Contributions to Discrete Mathematics

Volume 6, Number 1, Pages 26-47 ISSN 1715-0868

CONES OF PARTIAL METRICS

MICHEL DEZA AND ELENA DEZA

Abstract

A partial semimetric on a set X is a function $(x, y) \mapsto$ $p(x, y) \in \mathbb{R}_{\geq 0}$ satisfying $p(x, y)=p(y, x), p(x, y) \geq p(x, x)$ and $p(x, z) \leq$ $p(x, y)+p(y, z)-p(y, y)$ for all $x, y, z \in X$. Using computations done for $n \leq 6$, we study the polyhedral convex cone PMET_{n} of all partial semimetrics on n points and its subcone $l_{1}-\mathrm{PMET}_{n}$ generated by all $\{0,1\}$-valued, i.e., contaning $\{0,1\}$-valued element, extreme rays. The elements of this subcone correspond to natural quasi-metric analogue of l_{1}-semimetrics.

We present data on those cones and their relatives: the number of facets, of extreme rays, of their orbits, incidences, characterize $\{0,1\}$ valued extreme rays and some classes of facets, including analoques of the hypermetric ones.

1. Convex cones under consideration

There are following two main motivations for this study. Partial semimetrics are generalization of semimetrics, having important applications in Computer Science (domain theory, analysis of data flow deadlock, complexity analysis of programs, etc.). This is the first polyhedral appoach to them. Also, we explore which part of rich theory of l_{1}-semimetrics versus cuts (see, for example, [6]) can be extended on quasi-metric analog of l_{1}-semimetrics versus oriented cuts. See [4] for generalizing of $\mathrm{MET}_{n}-\mathrm{CUT}_{n}$ pair to other contexts.

A convex cone in \mathbb{R}^{m} (see, for example, [16]) is defined either by generators v_{1}, \ldots, v_{N}, as $\left\{\sum \lambda_{i} v_{i}: \lambda_{i} \geq 0\right\}$, or by linear inequalities f_{1}, \ldots, f_{M}, as $\left\{x \in \mathbb{R}^{m}: f_{i}(x) \geq 0\right\}$. We consider only polyhedral convex cones, i.e., the number of generators and, alternatively, the number of defining inequalities is finite. If a convex cone has dimension m^{\prime}, then the ranks of the set of its generators and the set of defining inequalities are m^{\prime}.

Let C be an m^{\prime}-dimensional convex cone in \mathbb{R}^{m}. Given $v \in \mathbb{R}^{m}$, the inequality $\sum_{i=1}^{m} v_{i} x_{i} \geq 0$ is said to be valid for C if it holds for all $x \in C$. Then the set $\left\{x \in C: \sum_{i=1}^{m} v_{i} x_{i}=0\right\}$ is called the face of C, induced by the valid inequality $\sum_{i=1}^{m} v_{i} x_{i} \geq 0$. A face of dimension $m^{\prime}-1, m^{\prime}-2,1$ are

[^0]called a facet, ridge, extreme ray of C, respectively (a ray is a set $\mathbb{R}_{\geq 0} x$ with $x \in C)$.

The incidence number of a facet (or of an extreme ray) is the number of extreme rays lying on this facet (or, respectively, of facets containing this extreme ray).

Two extreme rays (or facets) of C are said to be adjacent on C if they span a 2-dimensional face (or, respectively, their intersection has dimension $m^{\prime}-2$). The skeleton graph of the convex cone C is the graph G_{C}, whose vertices are the extreme rays of C and with an edge between two vertices if they are adjacent on C. The ridge graph of C is the graph G_{C}^{*}, whose vertices are the facets of C and with an edge between two vertices if they are adjacent on C. So, the ridge graph of a convex cone is the skeleton of its dual cone.
Set $V_{n}=\{1, \ldots, n\}$ and consider a function $f=\left(\left(f_{i j}\right)\right): V_{n}^{2} \longrightarrow \mathbb{R}_{\geq 0}$ such that

$$
\begin{equation*}
\operatorname{Tr}_{i j, k}: f_{i k}+f_{k j}-f_{i j}-f_{k k} \geq 0 \tag{1.1}
\end{equation*}
$$

holds for all $i, j, k \in V_{n}$ (called triangle inequality). The function f is called weak partial semimetric if

$$
\begin{equation*}
f_{i j}=f_{j i} \text { for all } i, j \in V_{n}(\text { symmetry }) . \tag{1.2}
\end{equation*}
$$

A weak partial semimetric f is called partial semimetric if

$$
\begin{equation*}
N_{i j}: f_{i j} \geq f_{i i} \text { for all } i, j \in V_{n} \tag{1.3}
\end{equation*}
$$

A partial semimetric f is called semimetric if

$$
\begin{equation*}
f_{i i}=0 \text { for all } i \in V_{n} . \tag{1.4}
\end{equation*}
$$

The function f is called quasi-semimetric if (1.4) holds; so, it is a semimetric if, moreover, (1.2) holds. Clearly, for a quasi-semimetric f, the function $\left(\left(f_{i j}+f_{j i}\right)\right)$ is a semimetric; it called symmetrization semimetric of f.

A weak partial metric, partial metric, quasi-metric, or metric f is respectively weak partial, partial, quasi-, or simply semimetric, such that

$$
\begin{equation*}
f_{i i}=f_{i j}=f_{j j} \text { implies } i=j \tag{1.5}
\end{equation*}
$$

for all different $i, j \in V_{n}$ (separation axiom).
Let us denote the function f by p, q, or d if it is a weak partial semimetric, quasi-semimetric, or semimetric, respectively.

The quasi-metrics (or asymmetric, directed, oriented distances) appeared already in [11, pp. 145-146]. Examples of quasi-metrics on \mathbb{R} are Sorgenfrey quasi-metric (equal to $y-x$ if $y \geq x$ and equal to 1 , otherwise) and l_{1} quasi-semimetric $\max \{y-x, 0\}$; see the next section. Real world examples: one-way streets mileage, travel time, transportation costs (up/downhill or up/downstream).

A quasi-semimetric q is weightable if there exists a (weight) function $w=$ $\left(w_{i}\right): V_{n} \longrightarrow \mathbb{R}_{\geq 0}$ such that

$$
\begin{equation*}
q_{i j}+w_{i}=q_{j i}+w_{j} \text { for all different } i, j \in V_{n}, \tag{1.6}
\end{equation*}
$$

i.e., $\left(\left(2 q_{i j}+w_{i}-w_{j}\right)\right)$ is the symmetrization semimetric of q.

Partial metrics were introduced by Matthews in [14] for treatment of partially defined objects in computer science. He also remarked that a quasisemimetric $q=\left(\left(q_{i j}\right)\right)$ is weightable if and only if the function $\left(\left(q_{i j}+w_{i}\right)\right)$ is a partial semimetric. (Moreover, $\left(\left(q_{i j}+w_{i}\right)\right)$ is a partial metric if q is an weightable Albert quasi-metric, i.e., $x=y$ whenever $q(x, y)=q(y, x)=0$.) Weak partial semimetrics were studied in [12]; an example: $p(x, y)=x+y$ for $x, y \in \mathbb{R}_{\geq 0}$. If $p(x, y)$ is a weak partial semimetric, then $p^{\prime}(x, y)=$ $\max \{p(x, y), \bar{p}(x, x), p(y, y)\}$ is a partial semimetric. In fact, $p(x, y)$ is a weak partial semimetric if and only if $d(x, y)=2 p(x, y)-p(x, x)-p(y, y)\}$ is a semimetric.

Scott's domain theory (see, for example, [8]) gives partial order and nonHausdorff topology on partial objects in computation. In quantitative domain theory, a "distance" between programs (points of a semantic domain) is used to quantify speed (of processing or convergence) or complexity of programs and algorithms. For instance, $x \preceq y$ (program y contains all information from program x) is the specialization preorder $(x \preceq y$ if and only if $p(x, y)=p(x, x)$ for a partial metric p on X. In computation over a metric space of totally defined objects, partial metric models partially defined information: $p(x, x)>0$ or $p(x, x)=0$ mean that object x is partially or totally defined, respectively. For example, for vague real numbers x (i.e., non-empty segments of \mathbb{R} as, say, decimals approximating $\pi)$, the self-distance $p(x, x)$ can be the length of the segment measuring the extent of ambiguity at point x.

