MONOCHROMATIC EVEN CYCLES

ANDRÁS GYÁRFÁS AND DÖMÖTÖR PÁLVÖLGYI

Abstract. We prove that any \(r \)-coloring of the edges of \(K_m \) contains a monochromatic even cycle, where \(m = 3r + 1 \) if \(r \) is odd and \(m = 3r \) if \(r \) is even. We also prove that \(K_{m-1} \) has an \(r \)-coloring without monochromatic even cycles.

An easy exercise, perhaps folkloristic, says that in any \(r \)-coloring of the edges of \(K_{2r+1} \) there is a monochromatic odd cycle (and this is not true for \(K_{2r} \)).

This note explores what happens if we ask the same question for even cycles. Let \(f(r) \) denote the smallest integer \(m \) for which there is a monochromatic even cycle in every edge coloring of \(K_m \).

Theorem 1. For odd \(r \), \(f(r) = 3r + 1 \) and for even \(r \), \(f(r) = 3r \).

Every graph with \(n \) vertices and with more than \(m = \lfloor 3(n-1)/2 \rfloor \) edges contains a \(\Theta \)-graph, i.e. three internally vertex disjoint paths connecting the same pair of vertices (see [1], Exercise 10.1). Since a \(\Theta \)-graph obviously contains an even cycle, any graph with \(n \) vertices and more than \(m \) edges contains an even cycle. This easily implies that the stated values are upper bounds of \(f(r) \) in Theorem 1. Indeed, considering the majority color, one can easily check that

\[
\left\lceil \frac{(3r+1)}{2} \right\rceil > \left\lfloor \frac{3(3r)}{2} \right\rfloor \quad \text{if } r \text{ is odd}
\]

and

\[
\left\lceil \frac{(3r)}{2} \right\rceil > \left\lfloor \frac{3(3r-1)}{2} \right\rfloor \quad \text{if } r \text{ is even}.
\]

Therefore to prove Theorem 1 we need a construction, a partition of the edge set of \(K_{3r} \) (\(K_{3r-1} \)) into \(r \) graphs, each without even cycles. Let \(H_1 \) be a triangle with vertices \(v_1, v_2, v_3 \). For odd \(r > 1 \) let \(H_r \) be the graph formed by three vertex disjoint copies of \((r-1)/2 \) triangles sharing one common vertex \(v_i, i = 1, 2, 3 \) and the triangle \(v_1, v_2, v_3 \) which is called the central triangle of \(H_r \). Note that each block (maximal biconnected subgraph or cut-edge) of
H_r is a triangle, so it has no even cycles. Thus for odd r Theorem 1 follows from the next proposition.

Proposition 2. For odd r, K_{3r} can be partitioned into r copies of H_r.

Proof. The proof is based on a well-known construction of Steiner triple systems on $6t + 3$ vertices (see [2], Theorem 9.1). Set $r = 2t + 1$, then $3r = 6t + 3$. The vertex set of $K = K_{3r}$ is partitioned into $\{a_i, b_i, c_i\}$, for $i = 1, 2, \ldots, 2t + 1$. For $r = 1$, $\{a_i, b_i, c_i\}$ is an H_1, for $r > 1$ consider a near factorization of a complete graph S_{2t+1} with vertex set $\{1, 2, \ldots, 2t+1\}$ into factors F_i, where F_i avoids vertex i. To each factor F_i we define a copy of H_i^r as follows. Place the edges of the following triangles to H_i^r:

\[(1) \quad \{b_ia_k, a_la_l, a_ia_k, b_kb_l, c_kc_l : kl \in F_i\}, \{a_ib_ic_i\}.\]

One can easily see that H_i^r is isomorphic to H_r and for $i = 1, \ldots, 2t + 1$ they give a partition on the edge set of K (in fact their blocks are triangles forming a Steiner triple system on K). \square

For $r = 2$ note that K_5 can be partitioned into two pentagons. However, K_5 can be also partitioned into two “bulls”, which is a triangle with two pendant edges (see Figure 1). This latter works well to reduce the even case to the odd one in Proposition 3.

For even r define the graph A_r from H_{r-1} by removing the edges of its central triangle v_1, v_2, v_3 and adding two new vertices u, w together with the five edges v_1w_2, v_2w_1, wv_2 (see Figure 2). Let B_r be the graph with $r - 1$ triangles sharing a common vertex x plus r pendant edges, one from x and one from each triangle (from a vertex different from x). Note that A_r, B_r
have $3r - 1$ vertices and their blocks are cut-edges and triangles so they do not have even cycles. The graphs A_2, B_2 are both bulls.

Proposition 3. For even r, K_{3r-1} can be partitioned into $r - 1$ copies of A_r and one copy of B_r.

Proof. Let r be even and consider the construction of Proposition 2 for $r - 1$ colors. This gives a partition of K_{3r-3} into $r - 1$ copies of H_{r-1}. Notice that the central triangles $T_i = \{a_i, b_i, c_i\}$ of the i-th copies are vertex disjoint ($i = 1, 2, \ldots, r - 1$). Adding two new vertices d, e to $V(K_{3r-3})$ transform the i-th copy of H_{r-1} as follows: remove the edges a_ic_i, b_ic_i from T_i and add da_i, db_i, dc_i, eb_i. This gives $r - 1$ copies of A_r for ($i = 1, 2, \ldots, r - 1$). The “missing edges”, $de, ca_i, ec_i, a_ic_i, b_ic_i$ for $i = 1, 2, \ldots, r - 1$ define one copy of B_r.

Proposition 3 shows that for even r, $f(r) \geq 3r$, thus completing the proof of Theorem 1.

References

Alfréd Rényi Institute, Hungarian Academy of Sciences,
Budapest, P.O. Box 127, Budapest, Hungary, H-1364.
E-mail address: gyarfas@renyi.hu

Computer Science Department, Institute of Mathematics,
Eötvös Loránd University, Pázmány Péter sétány 1/c,
Budapest, Hungary, H-1117.
E-mail address: dom@cs.elte.hu