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CLAW-FREENESS, 3-HOMOGENEOUS SUBSETS OF A
GRAPH AND A RECONSTRUCTION PROBLEM

MAURICE POUZET, HAMZA SI KADDOUR, AND NICOLAS TROTIGNON

Abstract. We describe Forb{K1,3, K1,3}, the class of graphs G such

that G and its complement G are claw-free. With few exceptions, it
is made up of graphs whose connected components consist of cycles of
length at least 4, paths, and of the complements of these graphs. Con-
sidering the hypergraph H(3)(G) made of the 3-element subsets of the
vertex set of a graph G on which G induces a clique or an independent
subset, we deduce from above a description of the Boolean sum G+̇G′

of two graphs G and G′ giving the same hypergraph. We indicate the
role of this latter description in a reconstruction problem of graphs up
to complementation.

1. Results and motivation

Our notations and terminology mostly follow [3]. The graphs we consider
in this paper are undirected, simple and have no loops, that is, a graph is
a pair G := (V, E), where E is a subset of [V ]2, the set of 2-element subsets
of V . Elements of V are the vertices of G and elements of E its edges. We
denote by V (G) the vertex set of G and by E(G) its edge set. We look at
members of [V ]2 as unordered pairs of distinct vertices. If A is a subset
of V , the pair G�A := (A, E ∩ [A]2) is the graph induced by G on A. The
complement of G is the simple graph G whose vertex set is V and whose
edges are the unordered pairs of nonadjacent and distinct vertices of G, that
is G = (V, E), where E = [V ]2 \ E . We denote by K3 the complete graph
on 3 vertices and by K1,3 the graph made of a vertex linked to a K3. The
graph K1,3 is called a claw, the graph K1,3 a co-claw.

In [4], Brandstädt and Mahfud give a structural characterization of graphs
with no claw and no co-claw; they deduce several algorithmic consequences
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(relying on bounded clique width). We will give a more precise characteri-
zation of such graphs.

We denote by A6 the graph on 6 vertices made of a K3 bounded by three
K3 (cf. Figure 1) and by Cn the n-element cycle, n ≥ 4. We denote by P9

the Paley graph on 9 vertices (cf. Figure 1). Note that P9 is isomorphic
to its complement P9, to the line-graph of K3,3 and also to K3�K3, the
cartesian product of K3 by itself (see [3, p. 30] if needed for a definition
of the cartesian product of graphs, and see [15, p. 176] and [3, p. 28] for a
definition and basic properties of Paley graphs).

P9 K1,3 K1,3 A6 A6

Figure 1.

Given a set F of graphs, we denote by ForbF the class of graphs G such
that no member of F is isomorphic to an induced subgraph of G. Members
of Forb{K3} and Forb{K1,3} are called, resp., triangle-free and claw-free
graphs.

The main result of this note asserts:

Theorem 1.1. The class Forb{K1,3, K1,3} consists of A6; of the induced
subgraphs of P9; of graphs whose connected components are cycles of length
at least 4 or paths; and of the complements of these graphs.

As an immediate consequence of Theorem 1.1, note that the graphs A6

and A6 are the only members of Forb{K1,3, K1,3} which contain a K3 and a
K3 with no vertex in common. Note also that A6 and A6 are very important
graphs for the study of how maximal cliques and stable sets overlap in
general graphs. See the main theorem of [7], and also [8]. A list of all self-
complementary line-graphs is given in [9, p. 31]. Apart from C5, they are
all induced subgraphs of P9.

