G)$, $G[N]$ is prime. By Lemma 3.3, $G[N]$ admits a prime extension H_{N} defined on $N \cup \{a\}$. We consider any 1-extension H of G to $V(G) \cup \{a\}$ satisfying the following.
(1) For each \(N \in \mathcal{M}(G) \), \(a \leftrightarrow_H N \).
(2) For each \(N \in \mathcal{P}(G) \), \(H[N \cup \{ a \}] = H_N \).
(3) Let \(v \in I(G) \). There is \(i \in \{ 0, 1 \} \) such that \((v, N_0)_{G} = i \). We require that \((v, a)_{H} \neq i \).

To begin, we prove that \(S_2^2(G) \cap \mathcal{M}(H) = \emptyset \). Given \(M \in S_2^2(G) \), we have to verify that \(a \leftrightarrow_H M \). Let \(N \) be a minimal element under inclusion of \(\{ N' \in S_2^2(G) : N' \subseteq M \} \). By Proposition 2.3, \(\Pi(G[N]) \in S(G) \). By minimality of \(N \), \(\Pi(G[N]) = \Pi_1(G[N]) \) so that \(G[N] \) and \(G[N]/\Pi(G[N]) \) are isomorphic by Proposition 2.2.(1). We distinguish the following two cases.

- Assume that \(\lambda_{G}(N) = \emptyset \). We obtain that \(G[N] \) is prime, that is, \(N \in \mathcal{P}(G) \). As \(H[N \cup \{ a \}] \) is prime, \(a \leftrightarrow_H N \).
- Assume that \(\lambda_{G}(N) \in \{ \circ, \bullet \} \). By Proposition 4.5, \(N \in \mathcal{M}(G) \). Thus \(|N| = 2 \) and \(a \leftrightarrow_H N \) by definition of \(H \).

In both cases, \(a \leftrightarrow_H N \) and hence \(a \leftrightarrow_H M \).

Now we prove that \(M_2^2(G) \cap \mathcal{M}(H) = \emptyset \). Let \(M \in \mathcal{M}_2^2(G) \). Since \(S_2^2(G) \cap \mathcal{M}(H) = \emptyset \), assume that \(M \notin S_2^2(G) \). Set \(Q = \{ X \in \Pi(G[M]) : X \cap M \neq \emptyset \} \). By Proposition 2.1.(1), \(M \in \mathcal{M}(G[M]) \). By definition of \(M \), \(|Q| \geq 2 \). Thus \(M = \cup Q \) because \(\Pi(G[M]) \subseteq S(G[M]) \). Furthermore \(Q \neq \Pi(G[M]) \) because \(M \notin S_2^2(G) \). By Proposition 2.2.(2), \(Q \notin \mathcal{M}(G[M]) \). As \(2 \leq |Q| < |\Pi(G[M])| \), \(\lambda_{G}(M) \notin \{ \circ, \bullet \} \). If there is \(X \in Q \cap \Pi_2^2(G[M]) \), then \(a \leftrightarrow_H X \) by what precedes and hence \(a \leftrightarrow_H M \). Assume that \(Q \notin \Pi_1(G[M]) \). We obtain that \(M \) is a clique or a stable set in \(G \). Since \(\max(\alpha_M(G), \omega_M(G)) = 2 \), \(M \in \mathcal{M}(G) \) and \(a \leftrightarrow_H M \) by definition of \(H \).

As \(p(G) = 2 \), \(H \) admits a nontrivial module \(M_H \). We have \(a \in M_H \) because \(M_2^2(G) \cap \mathcal{M}(H) = \emptyset \).

First, we show that \(N \subseteq M_H \) for each \(N \in \mathcal{P}(G) \). By Proposition 2.1.(1), \(M_H \cap (N \cup \{ a \}) \in \mathcal{M}(H[N \cup \{ a \}]) \). Since \(H[N \cup \{ a \}] \) is prime and \(a \in M_H \cap (N \cup \{ a \}) \), we obtain either \((M_H \setminus \{ a \}) \cap N = \emptyset \) or \(N \subseteq M_H \setminus \{ a \} \). Suppose for a contradiction that \((M_H \setminus \{ a \}) \cap N = \emptyset \). By Proposition 2.1.(1), \(M_H \setminus \{ a \} \in \mathcal{M}(G) \). There is \(i \in \{ 0, 1 \} \) such that \((M_H \setminus \{ a \})_{G} = i \) by Proposition 2.1.(3). Therefore \((a, N)_{H} = i \) which contradicts the fact that \(H[N \cup \{ a \}] \) is prime. It follows that \(N \subseteq M_H \). Thus \(\bigcup \mathcal{P}(G) \subseteq M_H \).