Any topology on a finite set X is defined by $\operatorname{cl}\{x\}=\{y \in X: y \preceq x\}$ for $x \in X$, where $x \preceq y$ is the specialization preorder, meaning $p(x, y)=p(x, x)$), for some partial semimetric p on $X([10])$. Not every finite topology is defined from a semimetric on X by this way.

Consider the following polyhedral convex cones in $\mathbb{R}^{n^{2}}$ with apex in (0).
(1) $\binom{n+1}{2}$-dimensional cone wPMET_{n} of weak partial semimetrics p on V_{n}; its facets are n facets $M_{i i}: p_{i i} \geq 0$ with $i \in V_{n}$ and $3\binom{n}{3}$ facets $\operatorname{Tr}_{i j, k}$ with with $k \in V_{n}, 1 \leq i<j \leq n$.
(2) $\binom{n+1}{2}$-dimensional cone PMET_{n} of partial semimetrics p; its facets are n facets $M_{i i}: p_{i i} \geq 0, n(n-1)$ facets $N_{i j}: p_{i j} \geq p_{i i}$ with $i, j \in V_{n}$ and $3\binom{n}{3}$ facets $\operatorname{Tr}_{i j, k}$ with $k \in V_{n}, 1 \leq i<j \leq n$ (the inequalities $\operatorname{Tr}_{i i, k}$ are implied by $\left.p_{i i} \leq p_{i k}=p_{k i} \geq p_{k k}\right)$.
(3) $\binom{n}{2}$-dimensional cone MET_{n} of semimetrics d; its facets are $3\binom{n}{3}$ facets $\operatorname{Tr}_{i j, k}: d_{i k}+d_{k j}-d_{i j} \geq 0$ with $k \in V_{n}, 1 \leq i<j \leq n$ (the inequalities $d_{i j} \geq 0$ are implied by $\operatorname{Tr}_{i j, k}$ and $\left.\operatorname{Tr}_{i k, j}\right)$.
(4) $n(n-1)$-dimensional cone QMET_{n} of quasi-semimetrics q; its facets are $n(n-1)$ facets $N_{i j}: q_{i j} \geq 0$ with different $i, j \in V_{n}$ and $6\binom{n}{3}$ facets $\operatorname{Tr}_{i j, k}: q_{i k}+q_{k j}-q_{i j} \geq 0$ with with $k \in V_{n}, 1 \leq i \neq j \leq n$ (now the order of k and j matters). This cone was introduced and studied in [3], [5].
(5) $\binom{n+1}{2}$-dimensional (since $q_{j i}=q_{i j}+w_{i}-w_{j}$ by (6) above) cone WQMET_{n} of weightable quasi-semimetrics q; its facets are $n(n-1)$ facets $N_{i j}: q_{i j} \geq 0$ with different $i, j \in V_{n}$ and $3\binom{n}{3}$ facets $\operatorname{Tr}_{i j, k}$: $q_{i k}+q_{k j}-q_{i j} \geq 0$ with $k \in V_{n}, 1 \leq i<j \leq n\left(\operatorname{Tr}_{i j, k}=\operatorname{Tr}_{j i, k}\right.$ for weightable quasi-semimetrics). Clearly,

$$
\mathrm{MET}_{n}=\mathrm{PMET}_{n} \cap \mathrm{WQMET}_{n}
$$

Given an ordered partition $\left\{S_{1}, \ldots, S_{t}\right\}, 2 \leq t \leq n$, of V_{n} into non-empty subsets, the oriented multicut quasi-semimetric (or o-multicut) $\delta^{\prime}\left(S_{1}, \ldots, S_{t}\right)$ on V_{n} is:

$$
\delta_{i j}^{\prime}\left(S_{1}, \ldots, S_{t}\right)= \begin{cases}1, & \text { if } i \in S_{h}, j \in S_{m}, m>h \\ 0, & \text { otherwise }\end{cases}
$$

The oriented anti-multicut quasi-semimetric (or o-anti-multicut) $\alpha^{\prime}\left(S_{1}, \ldots\right.$, $\left.S_{t}\right)$ on V_{n} is $\alpha_{i j}^{\prime}\left(S_{1}, \ldots, S_{t}\right)=1-\delta^{\prime}\left(S_{1}, \ldots, S_{t}\right)$ if $1 \leq i \neq j \leq n$ and $=0$ if $1 \leq i=j \leq n$.

The o-multicut $\delta^{\prime}\left(S_{1}, S_{2}\right)=\delta^{\prime}(S, \bar{S})$ with $t=2$ and $S=S_{1}$ is called o-cut and denoted by $\delta^{\prime}(S)$; the o-anti-multicut $\alpha^{\prime}\left(S_{1}, S_{2}\right)=\alpha^{\prime}(S, \bar{S})$ is called o-anti-cut and denoted by $\alpha^{\prime}(S)$. Set $\delta^{\prime}(\varnothing)=((0))$; so, $\alpha^{\prime}(\varnothing)=d\left(K_{n}\right)$, the path metric of the complete graph.

Given an ordered partition $\left\{S_{1}, \ldots, S_{t}\right\}, 2 \leq t \leq n$, the multicut semimetric $\delta_{S_{1}, \ldots, S_{t}}$ is the symmetrization $\delta^{\prime}\left(S_{1}, \ldots, S_{t}\right)+\delta^{\prime}\left(S_{t}, \ldots, S_{1}\right)$ of the quasi-semimetric $\delta^{\prime}\left(S_{1}, \ldots, S_{t}\right)$. The anti-multicut semimetric $\alpha\left(S_{1}, \ldots, S_{t}\right)$ is the symmetrization $\alpha^{\prime}\left(S_{1}, \ldots, S_{t}\right)+\alpha^{\prime}\left(S_{t}, \ldots, S_{1}\right)$ of the quasi-semimetric $\alpha^{\prime}\left(S_{1}, \ldots, S_{t}\right)$; in fact, it is the path metric $d\left(K_{\left|S_{1}\right|, \ldots,\left|S_{t}\right|}\right)$ of the complete multipartite graph. In the case $t=2$, the multicut and anti-multicut semimetrics are called cut and anti-cut semimetrics and denoted by $\delta(S)$ and $\alpha(S)$, respectively. Set $\delta(\varnothing)=((0))$ (it is zero cut) and $\alpha(\varnothing)=d\left(K_{n}\right)$.

It was shown in [5] that none of semimetrics but all non-zero o-multicuts represent extreme rays of QMET_{n}. For $n \geq 4$, this cone has other $\{0,1\}$ valued extreme ray representatives, including (conjecture, checked for $n \leq 5$) all o-anti-multicuts, except those of Lemma 2(3) and (4) below.

Lemma 1.1. o-multicuts and o-anti-multicuts are $\{0,1\}$-valued quasi-semimetrics, which are weightable if and only if $t \leq 2$. The weight functions of o-cut $\delta^{\prime}(S)$ and o-anti-cut $\alpha^{\prime}(S)$ are $w_{i}=1_{i \notin S}$ and $w_{i}=1_{i \in S}$, respectively.
Proof. In fact, let $i \in S_{1}, j \in S_{2}, k \in S_{3}$ in the quasi-semimetric $q=\delta^{\prime}\left(S_{1}\right.$, $\left.\ldots, S_{q}\right)$. If q is weightable, then $q_{i j}=\left(q_{j i}+w_{j}\right)-w_{i}=w_{j}-w_{i}$. Impossible, since also $q_{i k}=w_{k}-w_{i}=1, q_{j k}=w_{k}-w_{j}=1$. The proof for o-antimulticuts is similar.

The following equalities are easy to check.

Lemma 1.2.

(1) $\delta\left(S_{1}, \ldots, S_{t}\right)=\sum_{i=1}^{t} \delta^{\prime}\left(S_{i}\right)=\sum_{i=1}^{t} \delta^{\prime}\left(\overline{S_{i}}\right)=\frac{1}{2} \sum_{i=1}^{t} \delta\left(S_{i}\right)$.
(2) $\alpha(\varnothing)=d\left(K_{n}\right)$ and $\alpha\left(S_{1}, \ldots, S_{t}\right)=d\left(K_{\left|S_{1}\right|, \ldots,\left|S_{t}\right|}\right)$.
(3) $\alpha^{\prime}(\{i\})=\sum_{j \in \overline{\{i\}}} \delta^{\prime}(\{j\})$.
(4) If $t=n$, i.e., all $\left|S_{i}\right|=1$, then $\alpha^{\prime}\left(S_{1}, \ldots, S_{t}\right)=\delta^{\prime}\left(S_{t}, \ldots, S_{1}\right)$ (the reversal of the ordered partition).