From Theorem 1.1 we obtain a characterization of the Boolean sum of
two graphs having the same 3-homogeneous subsets. For that, we say that
a subset of vertices of a graph G is homogeneous∗ if it is a clique or an
independent set. Let H(3)(G) be the hypergraph having the same vertices
as G and whose hyperedges are the 3-element homogeneous subsets of G.
Given two graphs G and G′ on the same vertex set V , we recall that the

∗Note that the word homogeneous is used with this meaning in Ramsey theory; in other
areas of graph theory it has other meanings, several in fact.
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Boolean sum G+̇G′ of G and G′ is the graph on V whose edges are unordered
pairs e of distinct vertices such that e ∈ E(G) if and only if e /∈ E(G′). Note
that E(G+̇G′) is the symmetric difference E(G)∆E(G′) of E(G) and E(G′).
The graph G+̇G′ is also called the symmetric difference of G and G′ and
denoted by G∆G′ in [3]. Given a graph U with vertex set V , the edge-graph
of U is the graph S(U) whose vertices are the edges u of U and whose edges
are unordered pairs uv such that u = xy, v = xz for three distinct elements
x, y, z ∈ V such that yz is not an edge of U . Note that the edge-graph S(U)
is a spanning subgraph of L(U), the line-graph of U , not to be confused with
it.

Claw-free graphs and triangle-free graphs are related by means of the
edge-graph construction. Indeed, as it is immediate to see, for every graph
U , we have

(1.1) U ∈ Forb{K1,3} ⇐⇒ S(U) ∈ Forb{K3}
Our characterization is as follows.

Theorem 1.2. Let U be a graph. The following properties are equivalent.
(1) There are two graphs G and G′ having the same 3-element homogeneous

subsets such that U := G+̇G′;
(2) S(U) and S(U) are bipartite;
(3) Either

(i) U is an induced subgraph of P9, or
(ii) the connected components of U , or of its complement U , are cycles

of even length or paths.

As a consequence, if the graph U satisfying Property (1) is disconnected,
then U contains no 3-element cycle, moreover, if U contains no 3-element
cycle then each connected component of U is a cycle of even length, or a
path, in particular U is bipartite.

The implication (2)⇒ (3) in Theorem 1.2 follows immediately from The-
orem 1.1. Indeed, suppose that Property (2) holds, that is S(U) and S(U)
are bipartite, then from (1.1) and from the fact that S(A6) and S(Cn),
n ≥ 4, are respectively isomorphic to C9 and to Cn, we have:

U ∈ Forb{K1,3, K1,3, A6, A6, C2n+1, C2n+1 : n ≥ 2}.
From Theorem 1.1, Property (3) holds. The other implications, obtained by
more straigthforward arguments, are given in Subsection 2.3.

This leaves open the following question.

Problem 1.3. Which pairs of graphs G and G′ with the same 3-element
homogeneous subsets have a given Boolean sum U := G+̇G′?

A partial answer, motivated by the reconstruction problem discussed be-
low, is given in [5]. We mention that two graphs G and G′ as above are de-
termined by the graphs induced on the connected components of U := G+̇G′

and on a system of distinct representatives of these connected components
([5, Proposition 10]).
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A quite natural problem, related to the study of Ramsey numbers for
triples, is this question:

Problem 1.4. Which hypergraphs are of the form H(3)(G)?

An asymptotic lower bound of the size of H(3)(G) in terms of |V (G)| was
established by A. W. Goodman [10].

The motivation for Theorem 1.2 (and thus Theorem 1.1) originates in a
reconstruction problem on graphs that we present now. Considering two
graphs G and G′ on the same set V of vertices, we say that G and G′ are
isomorphic up to complementation if G′ is isomorphic to G or to the com-
plement G of G. Let k be a non-negative integer, we say that G and G′

are k-hypomorphic up to complementation if for every k-element subset K
of V , the graphs G�K and G′�K induced by G and G′ on K are isomor-
phic up to complementation. Finally, we say that G is k-reconstructible up
to complementation if every graph G′ which is k-hypomorphic to G up to
complementation is in fact isomorphic to G up to complementation. The
following problem emerged from a question of P. Ille [13]:

Problem 1.5. For which pairs (k, v) of integers, k < v, every graph G on
v vertices is k-reconstructible up to complementation?