Second, we show that \(N \cap M_H \neq \emptyset \) for each \(N \in \mathcal{M}(G) \). Otherwise consider \(N \in \mathcal{M}(G) \) such that \(N \cap M_H = \emptyset \). There is \(i \in \{ 0, 1 \} \) such that \((M_H \setminus \{ a \}, N)_{G} = i \). Thus \((a, N)_{H} = i \) which contradicts \(a \leftrightarrow_H N \). Therefore \(N \cap M_H \neq \emptyset \) for each \(N \in \mathcal{M}(G) \).

Third, let \(v \in I(G) \). By (5.2), \(N_0 \cap M_H \neq \emptyset \). Since \((v, N_0 \cap M_H)_{G} \neq (v, a)_{H} \), \(v \in M_H \). Hence

\[I(G) \subseteq M_H. \]
By (5.1) and (5.3),

$$V(G) \setminus M_H \subseteq \mathcal{M}(G).$$

To conclude, consider \(v \in V(H) \setminus M_H \). By (5.4), there is \(N_v \in \mathcal{M}(G) \) such that \(v \in N_v \). By interchanging \(G \) and \(\overline{G} \), assume that \(N_v \) is a stable set in \(G \). Since \(v \in M_H \) and \((v, N_v \cap M_H)_G = 0 \), we obtain \((v, M_H)_H = 0 \). Let \(N \in \mathcal{M}(G) \setminus \{N_v\} \). By Corollary 4.7, \(N \cap N_v = \emptyset \). As \(N \cap M_H = \emptyset \), we have \((v, N \cap M_H)_G = 0 \) and hence \((v, N)_G = 0 \). It follows that \(N_G(v) = \emptyset \). Therefore \((N_v, V(G) \setminus N_v)_G = 0 \) because \(N_v \in \mathcal{M}(G) \).

Since \(N_v \) is a stable set in \(G \), we obtain \(N_v \subseteq \{u \in V(G) : N_G(u) = \emptyset\} \).

Clearly \(\{u \in V(G) : N_G(u) = \emptyset\} \subseteq \mathcal{M}(G) \) and \(\{u \in V(G) : N_G(u) = \emptyset\} \) is a stable set in \(G \). Thus \(\iota(G) \leq \max(\alpha_M(G), \omega_M(G)) = 2 \). Consequently \(N_v = \{u \in V(G) : N_G(u) = \emptyset\} \).

Proof of Theorem 1.6. Consider a graph \(G \) such that

$$\max(\alpha_M(G), \omega_M(G)) = 2^k$$

where \(k \geq 1 \). It follows from Corollary 1.5 that \(p(G) = k \) or \(k + 1 \).

To begin, assume that \(\iota(G) = 2^k \) or \(\iota(\overline{G}) = 2^k \). By Lemma 4.6, \(p(G) \geq k + 1 \) and hence \(p(G) = k + 1 \).

Conversely, assume that \(p(G) = k + 1 \). If \(k = 1 \), then it suffices to apply Proposition 5.1. Assume that \(k \geq 2 \). For convenience set

$$\mathbb{M}_{\text{max}}(G) = \{N \in \mathcal{M}(G) : |N| = \max(\alpha_M(G), \omega_M(G))\}.$$

With each \(N \in \mathbb{M}_{\text{max}}(G) \) associate \(w_N \in N \). Set \(W = \{w_N : N \in \mathbb{M}_{\text{max}}(G)\} \).

We prove that \(\max(\alpha_M(G-W), \omega_M(G-W)) = 2^k - 1 \). Let \(N \in \mathbb{M}_{\text{max}}(G) \). By Corollary 4.7, the elements of \(\mathbb{M}_{\text{max}}(G) \) are pairwise disjoint. Thus \(N \setminus W = N \setminus \{w_N\} \).

Clearly \(N \setminus \{w_N\} \) is a clique or a stable set in \(G - W \). Furthermore \(N \setminus \{w_N\} \in \mathcal{M}(G - W) \). Therefore \(2^k - 1 = |N \setminus \{w_N\}| \leq \max(\alpha_M(G-W), \omega_M(G-W)) \).

Now consider \(N' \in \mathbb{M}_G(G - W) \). We show that \(N' \in \mathcal{M}(G) \).