The $\binom{n}{2}$-dimensional cone generated by all non-zero cuts on V_{n} is denoted by CUT_{n}. It holds $\mathrm{CUT}_{n} \subset \mathrm{MET}_{n}$ with equality only for $n=3,4$. The $n(n-1)$-dimensional cone generated by all non-zero o-multicuts on V_{n} is denoted by OMCUT_{n}. It holds $\mathrm{OMCUT}_{n} \subset \mathrm{QMET}_{n}$ with equality only for $n=3$. Denote by OCUT_{n} the $\binom{n+1}{2}$-dimensional subcone of WQMET_{n} generated by all non-zero o-cuts; this is different from OCUT_{n} as defined in [5]. It holds $\mathrm{OCUT}_{n} \subset \mathrm{WQMET}_{n}$ with equality only for $n=3$. Denote by l_{1} - PMET_{n} the $\binom{n+1}{2}$-dimensional subcone of PMET_{n} generated by all its $\{0,1\}$-valued extreme rays. Section 3.1 below imply that $p=\left(\left(p_{i j}\right)\right) \in l_{1}-$ PMET_{n} if and only if $\left(\left(p_{i j}-p_{i i}\right)\right) \in \mathrm{OCUT}_{n}$.

A mapping $f: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{m}$ is called a symmetry of a cone C if it is an isometry, satisfying $f(C)=C$ (an isometry of \mathbb{R}^{m} is a linear mapping preserving the Euclidean distance). Every permutation of V_{n} induce a symmetry of above cones $\mathrm{MET}_{n}, \mathrm{CUT}_{n}, \mathrm{QMET}_{n}$ and PMET_{n}; so, the group $\operatorname{Sym}(n)$ is a symmetry group of them. It is the full symmetry groups of MET_{n} and CUT_{n} for $n \geq 5$ (see [2]). In $\mathrm{QMET}_{n}, \mathrm{OMCUT}_{n}$ appears also a reversal symmetry (see [5]), corresponding to transposition of matrix $\left.\left(\left(q_{i j}\right)\right)\right)$. We expect $Z_{2} \times \operatorname{Sym}_{(n)}$ and $\operatorname{Sym}_{(n)}$ to be the full symmetry groups of WQMET_{n}, OCUT_{n} and $\mathrm{PMET}_{n}, l_{1}-\mathrm{PMET}_{n}$, respectively.

In Table 1 we summarize the most important numeric information on cones under consideration. The column 2 indicates the dimension of the cone, the columns 3 and 4 give the number of extreme rays and facets, respectively; in parenthesis are given the numbers of their orbits.

2. Weightable, l_{1} - and digraphic quasi-Semimetrics

We introduce the following short notation for the cyclic sum

$$
\sum_{1 \leq i \leq k-1} q\left(x_{i}, x_{i+1}\right)+q\left(x_{k}, x_{1}\right)=x_{1} x_{2} \cdots x_{k} x_{1} .
$$

A quasi-semimetric q on X has relaxed symmetry if for different $x, y, z \in X$ it holds $x y z x=x z y x$, i.e.,

$$
q(x, y)+q(y, z)+q(z, x)=q(x, z)+q(z, y)+q(y, x)
$$

implying

$$
\operatorname{Tr}_{x z, y}=q(x, y)+q(y, z)-q(x, z)=q(z, y)+q(y, x)-q(z, x)=\operatorname{Tr}_{z x, y} .
$$

Lemma 2.1 ([21]). A quasi-semimetric q on X has relaxed symmetry if and only if it is weightable.

Table 1. Some parameters of cones for $n \leq 6$

Cone	Dim.	Nr. of extreme rays (orbits)	Nr. of facets (orbits)
$\mathrm{CUT}_{3}=\mathrm{MET}_{3}$	3	$3(1)$	$3(1)$
$\mathrm{CUT}_{4}=\mathrm{MET}_{4}$	6	$7(2)$	$12(1)$
CUT_{5}	10	$15(2)$	$40(2)$
MET_{5}	10	$25(3)$	$30(1)$
CUT_{6}	15	$31(3)$	$210(4)$
MET_{6}	15	$296(7)$	$60(1)$
$\mathrm{OMCUT}_{3}=\mathrm{QMET}_{3}$	6	$12(2)$	$12(2)$
OMCUT_{4}	12	$74(5)$	$72(4)$
QMET $_{4}$	12	$164(10)$	$36(2)$
OMCUT_{5}	20	$540(9)$	$35320(194)$
QMET $_{5}$	20	$43590(229)$	$80(2)$
OMCUT_{6}	30	$4682(19)$	≥ 217847040
		$\geq 163822)$	
QMET $_{6}$	30	≥ 492157440	$150(2)$
$l_{1}-\mathrm{PMET}_{3}=\mathrm{PMET}_{3}$	6	$13(5)$	$12(3)$
$l_{1}-\mathrm{PMET}_{4}$	10	$44(9)$	$46(5)$
PMET_{4}	10	$62(11)$	$28(3)$
$l_{1}-\mathrm{PMET}_{5}$	15	$166(14)$	$585(15)$
PMET_{5}	15	$1696(44)$	$55(3)$
$l_{1}-\mathrm{PMET}_{6}$	21	$705(23)$	
PMET_{6}	21	$337092(734)$	$96(3)$

Proof. Relaxed symmetry means

$$
q(x, y)-q(y, x)=(q(z, y)-q(y, z))-(q(z, x)-q(x, z)) .
$$

Equivalently, q is weightable: fix point $z_{0} \in X$ and define $w(x)=q\left(z_{0}, x\right)-$ $q\left(x, z_{0}\right)+\max _{z}\left(q\left(z, z_{0}\right)-q\left(z_{0}, z\right)\right) \geq 0$ for all $x \in X$. On the other hand, it is easy to see that the above equality holds if q is weightable.

Given $k \geq 3$, a quasi-semimetric q is called k-cyclically symmetric if it holds

$$
x_{1} x_{2} x_{3} \cdots x_{k} x_{1}=x_{1} x_{k} x_{k-1} \cdots x_{2} x_{1}
$$

for any different $x_{1} x_{2} \cdots x_{k} \in X$. So, a quasi-semimetric has relaxed symmetry if and only if it 3 -cyclically symmetric, respectively.

Lemma 2.2. A quasi-semimetric q on X has relaxed symmetry if and only if it is k-cyclically symmetric for any $k \geq 3$.

Proof. In fact, it holds

$$
\begin{aligned}
& \left(x_{1} x_{2} x_{3} x_{1}-x_{1} x_{3} x_{2} x_{1}\right)+\left(x_{1} x_{3} x_{4} x_{1}-x_{1} x_{4} x_{3} x_{1}\right)+\cdots \\
& \quad+\left(x_{1} x_{k-1} x_{k} x_{1}-x_{1} x_{k} x_{k-1} x_{1}\right)=\left(x_{1} x_{2} \cdots x_{k} x_{1}-x_{1} x_{k} \cdots x_{2} x_{1}\right)
\end{aligned}
$$

for any $k \geq 4$. For example, for $k=4$ it holds:

$$
\left(x_{1} x_{2} x_{3} x_{1}-x_{1} x_{3} x_{2} x_{1}\right)+\left(x_{1} x_{3} x_{4} x_{1}-x_{1} x_{4} x_{3} x_{1}\right)=x_{1} x_{2} x_{3} x_{4} x_{1}-x_{1} x_{4} x_{3} x_{2} x_{1} .
$$

In the other direction, we have:

$$
\begin{aligned}
(k-2) \cdot\left(x_{1} x_{2}\right. & \left.\cdots x_{k-1} x_{1}-x_{1} x_{k-1} \cdots x_{2} x_{1}\right) \\
= & \left(x_{1} x_{2} \cdots x_{k-1} x_{k} x_{1}-x_{1} x_{k} \cdots x_{2} x_{1}\right) \\
& \quad+\left(x_{1} x_{2} \cdots x_{k} x_{k-1} x_{1}-x_{1} x_{k-1} x_{k} \cdots x_{2} x_{1}\right) \\
& \quad+\cdots\left(x_{1} x_{k} x_{2} \cdots x_{k-1} x_{1}-x_{1} x_{k-1} \cdots x_{2} x_{k} x_{1}\right) .
\end{aligned}
$$

For example,

$$
\begin{aligned}
& 2\left(x_{1} x_{2} x_{3} x_{1}-x_{1} x_{3} x_{2} x_{1}\right)=\left(x_{1} x_{2} x_{3} x_{4} x_{1}-x_{1} x_{4} x_{3} x_{2} x_{1}\right) \\
& \quad+\left(x_{1} x_{2} x_{4} x_{3} x_{1}-x_{1} x_{3} x_{4} x_{2} x_{1}\right)+\left(x_{1} x_{4} x_{2} x_{3} x_{1}-x_{1} x_{3} x_{2} x_{4} x_{1}\right) .
\end{aligned}
$$

Clearly, any finite quasi-semimetric q can be realized as the (shortest directed) path quasi-semimetric of a $\mathbb{R}_{\geq 0}$-weighted digraph: take the complete digraph and put on each arc $(i j)$ the weight $q_{i j}$. The earliest known to us occurrence of the notion, but not the term, of relaxed symmetry was in [15].