It is immediate to see that if the conclusion of the problem above is
positive for some k, v, then v is distinct from 3 and 4 and, with a little bit
of thought, that if v ≥ 5 then k ≥ 4 (see Proposition 4.1 of [6]). With J.
Dammak, G. Lopez [5, 6] we proved that the conclusion is positive if

(i) 4 ≤ k ≤ v − 3 or
(ii) 4 ≤ k = v − 2 and v ≡ 2 (mod 4).

We do not know if in (ii) the condition v ≡ 2 (mod 4) can be dropped.
For 4 ≤ k = v − 1, we checked that the conclusion holds if v = 5 and
noticed that for larger values of v it could be negative or extremely hard to
obtain, indeed, a positive conclusion would imply that Ulam’s reconstruction
conjecture holds (see Proposition 19 of [5]).

The reason for which Theorem 1.2 plays a role in that matter relies on
properties of incidence matrices. Given non-negative integers t, k, let Wtk

be the
(
v
2

)
by

(
v
k

)
incidence matrix of 0’s and 1’s, the rows of which are

indexed by t-element subsets T of V , the columns are indexed by the k-
element subsets K of V , and where the entry Wtk(T, K) is 1 if T ⊆ K and
is 0 otherwise.

Let U := G+̇G′ and MU be the column vector associated to the graph
U . The matrix product T W2kMU where the computation is made in the
two elements field Z/2Z is 0 if and only if the number of edges of G�K and
G′�K have the same parity for all K’s, a condition satisfied if G and G′ are
k-hypomorphic up to complementation and k ≡ 0 (mod 4) or k ≡ 1 (mod 4).
According to R. M. Wilson [16], the dimension (over Z/2Z) of the kernel of
T W2k is 1 if 2 ≤ k ≤ v − 2 and k ≡ 0 (mod 4) that is MU is the constant
matrix 0 or 1, and thus G′ is equal to G or to G. If k ≡ 1 (mod 4), the



90 MAURICE POUZET, HAMZA SI KADDOUR, AND NICOLAS TROTIGNON

dimension of the kernel of T W2k is v and this kernel consists of (the column
matrices of) complete bipartite graphs and their complements [6]. If we
add the fact that G and G′ have the same 3-homogeneous subsets then,
according to Theorem 1.2, U is (claw, co-claw)-free. If v ≥ 5, it follows
readily that U is either the empty graph or the complete graph. Hence G′

is equal to G or to G. If 3 ≤ k ≤ v − 3, it turns out that two graphs G
and G′ which are k-hypomorphic up to complementation are 3-hypomorphic
up to complementation, which amounts to the fact that G and G′ have the
same 3-homogeneous subsets, thus in the case k ≡ 1 (mod 4), G and G′ are
equal up to complementation. Indeed, a famous Gottlieb-Kantor theorem
on incidence matrices ([11, 14]) asserts that the matrix Wtk has full row
rank over the field of rational numbers provided that t ≤ min{k, v − k},
from which follows the our next proposition.

Proposition 1.6. ([6, Proposition 2.4]) Let t ≤ min(k, v − k) and G and G′

be two graphs on the same set V of v vertices. If G and G′ are k-hypomorphic
up to complementation then they are t-hypomorphic up to complementation.

Up to now, Wilson theorem has not been applied successfully to the cases
k ≡ 2 (mod 4) and k ≡ 3 (mod 4). Instead, efforts concentrated on the
structure of pairs of k-hypomorphic graphs G and G′ with the same 3-
homogeneous subsets. The form of their Boolean sum as given in Theorem
1.2(3) was the first step of a description. With that in hands, it was shown
in [5] that the additional hypothesis that G and G′ are k-hypomorphic to
complementation for some k, 4 ≤ k ≤ v − 2, was enough to ensure that G
and G′ are isomorphic up to complementation.