We have to verify that for each \(N \in \mathbb{M}_{\text{max}}(G) \), \(w_N \leftrightarrow_G N' \). Let \(N \in \mathbb{M}_{\text{max}}(G) \). First, assume that there is \(v \in (N \setminus \{w_N\}) \setminus N' \). We have \(v \leftrightarrow_G N' \). As \(N \) is a clique or a stable set in \(G \), \(\{v, w_N\} \in \mathcal{M}(G[N]) \). By Proposition 2.1.2, \(\{v, w_N\} \in \mathcal{M}(G) \). Thus \(w_N \leftrightarrow_G N' \). Second, assume that \(N \setminus \{w_N\} \subseteq N' \). Clearly \(w_N \leftrightarrow_G N' \) when \(N \setminus \{w_N\} = N' \).

Assume that \(N' \setminus (N \setminus \{w_N\}) \neq \emptyset \). By interchanging \(G \) and \(\overline{G} \), assume that \(N' \) is a clique in \(G - W \). As \(N \setminus \{w_N\} \subseteq N' \) and \(|N \setminus \{w_N\}| \geq 2 \), we obtain that \(N \) is a clique in \(G \). Since \((N \setminus \{w_N\}, N' \setminus N)_G = 1 \) and since \(N \in \mathcal{M}(G) \), we have \((w_N, N' \setminus N)_G = 1 \). Furthermore \((w_N, N \setminus \{w_N\})_G = 1 \) because \(N \) is a clique in \(G \). Therefore \((w_N, N')_G = 1 \). Consequently \(N' \in \mathcal{M}(G) \).

As \(N' \) is a clique in \(G \), there is \(M \in \mathcal{M}(G) \) such that \(M \supseteq N' \). If \(M \in \mathbb{M}_{\text{max}}(G) \), then \(|N'| \leq |M| < \max(\alpha_M(G), \omega_M(G)) \). If \(M \in \mathbb{M}_{\text{max}}(G) \), then \(N' \subseteq M \setminus \{w_M\} \) and hence \(|N'| < |M| = \max(\alpha_M(G), \omega_M(G)) \).

In both cases, we have \(|N'| = \max(\alpha_M(G-W), \omega_M(G-W)) < \max(\alpha_M(G), \omega_M(G)) \). It follows that \(\max(\alpha_M(G-W), \omega_M(G-W)) = 2^k - 1 \).
By Corollary 1.5, \(p(G - W) = k \) and hence there exists a prime \(k \)-extension \(H' \) of \(G - W \). We extend \(H' \) to \(V(H') \cup W \) as follows. Let \(N \in \mathbb{M}_{\text{max}}(G) \). Consider the function \(f_N : N \setminus \{ w_N \} \rightarrow 2^{V(H') \setminus V(G - W)} \) defined by \(v \mapsto N_H(v) \setminus V(G - W) \) for \(v \in N \setminus \{ w_N \} \). Since \(H' \) is prime, \(f_N \) is injective. As \(|N \setminus \{ w_N \}| = 2^{k - 1} \) and \(|2^{V(H') \setminus V(G - W)}| = 2^k \), there is a unique \(X_N \in V(H') \setminus V(G - W) \) such that \(f_N(v) = X_N \) for every \(v \in N \setminus \{ w_N \} \). Let \(H \) be the extension of \(H' \) to \(V(H') \cup W \) such that \(N_H(w_N) \cap (V(H') \setminus V(G - W)) = X_N \) for each \(N \in \mathbb{M}_{\text{max}}(G) \). As \(p(G) = k + 1 \), \(H \) is not prime. Consider a nontrivial module \(M_H \) of \(H \).

Observe the following. Given \(N \neq N' \in \mathbb{M}_{\text{max}}(G) \),

\[
\begin{align*}
N \cap M_H & \neq \emptyset \\
N' \cap M_H & \neq \emptyset
\end{align*}
\]