Theorem 1 ([15, Theorem 5]). A finite quasi-metric q can be realized as the path quasi-metric of a $\mathbb{R}_{\geq 0}$-weighted bidirectional tree (a tree with all edges replaced by 2 oppositely directed arcs) if and only if q has relaxed symmetry and its symmetrization $\left(\left(q_{i j}+q_{j i}\right)\right)$ can be realized as the path metric of a $\mathbb{R}_{\geq 0}$-weighted tree.

Example. Consider random walks on a connected graph $G=(V, E)$, where at each step walk moves with uniform probability from current vertex to a neighboring one. The hitting time quasi-metric $H(u, v)$ on V is the expected number of steps (edges) for a random walk on beginning at vertex u to reach v for the first time; put $H(u, u)=0$. The cyclic tour property of reversible Markov chains implies that $H(u, v)$ is weightable. The commuting time metric $C(u, v)=H(u, v)+H(v, u)$ is $([20]) 2|E| R(u, v)$, where $R(u, v)$ is the effective resistance metric, i.e., 0 if $u=v$ and, otherwise, $\frac{1}{R(u, v)}$ is the current flowing into v, when grounding v and applying 1 volt potential to u (each edge is seen as a resistor of 1 ohm). It holds

$$
R(u, v)=\sup _{f: V \rightarrow \mathbb{R}, D(f)>0} \frac{(f(u)-f(v))^{2}}{D(f)},
$$

where $D(f)=\sum_{s t \in E}(f(s)-f(t))^{2}$.
Define for $p \geq 1$ oriented l_{p}-norm on \mathbb{R}^{m} as

$$
\|x\|_{p, o r}=\left(\sum_{k=1}^{m}\left(\max \left(x_{k}, 0\right)\right)^{p}\right)^{\frac{1}{p}}
$$

and oriented l_{∞}-norm as $\|x\|_{\infty, \text { or }}=\max _{k=1}^{m} \max \left(x_{k}, 0\right)$, where x_{k} is the k th coordinate of x. Then, l_{p} quasi-semimetric $l_{p, \text { or }}$ is defined as $\|x-y\|_{p, o r}$. The quasi-semimetric space $\left(\mathbb{R}^{m}, l_{p, o r}\right)$ is abbreviated as $l_{p, o r}^{m}$.
Theorem 2 ([5, Theorem 1]).
(i) Any quasi-semimetric q on V_{n} is embeddable in $l_{1, o r}^{m}$ for some m if and only if $q \in \mathrm{OCUT}_{n}$.
(ii) Any quasi-semimetric q on V_{n} is embeddable in $l_{\infty, o r}^{n}$.

In [1], oriented l_{p} semimetric on \mathbb{R}^{m} was given as

$$
\|x-y\|_{p, o r}^{C M M}=\left(\sum_{i=1}^{m}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{m}\left|y_{i}\right|^{p}\right)^{\frac{1}{p}}-\left(\sum_{i=1}^{m}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

Those two definitions are very similar on $\mathbb{R}_{\geq 0}^{m}$ for $p=1$:

$$
\|x-y\|_{1, o r}^{C M M}=2\|y-x\|_{1, o r}
$$

Given a measure space $(\Omega, \mathcal{A}, \mu)$, then the measure semimetric on the set $\mathcal{A}_{\mu}=\{A \in \mathcal{A}: \mu(A)<\infty\}$ is $\mu(A \triangle B)$, where $A \triangle B=(A \cup B) \backslash(A \cap B)=$ $(A \backslash B) \cup(B \backslash A)$ is the symmetric difference of sets A and B. If $\mu(A)=$ $|A|$, then $\mu(A \triangle B)=|A \triangle B|$ a metric. A measure quasi-semimetric on the set \mathcal{A}_{μ} is $q(A, B)=\mu(A \triangle B)+\mu(B)-\mu(A)=\mu(B \backslash A)$. In fact (as well as for semimetrics), the measure quasi-semimetrics are exactly l_{1}-quasisemimetrics ([3, p. 780]).
Example. Let q be a quasi-metric on V_{3} with $q_{21}=q_{23}=2$ and $q_{i j}=1$ for other $i \neq j$. In fact, $q=\delta^{\prime}(\{1\})+2 \delta^{\prime}(\{2\})+\delta^{\prime}(\{3\}) \in \mathrm{OCUT}_{3}=\mathrm{WQMET}_{3}$. So, q is weightable $\left(w_{i}=1,0,1\right.$ for $\left.i=1,2,3\right)$ and $P(q)=P\left(\delta^{\prime}(\{1\})+\delta^{\prime}(\{2\})\right)+$ $P\left(\delta^{\prime}(\{2\})+\delta^{\prime}(\{3\})\right)(P(q)$ is defined in Section 3 below). The quasi-metric q is a l_{1}-quasi-semimetric with $q_{i j}=\sum_{s=1}^{5} \max \left(0, x_{s}^{(i)}-x_{s}^{(j)}\right)(1 \leq i, j \leq 3)$ for $x^{(1)}=(1,1,0,0,0), x^{(2)}=(1,0,0,1,1), x^{(3)}=(1,0,1,0,0) \in \mathbb{R}^{5}$. In other words, q is a measure quasi-semimetric with $q_{i j}=\mu\left(A^{(j)} \backslash A^{(i)}\right)$ (for the counting measure $\mu(A)=|A|$) on the following subsets of $V_{5}: A^{(1)}=\{1,2\}$, $A^{(2)}=\{1,4,5\}, A^{(3)}=\{1,3\}$.

3. The cone PMET_{n}

Call a partial semimetric $p=\left(\left(p_{i j}\right)\right) \in \mathrm{PMET}_{n}$ reducible if $\min _{1 \leq i \leq n} p_{i i}=$ 0 . For any quasi-semimetric $q=\left(\left(q_{i j}\right)\right) \neq((0))$ in the cone $W Q M E T_{n}$, there exist a (weight) function $w=\left(w_{i}\right): V_{n} \longrightarrow \mathbb{R}_{\geq 0}$ such that $\left(\left(q_{i j}+w_{i}\right)\right)$ is a partial semimetric. Clearly, $\left(\left(q_{i j}+w_{i}^{\prime}\right)\right)$ is also a partial semimetric for any (weight) function $w^{\prime}=\left(w_{i}^{\prime}\right)$ with $w_{i}^{\prime}=w_{i}-\min _{1 \leq j \leq n} w_{j}+\lambda, \lambda \geq 0$. In
other words, there is a bijection P between all weightable non-zero quasisemimetrics $q \in \mathrm{WQMET}_{n}$ and all reducible partial semimetrics $p=P(q) \in$ PMET_{n}. For $q=((0))$, set $P(q)=J$, where $J=\left(\left(J_{i j}\right)\right)$ with $J_{i j}=1$. So, P is a bijection between WQMET_{n} and the set of rays $\{P(q)+\lambda J\}$, where $\lambda \geq 0$. Here, for $q=((0)), P(q)=J$ and, otherwise, it is a reducible partial semimetric. For an element c of a convex cone C denote by $\operatorname{rank}(c)$ the rank of the set of defining inequalities of the cone, which become equalities for c, i.e., the set of facets to which c belongs.