2. Proofs

Let U be a graph. For an unordered pair e := xy of distinct vertices,
we set U(e) = 1 if e ∈ E(U) and U(e) = 0 otherwise. Let x ∈ V (U); we
denote by NU (x) and dU (x) the neighborhood and the degree of x (that is
NU (x) := {y ∈ V (U) : xy ∈ E(U)} and dU (x) := |NU (x)|). For X ⊆ V (U),
we set NU (X) := (∪x∈XNU (x)) \X.

2.1. Proof of Theorem 1.1.

Proof. Trivially, the graphs described in Theorem 1.1 belong to Forb{K1,3,

K1,3}. We prove the converse.
The diamond is the graph on four vertices with five edges. We say that

a graph G contains a graph H when G has an induced subgraph isomorphic
to H.

Theorem 2.1. (Harary and Holzmann [12]) A graph G is the line-graph of
a triangle-free graph if and only if G contains no claw and no diamond.

Proof. Since [12] is very difficult to find, we include a short proof.
Checking that a line-graph of a triangle-free graph contains no claw
and no diamond is a routine matter. Conversely, let G be graph with
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no claw and no diamond. A theorem of Beineke [1] states that there
exists a list L of nine graphs such any graph that does not contain
a graph from L is a line-graph. One of the nine graphs is the claw
and the eight remaining ones all contain a diamond. So, G = L(R)
for some graph R. Let R′ be the graph obtained from R by replacing
each connected component of R isomorphic to a triangle by a claw.
So, L(R) = L(R′) = G. We claim that R′ is triangle-free. Else let
T be a triangle of R′. From the construction of R′, there is a vertex
v /∈ T in the connected component of R′ that contains T . So we may
choose v with a neighbor in T . Now the edges of T and one edge
from v to T induce a diamond of G, a contradiction. �

Let G be in the class Forb{K1,3, K1,3}.

(1) We may assume that G and G are connected.
Else, up to symmetry, G is disconnected. If G contains a vertex v of
degree at least 3, then NG(v) contains an edge (for otherwise there is a
claw), so G contains a triangle. This is a contradiction since by picking
a vertex in another component we obtain a co-claw. So all vertices of G
are of degree at most 2. It follows that the components of G are cycles
(of length at least 4, or there is a co-claw) or paths, an outcome of the
theorem. This proves our assumption.

(2) We may assume that G and G contain no induced path on six vertices.
Else G has an induced subgraph H that is either a path on at least
6 vertices or a cycle on at least 7 vertices. Suppose H maximal with
respect to this property. If G = H then we are done. Else, by (1), we pick
a vertex v in G\H with at least one neighbor in H. From the maximality
of H, v has a neighbor pi in the interior of some P6 = p1p2p3p4p5p6 of H.
Up to symmetry we assume that v has a neighbor pi where i ∈ {2, 3}. So
NG(v)∩{p1, p2, p3, p4} contains an edge e for otherwise {pi, pi−1, pi+1, v}
induces a claw. If e = p1p2 then v must be adjacent to p4, p5, p6 for
otherwise there is a co-claw; so {v, p1, p4, p6} induces a claw. If e = p2p3

then v must be adjacent to p5, p6 for otherwise there is a co-claw, so
from the symmetry between {p1, p2} and {p5, p6} we may rely on the
previous case. If e = p3p4 then v must be adjacent to p1, p6 for otherwise
there is a co-claw; so {v, p1, p3, p6} induces a claw. In all cases there is
a contradiction. This proves our second assumption.

(3) We may assume that G and G contain no A6.
Suppose that G contains A6. Then, let aa′, bb′, cc′ be three disjoint
edges of G such that the only edges between them are ab, bc, ca. If
V (G) = {a, a′, b, b′, c, c′}, an outcome of the theorem is satisfied, so let
v be a seventh vertex of G. We may assume that av ∈ E(G) (else there
is a co-claw). If a′v ∈ E(G) then vb′, vc′ ∈ E(G) (else there is a co-
claw) so {v, a′, b′, c′} is a claw. Hence a′v /∈ E(G). We have vb ∈ E(G)
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(or {a, a′, v, b} is a claw) and similarly vc ∈ E(G). So {a′, v, b, c} is a
co-claw. This proves our third assumption.