Indeed, by Proposition 2.1.1, \(M_H \cap V(G) \in \mathcal{M}(G) \). Since \(\mathcal{N}, \mathcal{N}' \in \mathcal{S}(G) \) and since \((M_H \cap V(G)) \cap \mathcal{N} \neq \emptyset \) and \((M_H \cap V(G)) \cap \mathcal{N}' \neq \emptyset \), \(M_H \cap V(G) \) is comparable to \(\mathcal{N} \) and \(\mathcal{N}' \) under inclusion. Suppose for a contradiction that \(M_H \cap V(G) \not\subseteq \mathcal{N} \) and \(M_H \cap V(G) \not\subseteq \mathcal{N}' \). It follows that \(N' \cap \mathcal{N} \neq \emptyset \) and \(N \cap \mathcal{N}' \neq \emptyset \). As \(\mathcal{N}' \in \mathcal{S}(G) \), \(\mathcal{N}' \not\subseteq N \) or \(N \not\subseteq \mathcal{N}' \). In the first instance, it follows from Proposition 2.3 that \(\mathcal{N}' \) would be a nontrivial strong module of \(G[N] \) which contradicts the fact that \(N \) is a clique or a stable set in \(G \). Thus \(N \subseteq \mathcal{N}' \) and hence \(\mathcal{N} \subseteq \mathcal{N}' \). Similarly \(N' \subseteq \mathcal{N} \) and \(\mathcal{N}' \subseteq \mathcal{N} \). Therefore \(\mathcal{N} = \mathcal{N}' \) and it would follow from Proposition 4.5 that \(N = N' \). Consequently \(\mathcal{N} \not\subseteq (M_H \cap V(G)) \) or \(\mathcal{N}' \not\subseteq (M_H \cap V(G)) \). For instance, assume that \(\mathcal{N} \not\subseteq (M_H \cap V(G)) \). By Proposition 2.1.1, \(M_H \cap V(H') \in \mathcal{M}(H') \). Furthermore \((M_H \cap V(H')) \supseteq (N \setminus W) \) and \(N \setminus W = N \setminus \{ w_N \} \) by Corollary 4.7. Since \(H' \) is prime, we have \(V(H') \subseteq M_H \). It follows that (5.5) holds.

As \(H' \) is prime and \(M_H \cap V(H') \in \mathcal{M}(H') \), we have either \(|M_H \cap V(H')| \leq 1 \) or \(M_H \supseteq V(H') \). For a contradiction, suppose that \(|M_H \cap V(H')| \leq 1 \). There is \(N \in \mathbb{M}_{\text{max}}(G) \) such that \(w_N \in M_H \). It follows from (5.5) that \(M_H \cap W = \{ w_N \} \). Thus there is \(v \in V(H') \) such that \(M_H \cap V(H') = \{ v \} \). Clearly \(M_H = \{ v, w_N \} \) and we distinguish the following two cases to obtain a contradiction.

- Suppose that \(v \in V(G - W) \). By Proposition 2.1.1, \(\{ v, w_N \} \in \mathcal{M}(G) \). Therefore there is \(N' \in \mathbb{M}_{\text{max}}(G) \) such that \(w_N \in \mathcal{N}' \). By Corollary 4.7, \(N = N' \) and we would obtain \(N_H(w_N) \cap (V(H') \setminus V(G - W)) = f_N(v) \).

- Suppose that \(v \in V(H') \setminus V(G - W) \). There is \(i \in \{ 0, 1 \} \) such that \((w_N, N \setminus \{ w_N \})_G = i \). We obtain \((v, N \setminus \{ w_N \})_H = i \) because \(\{ v, w_N \} \in \mathcal{M}(H) \). Since \(f_N \) is injective, the function \(g_N : N \setminus \{ w_N \} \rightarrow 2^{(V(H') \setminus V(G - W)) \setminus \{ v \}} \), defined by \(g_N(u) = f_N(u) \setminus \{ v \} \) for \(u \in N \setminus \{ w_N \} \), is injective as well. We would obtain \(2^k - 1 \leq 2^{k - 1} \).
Consequently $V(H') \subseteq M_H$. As M_H is a nontrivial module of H, there exists $N \in M_{\max}(G)$ such that $w_N \notin M$. By interchanging G and \overline{G}, assume that N is a stable set in G. We have $(w_N, N \setminus \{w_N\})_G = 0$ and hence $(w_N, V(H'))_G = 0$. In particular $(w_N, V(G - W))_G = 0$. Given $N' \in M_{\max}(G) \setminus \{N\}$, we obtain $(w_N, N' \setminus \{w_N\})_G = 0$. Since $N' \in M(G)$, $(w_N, w_{N'})_G = 0$. It follows that $N_G(w_N) = \emptyset$. As at the end of the proof of Proposition 5.1, we conclude by $N = \{u \in V(G) : N_G(u) = \emptyset\}$.

Lastly, we examine the non prime graphs G such that

$$\alpha_M(G) = \omega_M(G) = 1.$$

Proposition 5.2. For every non prime graph G such that $|V(G)| \geq 4$ and $\alpha_M(G) = \omega_M(G) = 1$, we have $p(G) = 1$.