Lemma 3.1. If $q=\left(\left(q_{i j}\right)\right) \in \mathrm{WQMET}_{n}$ with a weight function $w=\left(w_{i}\right)$ and $p=\left(\left(q_{i j}+w_{i}\right)\right)$, then $\operatorname{rank}(p)=\operatorname{rank}(q)+\left|\left\{1 \leq i \leq n: w_{i}=0\right\}\right|$.
Proof. Clearly, p lies on the facet $N_{i j}: p_{i j}-p_{i i} \geq 0$ with $i \neq j$ of PMET_{n} if and only if q lies on the facet $N_{i j}: q_{i j} \geq 0$ of WQMET_{n}. Also, p lies on the facet $\operatorname{Tr}_{i k, j}: p_{i j}+p_{j k}-p_{i k}-p_{j j} \geq 0$ of PMET_{n} if and only if q lies on the facets $\operatorname{Tr}_{i k, j}: q_{i j}+q_{j k}-q_{i k} \geq 0$ and $\operatorname{Tr}_{k i, j}=q_{k j}+q_{j i}-q_{k i} \geq 0$ of WQMET_{n}. The equality $\operatorname{Tr}_{i k, j}=\operatorname{Tr}_{k i, j}$ is exactly relaxed symmetry characterizing weightable quasi-semimetrics. So, all triangle equalities for q stay for p, while equalities $q_{i j}=0$ for $1 \leq i \neq j \leq n$ transform into $p_{i j}-p_{i i}=0$. Only the equalities $p_{i i}=0$, corresponding to the equalities $w_{i}=0$ became new and they increase rank.

The previous lemma implies that if $q \in \mathrm{WQMET}_{n}$ represents an extreme ray, then $P(q) \in \mathrm{PMET}_{n}$ also represents an extreme ray. In fact, the cones have the same dimension. But more extreme rays appear in PMET_{n}. For $q^{(1)}, q^{(2)} \in \mathrm{WQMET}_{n}, P\left(q^{(1)}\right)+P\left(q^{(2)}\right)$ belongs to the ray $\left\{P\left(q^{(1)}+q^{(2)}\right)+\right.$ $\lambda J\}$, i.e., $P\left(q^{(1)}+q^{(2)}\right)=P\left(q^{(1)}\right)+P\left(q^{(2)}\right)-\lambda J$ with $\lambda \geq 0$, which is weaker than linearity, corresponding to $\lambda=0$.

Recall that $\mathrm{MET}_{n}=\mathrm{PMET}_{n} \cap \mathrm{WQMET}_{n}$. The previous lemma also implies that a semimetric represents an extreme ray in $\binom{n+1}{2}$-dimensional cone PMET_{n} if and only if it represents an extreme ray in $\binom{n}{2}$-dimensional cone MET_{n}. In fact, exactly n new valid equalities $p_{i i}=0$ appear for it in PMET_{n}. See the number of such extreme rays for $n \leq 6$ in Table 1. For $n \leq 6$, the orbit-representing semimetrics, besides cuts $\delta(S)$ with $1 \leq|S| \leq\left\lfloor\frac{n}{2}\right\rfloor$, are $d\left(K_{\{1,2\},\{3,4,5\}}\right)$ and $d\left(K_{\{1=6,2\},\{3,4,5\}}\right), d\left(K_{\{1,2\},\{3,4,5=6\}}\right)$, $d\left(K_{\{1,2\},\{3,4,5,6\}}\right), d\left(K_{\{1,2,3\},\{4,5,6\}}\right), d\left(K_{\{1,2,3\},\{4,5,6\}}-e_{14}\right)$. Here notation $-e_{i j}$ means that the edge $i j$ is deleted.
3.1. $\{0,1\}$-valued elements of PMET_{n}. For any subset $S_{0} \subset V_{n}$, denote by $J\left(S_{0}\right)$ the function $a: V_{n}^{2} \longrightarrow\{0,1\}$ with $a_{i j}=1$ exactly when $i, j \in S_{0}$; so, $J\left(V_{n}\right)=J$, where, as above, J is the partial semimetric with all values 1 .

Given integer $i \geq 0$, let $Q(i)$ denote i-th partition number, i.e., the number of ways to write i as a sum of positive integers; $Q(i)$ form the sequence A000041 in [19]: 1, 1, 2, 3, 5, 7, 11, 15, ... Given integer $i \geq 0$, let $B(i)$ denote i-th Bell number, i.e., the number of partitions of $V_{i}=\{1, \ldots, i\}$; $B(i)$ form the sequence A000110 in [19]: $1,1,2,5,15,52,203,877, \ldots$ So, $B(n)$ is the number of all multicuts on V_{n}, while the number of all cuts is
2^{n-1}. Note that the number of all o-cuts on V_{n} is 2^{n}, while the number of all o-multicuts is n-th ordered Bell number $\operatorname{Bo}(n)$, i.e., the number of ordered partitions of $V_{n} ; B o(n)$ form the sequence A000670 in [19]: 1, 1, 3, 13, 75, $541,4683,47293, \ldots$

Theorem 3.

(i) All $\{0,1\}$-valued elements of PMET_{n} are $\sum_{0 \leq i \leq n}\binom{n}{i} B(n-i)$ (organized into $\sum_{0 \leq i \leq n} Q(i)$ orbits under $\left.\operatorname{Sym}(n)\right)$ elements of the form $J\left(S_{0}\right)+\delta\left(S_{0}, \bar{S}_{1}, \ldots, S_{t}\right)=P\left(\sum_{1 \leq i \leq t} \delta^{\prime}\left(S_{i}\right)\right)$, where S_{0} is any subset of V_{n} and S_{1}, \ldots, S_{t} is any partition of $\overline{S_{0}}$.
(ii) The incidence number (defined in Section 1) of $\{0,1\}$-valued element $p=J\left(S_{0}\right)+\delta\left(S_{0}, S_{1}, \ldots, S_{t}\right)$, is: $n-\left|S_{0}\right|$ (to facets $M_{i i}: p_{i i} \geq$ 0) plus $\sum_{1 \leq k \leq t}\left|S_{k}\right|\left(\left|S_{k}\right|-1\right)+\left(\left|S_{0}\right|\left(\left|S_{0}\right|-1\right)+\left|S_{0}\right|\left(n-\left|S_{0}\right|\right)\right.$ (to facets $N_{i j}: p_{i j}-p_{i i} \geq 0, i \neq j$, with $0-0=0$ and $1-1=0$, respectively) plus $3 \sum_{1 \leq k \leq t}\binom{\left|S_{k}\right|}{3}+\sum_{1 \leq k \leq t}\left|S_{k}\right|\left(\left|S_{k}\right|-1\right)\left(n-\left|S_{k}\right|\right)+$ $\left|S_{0}\right| \sum_{1 \leq k \leq k^{\prime} \leq t}\left|S_{k}\right|\left|S_{k^{\prime}}\right|$ (to facets $\operatorname{Tr}_{i j, k}: p_{i k}+p_{k j}-p_{i j}-p_{k k} \geq 0$ with $0+0-0-0=0,1+0-1-0=0$ and $1+1-1-1=0)$.
(iii) All $\{0,1\}$-valued representatives of extreme rays of PMET_{n} are 2^{n-1} $+\sum_{1 \leq i \leq n-1}\binom{n}{i} B\left(n-i\right.$) (organised into $1+\left\lfloor\frac{n}{2}\right\rfloor+\sum_{1 \leq i \leq n-1} Q(i)$ orbits under $\operatorname{Sym}(n))$ elements of the form $J\left(S_{0}\right)+\delta\left(S_{0}, S_{1}, \ldots, S_{t}\right)$, where $t=2$ if $S_{0}=\varnothing$ (w.l.o.g. suppose $S_{i} \neq \varnothing$ for $1 \leq i \leq t$).

Proof.
(i) Given an $\{0,1\}$-valued element p of PMET_{n}, let us construct partition $S_{0}, S_{1}, \ldots, S_{t}$ such that $p=J\left(S_{0}\right)+\delta\left(S_{0}, S_{1}, \ldots, S_{t}\right)$.

See, for example, below the partial semimetric

$$
p=\left(\left(p_{i j}\right)\right)=J(\{67\})+\delta(\{67\},\{1\},\{23\},\{45\})=P(q)
$$

$\left(\{0,1\}\right.$-valued extreme ray of $\left.\mathrm{PMET}_{7}\right)$ and corresponding weightable quasi-semimetric

$$
q=\left(\left(q_{i j}=p_{i j}-p_{i i}\right)\right)
$$

$\left(\{0,1\}\right.$-valued non-extreme ray of $\left.\mathrm{WQMET}_{7}\right)$.