(4) Finally, we may assume that G and G contain no diamond.
Suppose for a contradiction that G contains a diamond. Then, G con-
tains a co-diamond, that is four vertices a, b, c, d that induce only one
edge, say ab. By (1), there is a path P from {c, d} to some vertex w
that has a neighbor in {a, b}. We choose such a path P minimal and we
assume up to symmetry that the path is from c.

If w is adjacent to both a, b then {a, b, w, d} induces a co-claw unless w
is adjacent to d, similarly w is adjacent to c, so {w, a, c, d} induces a claw.
Hence w is adjacent to exactly one of a, b, say to a. So, P ′ = cPwab is
an induced path and for convenience we rename its vertices p1, . . . , pk.
If d has a neighbor in P ′ then, from the minimality of P ′, this neighbor
must be p2. So, {p2, p1, p3, d} induces a claw. Hence, d has no neighbor
in P ′.

By (1), there is a path Q from d to some vertex v that has a neighbor
in P ′. We choose Q minimal with respect to this property. From the
paragraph above, v 6= d. Let pi (resp. pj) be the neighor of v in P ′ with
minimum (resp. maximum) index. If i = j = 1 then dQvp1Pwpk−1pk

is a path on at least 6 vertices a contradiction to (2). So, if i = j then
i 6= 1 and symmetrically, i 6= k, so {pi−1, pi, pi+1, v} is a claw. Hence
i 6= j. If j > i + 1 then {v, v′, pi, pj}, where v′ is the neighbor of v along
Q, is a claw. So, j = i + 1. So vpipj is a triangle. Hence P ′ = p1p2p3p4,
Q = dv and i = 2, for otherwise there is a co-claw. Hence, P ′ ∪ Q
form an induced A6 of G, a contradiction to (3). This proves our final
assumption.

Now G is connected and contains no claw and no diamond. So, by Theo-
rem 2.1, G is the line-graph of some connected triangle-free graph R. Sym-
metrically, G is also a line-graph. These graphs are studied in [2].

If R contains a vertex v of degree at least 4 then all edges of R must be
incident with v, for else an edge e non-incident with v together with three
edges of R incident with v and non-adjacent to e form a co-claw in G. So
all vertices of R have degree at most 3 since otherwise, G is a clique, a
contradiction to (1). We may assume that R has a vertex a of degree 3 for
otherwise G is a path or a cycle. Let b, b′, b′′ be the neighbors of a. Since a
has degree 3, all edges of R must be incident with b, b′ or b′′ for otherwise G
contains a co-claw.

If one of b, b′, b′′, say b, is of degree 3, then NR(b) = {a, a′, a′′} and all
edges of R are incident with one of a, a′, a′′ (or there is a co-claw). So R is a
subgraph of K3,3. So, since P9 = L(K3,3), G = L(R) is an induced subgraph
of P9, an outcome of the theorem. Hence we assume that b, b′, b′′ are of
degree at most 2. If |NR({b, b′, b′′}) \ {a}| ≥ 3, then R contains the pairwise
non-adjacent edges bc, b′c′, b′′c′′ say, and the edges ab, ab′, ab′′, bc, b′c′, b′′c′′
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are vertices of G that induce an A6, a contradiction to (3). So,

|NR({b, b′, b′′}) \ {a}| ≤ 2

which means again that R is a subgraph of K3,3. �

2.2. Ingredients for the proof of Theorem 1.2. The proof of the equiv-
alence between Properties (1) and (2) of Theorem 1.2 relies on the following
lemma.