Proof. Consider a minimal element N_{\min} of $S_{\max}(G)$. By Proposition 2.3, $\Pi(G[N_{\min}]) \subseteq S(G)$. By minimality of N_{\min}, $\Pi(G[N_{\min}]) = \Pi_1(G[N_{\min}])$. Thus $G[N_{\min}]$ and $G[N_{\min}]/{\Pi_1(G[N_{\min}]])}$ are isomorphic by Proposition 2.2.(1). If $\lambda_G(N_{\min}) \in \{\circ, \bullet\}$, then N_{\min} is a clique or a stable set in G and there would be $N \in M(G)$ such that $N \supseteq N_{\min}$. Therefore $\lambda_G(N_{\min}) = \emptyset$ and $N_{\min} \in P(G)$.

Let $a \notin V(G)$. For each $N \in P(G)$, $G[N]$ is prime. By Lemma 3.3, $G[N]$ admits a prime 1-extension H_N to $N \cup \{a\}$. We consider the 1-extension H of G to $V(G) \cup \{a\}$ satisfying the following.

1. For each $N \in P(G)$, $H[N \cup \{a\}] = H_N$.
2. Let $v \in I(G)$. There is $i \in \{0, 1\}$ such that $(v, N_{\min})_G = i$. We require that $(v, a)_H \neq i$.

We proceed as in the proof of Proposition 5.1, to show that $M_{\max}(G) \cap M(H) = \emptyset$. To begin, we prove that $S_{\max}(G) \cap M(H) = \emptyset$. Given $M \in S_{\max}(G)$, we have to verify that $a \leftrightarrow_H M$. Let N be a minimal element under inclusion of $\{N' \in S_{\max}(G) : N' \subseteq M\}$. We obtain that $\Pi(G[N]) = \Pi_1(G[N])$ so that $G[N]$ and $G[N]/{\Pi_1(G[N])}$ are isomorphic by Proposition 2.2.(1). If $\lambda_G(N) \in \{\circ, \bullet\}$, then N is a clique or a stable set in G and there would be $N' \in M(G)$ such that $N' \supseteq N$. Thus $\lambda_G(N) = \emptyset$. We obtain that $G[N]$ is prime, that is, $N \in P(G)$. Since $H[N \cup \{a\}]$ is prime, $a \leftrightarrow_H N$ and hence $a \leftrightarrow_H M$.

Now we prove that $M_{\max}(G) \cap M(H) = \emptyset$. Let $M \in M_{\max}(G)$. Since $S_{\max}(G) \cap M(H) = \emptyset$, assume that $M \notin S_{\max}(G)$. Set $Q = \{X \in \Pi(G[M]) : X \cap M \neq \emptyset\}$. We obtain that $M = \bigcup Q$, $|Q| \geq 2$ and $\lambda_G(M) \in \{\circ, \bullet\}$. If $|\Pi_1(G[M])| \geq 2$, then we would have $\{v \in M : \{v\} \in \Pi(G[M])\} \in M(G)$ by Proposition 4.5. Consequently $|\Pi_1(G[M])| \leq 1$ and there is $X \in Q \cap \Pi_{\max}(G[M])$. By what precedes $a \leftrightarrow_H X$ and hence $a \leftrightarrow_H M$.

Lastly, we establish that H is prime. Let $M_H \in M_{\max}(H)$. As previously shown, $a \in M_H$. We show that $N \subseteq M_H$ for each $N \in P(G)$. By Proposition 2.1.(1), $M_H \cap (N \cup \{a\}) \in M(H[N \cup \{a\}])$. Since $H[N \cup \{a\}]$ is prime and $a \in M_H \cap (N \cup \{a\})$, we obtain either $(M_H \setminus \{a\}) \cap N = \emptyset$
or \(N \subseteq M_H \setminus \{a\} \). Suppose for a contradiction that \((M_H \setminus \{a\}) \cap N = \emptyset \).
By Proposition 2.1.(1), \(M_H \setminus \{a\} \in \mathcal{M}(G) \). There is \(i \in \{0,1\} \) such that \((M_H \setminus \{a\}, N)\) is \(i \) by Proposition 2.1.(3). Therefore \((a, N)_H = i\) which contradicts the fact that \(H[N \cup \{a\}] \) is prime. It follows that \(N \subseteq M_H \) for each \(N \in \mathcal{P}(G) \). In particular \(N_{\text{min}} \subseteq M_H \). Let \(v \in I(G) \). As \((v, N_{\text{min}})_G \neq (v, a)_H\), \(v \in M_H \). Consequently \(M_H = V(H) \). \qedhere

Acknowledgements

The authors thank the referee and the managing editor for their helpful comments.

References