$\mathbf{0}$	1	1	1	1	1	1	$\mathbf{0}$	1	1	1	1	1	1
1	$\mathbf{0}$	$\mathbf{0}$	1	1	1	1	1	$\mathbf{0}$	0	1	1	1	1
1	$\mathbf{0}$	$\mathbf{0}$	1	1	1	1	1	0	$\mathbf{0}$	1	1	1	1
1	1	1	$\mathbf{0}$	$\mathbf{0}$	1	1	1	1	1	$\mathbf{0}$	0	1	1
1	1	1	$\mathbf{0}$	$\mathbf{0}$	1	1	1	1	1	0	$\mathbf{0}$	1	1
1	1	1	1	1	1	1	0	0	0	0	0	$\mathbf{0}$	0
1	1	1	1	1	1	1	0	0	0	0	0	0	$\mathbf{0}$

Set $S_{0}=\left\{1 \leq k \leq n: p_{k k}=1\right\}$; then $p_{k k^{\prime}}=p_{k^{\prime} k}=1$ for any $k \in S_{0}$ and $1 \leq k^{\prime} \leq n$ by definition of the facets $N_{k k^{\prime}}, N_{k^{\prime} k}$. Let S_{1} be a maximal subset of $\overline{S_{0}}$ such that $p_{k k^{\prime}}=0$ for $k, k^{\prime} \in S_{1}$, then S_{2} be a maximal subset of $\overline{S_{0} \cup S_{1}}$ such that $p_{k k^{\prime}}=0$ for $k, k^{\prime} \in S_{2}$
and so on. It remains to show that $p_{k k^{\prime}}=1$ if $k \in S_{i}, k^{\prime} \in S_{i^{\prime}}$ with different $1 \leq i, i^{\prime} \leq t$. W.l.o.g. suppose $\left|S_{i}\right| \geq 2$ for some $1 \leq i \leq n$, since, otherwise, (i) holds by construction of sets S_{i}. The inequalities $\operatorname{Tr}_{k j, k^{\prime}} \geq 0$ and $\operatorname{Tr}_{k^{\prime} j, k} \geq 0$, where $k, k^{\prime} \in S_{i}$ and $j \in S_{i^{\prime}}$, imply $p_{k j}=p_{k^{\prime} j}$, since $p_{k k^{\prime}}=p_{k k}=p_{k^{\prime} k^{\prime}}=0$. Now, $p_{k j}=p_{k^{\prime} j}=0$ is impossible by construction of sets S_{i}; so, $p_{k j}=p_{k^{\prime} j}=1$.
(ii) It can be checked by direct computation.
(iii) If $S_{0}=\varnothing$, then p is a multicut; so, by first equality in Lemma 2, it represents an extreme ray if and only if it is a non-zero cut. Let $S_{0} \neq \varnothing$; let order it as $S_{0}=\left\{z_{1}, \ldots, z_{s}\right\}$, where $s=\left|S_{0}\right|$. The following list of $\binom{n+1}{2}-1$ linearly independent (as vectors) facets among those, to which p is incident, show (iii):

- $N_{i j}: p_{i j}-p_{i i}=0-0=0$ with $i, j \in S_{k}, 1 \leq k \leq t$;
- $\operatorname{Tr}_{i j, z_{1}}: p_{i z_{1}}+p_{j z_{1}}-p_{i j}-p_{z_{1} z_{1}}=1+1-1-1=0$ with $i \in S_{k}$, $j \in S_{k^{\prime}}$ and different $1 \leq k, k^{\prime} \leq t$;
- $n-1-s+k$ facets $N_{i z_{k}}: p_{z_{k} i}-p_{z_{k} z_{k}}=1-1=0$ with $i \in \overline{S_{0}} \cup\left\{z_{1}, \ldots, z_{k-1}\right\}$ for each $1 \leq k \leq s$;
- $s-1$ facets $N_{z_{k} z_{1}}: p_{z_{k} z_{1}}-p_{z_{1} z_{1}}=1-1=0$ with $2 \leq k \leq s$;
- $n-s$ facets $M_{i i}: p_{i i}=0$ with $i \in \overline{S_{0}}$.

So, $\{0,1\}$-valued partial semimetric

$$
p=J\left(S_{0}\right)+\delta\left(S_{0}, S_{1}, \ldots, S_{t}\right)=P\left(\sum_{1 \leq i \leq t} \delta^{\prime}\left(S_{i}\right)\right)
$$

consists of all ones if $S_{0}=V_{n}$; it is a semimetric (moreover, the multicut $\delta\left(S_{0}, S_{1}, \ldots, S_{t}\right)$) if $S_{0}=\varnothing$.

For $S_{0}=V_{n}, \varnothing$, exactly 2^{n-1} partial semimetrics p represent an extreme ray: $p=J\left(V_{n}\right)=J=P(\delta(\varnothing))$ (one orbit) and $2^{n-1}-1$ non-zero cuts $\delta(S)$ ($\left\lfloor\frac{n}{2}\right\rfloor$ orbits).

The incidence number of the extreme ray represented by $P(\delta(S))=\delta(S)$ (cut semimetric) is

$$
\begin{aligned}
& 3\binom{n}{3}-\frac{n(n-|S|)(|S|-2)}{2}+|S|^{2} \\
&=\left(3\binom{n}{3}+n^{2}\right)-\frac{n|S|(n-|S|)}{2}-|S|(n-|S|)
\end{aligned}
$$

The incidence number of the extreme ray represented by $P\left(\delta^{\prime}(S)\right)=J(\bar{S})+$ $\delta(S)$ is

$$
\left(3\binom{n}{3}+n^{2}\right)-\frac{n|S|(n-|S|)}{2}-(n-|S|) .
$$

The case $S=\varnothing$ corresponds to the extreme ray $\left.J=J\left(V_{n}\right)+\delta(\varnothing)\right)$ of all-ones. The orbit size of $P(\delta(S))$ and $P\left(\delta^{\prime}(S)\right)$ is $\binom{n}{|S|}$, except the case $|S|=\frac{n}{2}$, when it is $\frac{1}{2}\binom{n}{|S|}$.

The incidence number of the extreme ray represented by $P\left(\sum_{1 \leq i \leq t} \delta^{\prime}(\{i\})\right)$ is

$$
t+t(n-t)+(n-t)\binom{n-1}{2}
$$

The size of its orbit is $\binom{n}{t}$. For $t=n-1$, it is a simplicial extreme ray represented by $P\left(\alpha^{\prime}\{n\}\right)$.
3.2. Some other extreme rays of PMET_{n}. The partial semimetric $\left(\left(p_{i j}\right)\right)$ $=P\left(\alpha^{\prime}(S)\right)$ have $p_{i j}=2$ if $|\{i, j\} \cap S|=2, p_{i i}=0$ if $i \notin S$ and $p_{i j}=1$, otherwise. So, it is the matrix J of all-ones if $S=\varnothing$. If $|S| \geq 2$, then the incidence number of $P\left(\alpha^{\prime}(S)\right)$ is $\frac{n|S|(n-|S|)}{2}+(n-|S|)$. It is the sum of:

- $(n-|S|)$ (to facets $\left.M_{i i}, i \notin S\right)$,
- $|S|(n-|S|)$ (to facets $N_{i j}, i \in S, j \notin S$), and
- $\left(|S|\binom{n-|S|}{2}+(n-|S|)\binom{|S|}{2}\right)$ (to facets $T_{i j, k}=1+1-2-0$ or $=$ $1+1-1-1$ for $i, j \in S, k \notin S$ or $i, j \notin S, k \in S$, respectively).
It can be shown, similarly to the proof of Theorem 3(iii), that $P\left(\alpha^{\prime}(S)\right)$ represents an extreme ray of PMET_{n} and this ray is simplicial if and only if $|S|=1$.

The partial semimetric $\left(\left(p_{i j}\right)\right)=P(\alpha(S))$ is the semimetric $\alpha(S)=$ $d\left(K_{S, \bar{S}}\right)$, which represent also an extreme ray in MET_{n} if $2 \leq|S| \leq n-2$. The incidence number of it, as an extreme ray of PMET_{n}, is
$n+0+\left(|S|\binom{n-|S|}{2}+(n-|S|)\binom{|S|}{2}\right)=\frac{n|S|(n-|S|)}{2}+n-|S|(n-|S|)$.
We conjecture that o-cuts $\delta^{\prime}(S)$ with $1 \leq|S| \leq n-1$ and o-anticuts $\alpha^{\prime}(S)$ with $2 \leq|S| \leq n-2$ are only representatives q of extreme ray in QMET_{n} such that $P(q)$ represent an extreme ray in PMET_{n}.