Lemma 2.2. Let G and G′ be two graphs on the same vertex set V and let
U := G+̇G′. Then, the following properties are equivalent.
(a) G and G′ have the same 3-element homogeneous subsets;
(b) U(xy) = U(xz) 6= U(yz) =⇒ G(xy) 6= G(xz) for all distinct elements

x, y, z of V .
(c) The sets A1 := E(U) ∩ E(G) and A2 := E(U) \ E(G) divide V (S(U))

into two independent sets and also the sets B1 := E(U) ∩ E(G) and
B2 := E(U) \ E(G) divide V (S(U)) into two independent sets.

Proof. Observe first that Property (b) is equivalent to the conjunction of
the following properties:

(bU ) If uv is an edge of S(U) then u ∈ E(G) iff v /∈ E(G), and
(bU ) If uv is an edge of S(U) then u ∈ E(G) iff v /∈ E(G).

(a) =⇒ (b).
Let us show (a) =⇒ (bU ). Let uv ∈ E(S(U)), then u, v ∈ E(U). By
contradiction, we may suppose that u, v ∈ E(G) (the other case implies
u, v ∈ E(G′) thus is similar). Since u and v are edges of U = G+̇G′ then
u, v /∈ E(G′). Let w := yz such that u = xy, v = xz. Then w /∈ E(U)
and thus w ∈ E(G) iff w ∈ E(G′).

If w ∈ E(G), {x, y, z} is a homogeneous subset of G. Since G and
G′ have the same 3-element homogeneous subsets, {x, y, z} is a homo-
geneous subset of G′. Hence, since u, v /∈ E(G′), w = yz /∈ E(G′), thus
w /∈ E(G), a contradiction.

If w /∈ E(G), then w /∈ E(G′); since u, v /∈ E(G′) it follows that
{x, y, z} is a homogeneous subset of G′. Consequently {x, y, z} is a ho-
mogeneous subset of G. Since u, v ∈ E(G), then w ∈ E(G), a contradic-
tion.

The implication (a) =⇒ (bU ) is similar.
(b) =⇒ (a).

Let T be a K3 of G. Suppose that T is not a homogeneous subset of
G′ then we may suppose T = {u, v, w} with u, v ∈ E(G′) and w /∈
E(G′) or u, v ∈ E(G′) and w /∈ E(G′). In the first case uv ∈ E(S(U)),
which contradicts Property (bU ), in the second case uv ∈ E(S(U)), which
contradicts Property (bU ).
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(b) =⇒ (c).
First V (S(U)) = E(U) = A1 ∪A2 and V (S(U)) = E(U) = B1 ∪B2. Let
u, v be two distinct elements of A1 (respectively A2). Then u, v ∈ E(G)
(respectively u, v /∈ E(G)). From (bU ) we have uv /∈ E(S(U)). Then A1

and A2 are independent sets of V (S(U)). The proof that B1 and B2 are
independent sets of V (S(U)) is similar.

(c) =⇒ (b)
This implication is trivial.

�

2.3. Proof of Theorem 1.2.

Proof.
(1) =⇒ (2)

This implication follows directly from implication (a) =⇒ (c) of Lemma
2.2. Indeed, Property (c) implies trivially that S(U) and S(U) are bi-
partite.

(2) =⇒ (1).
Suppose that S(U) and S(U) are bipartite. Let {A1, A2} and {B1, B2}
be respectively a partition of V (S(U)) = E(U) and V (S(U)) = E(U)
into independent sets. Note that Ai∩Bj = ∅, for i, j ∈ {1, 2}. Let G, G′

be two graphs with the same vertex set as U such that E(G) = A1 ∪B1

and E(G′) = A2 ∪ B1. Clearly E(G+̇G′) = A1 ∪ A2 = E(U). Thus
U = G+̇G′. To conclude that Property (1) holds, it suffices to show
that G and G′ have the same 3-element homogeneous subsets, that is
Property (a) of Lemma 2.2 holds. For that, note that A1 = E(U)∩E(G),
A2 = E(U) \E(G), B1 = E(U)∩E(G) and B2 = E(U) \E(G) and thus
Property (c) of Lemma 2.2 holds. It follows that Property (a) of this
lemma holds.