Above formulae for incidence numbers imply that, for any n, the partial metrics $P\left(\alpha^{\prime}(\{i\})\right)=\sum_{j \in \overline{\{i\}}} \delta^{\prime}(\{j\})$ form unique orbit of $\{0,1\}$-valued representatives of a simplicial (i.e., with incidence number $\binom{n+1}{2}-1$) extreme ray in PMET_{n}. Besides, PMET_{n} with $n=4,5,6$ have, respectively, $0,1,16$ such orbits of size n ! and $1,3,8$ such orbits of size $\frac{n!}{2}$ and $0,1,1$ such orbits of size $\frac{n!}{3!}$. Also, PMET_{4} has one such orbit of size 10. Hence, altogether PMET_{n} with $n=3,4,5,6$ have $3,16,340,14526$ simplicial extreme rays, organized in $1,2,7,26$ orbits, respectively.

The diameter of the skeleton of PMET_{n} is, perhaps, 2, because the extreme ray J of all ones is incident to all facets incident to any extreme ray $\{p+\lambda J\}$, except $M_{i i}$, whenever $p_{i i}>0$. If p is any other $\{0,1\}$ valued partial semimetric, i.e., $p=P\left(\sum_{1 \leq k \leq t} \delta^{\prime}\left(S_{k}\right)\right)$, then $n-\left|S_{0}\right|$ such facets are excluded. In particular, for simplicial extreme ray represented by $p=P\left(\alpha^{\prime}(\{i\})=\sum_{j \in \overline{i\}}} \delta^{\prime}(\{j\})\right.$, the common facets are $\binom{n+1}{2}-1$ facets of p, except $n-1$ facets $p_{j j}=0$ with $1 \leq j \leq n, j \neq i$; so, they are not adjacent.
3.3. Vertex-splitting. The vertex-splitting of a function $f=\left(\left(f_{i j}\right)\right)$ on V_{n}^{2} is a function $f^{v s}=\left(\left(f_{i j}^{v s}\right)\right)$ on V_{n+1}^{2}, defined, for $1 \leq i, j \leq n+1$, by

$$
\begin{aligned}
f_{n+1 n+1}^{v s} & =f_{n n+1}^{v s}=f_{n+1 n}^{v s}=0, \\
f_{i n+1}^{v s} & =f_{i n}, \\
f_{n+1 i}^{v s} & =f_{n i}, \text { and } \\
f_{i j}^{v s} & =f_{i j} .
\end{aligned}
$$

The vertex-splitting of an o-multicut $\delta^{\prime}\left(S_{1}, \ldots, S_{q}\right)$ is the o-multicut $\delta^{\prime}\left(S_{1}\right.$, $\left.\ldots, S_{l} \cup\{n+1\}, \ldots, S_{q}\right)$ if $n \in S_{l}$.

The vertex-splitting of a generic $\{0,1\}$-valued element $J\left(S_{0}\right)+\delta\left(S_{0}, S_{1}\right.$, $\left.\ldots, S_{t}\right)$ of PMET_{n} is $J\left(S_{0}\right)+\delta\left(S_{0}, S_{1}, \ldots, S_{l} \cup\{n+1\}, \ldots, S_{t}\right) \in \mathrm{PMET}_{n+1}$ if $n \in S_{l}$ with $l \neq 0$, and it is not a partial metric, otherwise. So, the only $\{0,1\}$-valued elements, which are not vertex-splittings, are those with $\left|S_{i}\right|=1$ for all $1 \leq i \leq t$.

Finally, the vertex-splitting of a (\{0,1,2\}-valued) extreme ray representative $P\left(\alpha^{\prime}(S)\right)$ is a $P\left(\alpha^{\prime}(S)+e_{n n+1}\right) \in \operatorname{PMET}_{n+1}$ if $n \notin S$ and it is not a partial metric, otherwise. The orbit O_{18} of extreme ray representatives in PMET_{5} consists of vertex-splittings of ones of the orbit O_{10} of $P\left(\alpha^{\prime}(\{14\})\right.$ in PMET_{4}. The orbits O_{28} and O_{29} of ($\{0,1,2,3\}$-valued) extreme ray representatives in PMET_{5} consist of vertex-splittings (two ways) of ones of the orbit O_{11} in PMET_{4}.

Theorem 4. If a partial semimetric p represents an extreme ray of PMET_{n} and has $p_{n n}=0$, then its vertex-splitting $p^{v s}$ represents an extreme ray of PMET_{n+1}.

Proof. The condition $p_{n n}=0$ is needed since, othervise, $p^{v s}$ violate the inequality $f_{n+1 n+1}-f_{n n} \geq 0$, which is valid in PMET_{n+1}. It suffice to present $n+1$ facets which, together with $\binom{n+1}{2}-1$ linearly independent facets (seen as vectors) containing p, will form $\binom{n+2}{2}-1$ linearly independent facets containing $p^{v s}$. Such facets are two of type $N_{i j}\left(p_{n+1 n+1} \geq 0\right.$ and $\left.p_{n n+1}-p_{n+1 n+1} \geq 0\right)$ and $n-1$ of type $\operatorname{Tr}_{i n, n+1}: p_{i n+1}+p_{n n+1}-p_{i n}-$ $p_{n+1 n+1} \geq 0$.

Above theorem gives another proof for the completeness of the list of $\{0,1\}$-valued extreme rays of PMET_{n}.

4. The cone $l_{1}-\mathrm{PMET}_{n}$

The subcone $l_{1}-\mathrm{PMET}_{n}$ of PMET_{n}, generated by all its $\{0,1\}$-valued extreme rays consists of all partial semimetrics $p=\left(\left(p_{i j}\right)\right)$ such that $q=$ $\left(\left(p_{i j}-p_{i i}\right)\right) \in \mathrm{OCUT}_{n}$, i.e., the quasi-semimetric q is l_{1}-embeddable. $l_{1}-$ PMET_{n} coincides with PMET_{n} only for $n=3$.

A zero-extension of an inequality $\sum_{1 \leq i \neq j \leq n-1} f_{i j} d_{i j} \geq 0$, is an inequality

$$
\sum_{1 \leq i \neq j \leq n} f_{i j}^{\prime} d_{i j} \geq 0 \text { with } f_{n i}^{\prime}=f_{i n}^{\prime}=0 \text { and } f_{i j}^{\prime}=f_{i j}, \text { otherwise. }
$$

O_{i}	Representative $P(q)$	11	21	22	31	32	33	Inc.	$\left\|O_{i}\right\|$
O_{1}	$P\left(\delta^{\prime}(\varnothing)\right)$	1	1	1	1	1	1	9	1
O_{2}	$P\left(\delta^{\prime}(\{1\})\right)$	1	1	0	1	0	0	8	3
O_{3}	$P\left(\delta^{\prime}(\{1\})\right)$	0	1	1	1	1	1	7	3
O_{4}	$P\left(\delta(\{1\})=\delta^{\prime}(\{1\})+\delta^{\prime}(\overline{\{1\}})\right.$	0	1	0	1	0	0	7	3
O_{5}	$P\left(\alpha^{\prime}(\{3\})=\delta^{\prime}(\{1\})+\delta^{\prime}(\{2\})\right.$	0	1	0	1	1	1	5	3

Table 2. The representatives of orbits of extreme rays in PMET_{3}

O_{i}	Representative	11	21	22	31	32	33	Inc.	$\left\|O_{i}\right\|$
O_{1}	$\mathrm{NN}_{11}: p_{11} \geq 0$	1	0	0	0	0	0	8	3
O_{2}	$\operatorname{Tr}_{23,1}: p_{21}+p_{31} \geq p_{32}+p_{11}$	-1	1	0	1	-1	0	8	3
O_{3}	$\mathrm{NN}_{21}: p_{21} \geq p_{11}$	-1	1	0	0	0	0	7	6

Table 3. The representatives of orbits of facets in $\mathrm{PMET}_{3}=$ $l_{1}-\mathrm{PMET}_{3}$

Easy to see that zero-extension of any facet-defining inequality of l_{1} -PMET_{n-1} is a valid inequality of $l_{1}-\mathrm{PMET}_{n}$. We conjecture that, moreover, it is a facet-defining inequality of $l_{1}-\mathrm{PMET}_{n}$.