(2) =⇒ (3)
The proof of this implication was given in Section 1.

(3) =⇒ (2)
For this converse implication, let U be a graph satisfying Property (3).
It is clear from Figure 1 that S(P 9) is bipartite (vertical edges and hor-
izontal edges form a partition). Since P9 is isomorphic to P9, S(P 9) is
bipartite too. Thus, if U is isomorphic to an induced subgraph of P9,
Property (2) holds. If not, we may suppose that the connected compo-
nents of U are cycles of even length or paths (otherwise, replace U by U).
In this case, S(U) is trivially bipartite. In order to prove that Property
(2) holds, it suffices to prove that S(U) is bipartite too. This is a direct
consequence of the following claim.

Claim 2.3. If U is a bipartite graph, then S(U) is bipartite too.

Proof. If c : V (U)→ Z/2Z is a colouring of U , set

c′ : V (S(U))→ Z/2Z
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defined by
c′({x, y}) := c(x) + c(y).

�

With this, the proof of Theorem 1.2 is complete. �

2.4. A direct proof for (3) =⇒ (1) of Theorem 1.2. In [6] we gave
all possible decompositions of a graph U satisfying (3) into a Boolean sum
G+̇G′ where G and G′ have the same 3-element homogeneous sets.

When U = P9, a decomposition U = G+̇G′ can be given by a picture (see
Figure 2). For the other cases, we introduce the following notation.

2

1

3

4

6

7

9

85

P9

6 9

3

7

41
2

5

8

G

4

7

1

5

6

8

92

3

G′

Figure 2.

Let n ≥ 2. Let Xn be an n-element set, x0, . . . , xn−1 be an enumeration
of Xn,

X0
n := {xi ∈ Xn : i ≡ 0 (mod 2)} and

X1
n := Xn \X0

n.

Set

Rn := [X1
n]2 ∪ [X2

n]2,

Sn := {{x2i, x2i+1} : 2i < n}, and

S′n := {{x2i+1, x2i+2} : 2i < n− 1}.
Let Mn and M ′

n be the graphs with vertex set Xn and edge sets E(Mn) :=
Rn ∪ Sn and E(M ′

n) := Rn ∪ S′n, resp. Let

M ′′
n := (Xn, Rn ∪ S′n ∪ {{x0, xn−1}})

for n even, n ≥ 4. For n ∈ {6, 7} we give a picture (see Figure 3). For
convenience, we set M1 = M ′

1 the graph with one vertex and we put
V (M1) := X0

1 := {x0}. When G is a graph of the form Mn, M ′
n, or M ′′

n ,
with n ≥ 1, we put V 0(G) := X0

n and V 1(G) := X1
n.

When U is a cycle of even size 2n, a decomposition U = G+̇G′ can
be given by G = M2n and G′ = M ′′

2n. When U is a path of size n, a
decomposition U = G+̇G′ can be given by G = Mn and G′ = M ′

n.
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M7 M ′7

M6 M ′6 M ′′6

Figure 3.

When the connected components of U are cycles of even length or paths,
we define G and G′ satisfying U = G+̇G′ as follows: For each connected
component C of U , (GC , G′C) is given by the previous step. For distinct
connected components C and C ′ of U , x ∈ C, x′ ∈ C ′, xx′ ∈ E(G) (and
xx′ ∈ E(G′)) if and only if x ∈ V 0(GC) and x′ ∈ V 0(GC′), or x ∈ V 1(GC)
and x′ ∈ V 1(GC′).

When the connected components of U are cycles of even length or paths,
from U = G+̇G′, the previous step gives a pair (G, G′), then a pair (G, G′).
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