Given a sequence of n integers $b=\left(b_{1}, \ldots, b_{n}\right)$, let $\sum(b)$ denote $\sum_{i=1}^{n} b_{i}$ and, for any $p=\left(\left(p_{i j}\right)\right) \in l_{1}-\mathrm{PMET}_{n}$, denote

$$
\begin{aligned}
H_{p}(b) & =-\sum_{1 \leq i<j \leq n} b_{i} b_{j} p_{i j}, \\
\operatorname{Hyp}_{p}(b) & =H_{p}(b)-\frac{1}{2} \sum_{i=1}^{n} b_{i}\left(b_{i}-1\right) p_{i i}, \text { and } \\
A_{p}(b) & =H_{p}(b)-\frac{1}{2} \sum_{i=1}^{n} \max \left\{0,\left|b_{i}\right|\left(\left|b_{i}\right|+1\right)-2\right\} p_{i i} .
\end{aligned}
$$

For $\sum(b) \in\{0,1\}$, call $\operatorname{Hyp}_{p}(b) \geq 0$ and $A_{p}(b) \geq 0$ hypermetric inequality and modular inequality, respectively.

Lemma 4.1.

(i) Any hypermetric inequality $\operatorname{Hyp}_{p}(b) \geq 0$ is valid on $l_{1}-\mathrm{PMET}_{n}$.
(ii) Any modular inequality $A_{p}(b) \geq 0$ with $\max _{1 \leq i \leq n}\left|b_{i}\right| \leq 2$ is valid on $l_{1}-\mathrm{PMET}_{n}$.

Proof. In fact, it suffices to check its validity for a typical extreme ray of $l_{1}-\mathrm{PMET}_{n}$ represented by $p=J\left(S_{0}\right)+\delta\left(S_{0}, S_{1}, \ldots, S_{t}\right)=P\left(\sum_{1 \leq i \leq t} \delta^{\prime}\left(S_{i}\right)\right)$.

O_{i}	Representative $P(q)$	11	21	22	31	32	33	41	42	43	44	Inc.	$\left\|O_{i}\right\|$
O_{1}	$P\left(\delta^{\prime}(\varnothing)\right)$	1	1	1	1	1	1	1	1	1	1	24	1
O_{2}	$P\left(\delta^{\prime}(\{2\})\right.$	0	1	1	0	1	0	0	1	0	0	21	4
O_{3}	$P\left(\delta^{\prime}(\{3\})\right.$	1	1	1	1	1	0	1	1	1	1	19	4
O_{4}	$P(\delta(\{3\})$	0	0	0	1	1	0	0	0	1	0	19	4
O_{5}	$P\left(\delta^{\prime}(\{3,4\})\right.$	1	1	1	1	1	0	1	1	0	0	18	6
O_{6}	$P(\delta(\{3,4\})$	0	0	0	1	1	0	1	1	0	0	16	3
O_{7}	$P\left(\delta^{\prime}(\{2\})+\delta^{\prime}(\{3\})\right.$	1	1	0	1	1	0	1	1	1	1	14	6
O_{8}	$P\left(\delta^{\prime}(\{2\})+\delta^{\prime}(\{3,4\})\right.$	1	1	0	1	1	0	1	1	0	0	14	12
O_{9}	$P\left(\alpha^{\prime}(\{4\})\right.$	0	1	0	1	1	0	1	1	1	1	9	4
O_{10}	$P\left(\alpha^{\prime}(\{1,4\})\right.$	1	1	0	1	1	0	2	1	1	1	10	6
O_{11}	$P\left(\delta(\{3\})+2 \delta^{\prime}(\{4\})+2 d\left(K_{\{1,2\}}\right)\right.$	0	2	0	1	1	0	2	2	3	2	9	12

Table 4. The representatives of orbits of extreme rays in PMET_{4}

O_{i}	Representative	11	21	22	31	32	33	41	42	43	44	Inc.	$\left\|O_{i}\right\|$
O_{1}	$\mathrm{NN}_{11}: p_{11} \geq 0$	1	0	0	0	0	0	0	0	0	0	29	4
O_{2}	$\operatorname{Hyp}_{p}(-1,1,1,0)=p_{21}+p_{31}-p_{32}-p_{11} \geq 0$	-1	1	0	1	-1	0	0	0	0	0	26	12
O_{3}	$\mathrm{NN}_{21}=\operatorname{Hyp}_{p}(1,-1,0,0)=p_{21}-p_{11} \geq 0$	-1	1	0	0	0	0	0	0	0	0	23	12
O_{4}	$\operatorname{Hyp}_{p}(1,1,-1,-1) \geq 0$	0	-1	0	1	1	-1	1	1	-1	-1	16	6
O_{5}	$A_{p}(2,1,-1,-1)=H_{p}(2,1,-1,-1)-2 p_{11} \geq 0$	-2	-2	0	2	1	0	2	1	-1	0	9	12

Table 5. The representatives of orbits of facets in $l_{1}-\mathrm{PMET}_{4}$

O_{i}	Representative $P(q)$	11	21	22	31	32	33	41	42	43	44	51	52	53	54	55	Inc.	$\left\|O_{i}\right\|$
O_{1}	$P\left(\delta^{\prime}(\varnothing)\right)$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	90	1
O_{2}	$P\left(\delta^{\prime}(\overline{\{5\}})\right.$	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	44	5
O_{3}	$P\left(\delta^{\prime}(\{5\})\right.$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	41	5
O_{4}	$P(\delta(\{1\})$	0	1	0	1	0	0	1	0	0	0	1	0	0	0	0	41	5
O_{5}	$P\left(\delta^{\prime}(\overline{\{1,5\}})\right.$	1	1	0	1	0	0	1	0	0	0	1	1	1	1	1	38	10
O_{6}	$P\left(\delta^{\prime}(\{1,5\})\right.$	0	1	1	1	1	1	1	1	1	1	0	1	1	1	0	37	10
O_{7}	$P(\delta(\{1,5\})$	0	1	0	1	0	0	1	0	0	0	0	1	1	1	0	34	10
O_{8}	$P\left(\delta^{\prime}(\{5\})+\delta^{\prime}(\{4\})\right)$	1	1	1	1	1	1	1	1	1	0	1	1	1	1	0	32	10
O_{9}	$P\left(\delta^{\prime}(\{1\})+\delta^{\prime}(\overline{\{1,2\}})\right)$	0	1	1	1	1	0	1	1	0	0	1	1	0	0	0	32	20
O_{10}	$P\left(\delta^{\prime}\left(\{1\}+\delta^{\prime}(\{1,5\})\right)\right.$	0	1	0	1	0	0	1	0	0	0	1	0	0	0	0	29	30
O_{11}	$P\left(\delta^{\prime}\left(\{1,5\}+\delta^{\prime}(\{3,4\})\right)\right.$	0	1	1	1	1	0	1	1	0	0	0	1	1	1	0	28	15
O_{12}	$P\left(\delta^{\prime}\left(\{5\}+\delta^{\prime}(\{4\})+\delta^{\prime}(\{1\})\right)\right.$	0	1	1	1	1	1	1	1	1	0	1	1	1	1	0	23	10
O_{13}	$P\left(\delta^{\prime}\left(\{5\}+\delta^{\prime}(\{4\})+\delta^{\prime}(\{1,3\})\right)\right.$	0	1	1	0	1	0	1	1	1	0	1	1	1	1	0	21	30
O_{14}	$P\left(\alpha^{\prime}(\{1\})\right.$	1	1	0	1	1	0	1	1	1	0	1	1	1	1	0	14	5
O_{15}	$P\left(\alpha^{\prime}(\{2,3\})\right.$	0	1	1	1	2	1	1	1	1	0	1	1	1	1	0	18	10
O_{16}	$P\left(\alpha^{\prime} \overline{(\{4,5\}}\right)$	1	2	1	2	2	1	1	1	1	0	1	1	1	1	0	17	10
O_{17}	$P\left(\alpha(\{4,5\})=d\left(K_{2,3}\right)\right.$	0	2	0	2	2	0	1	1	1	0	1	1	1	2	0	14	10
O_{18}	$P\left(\alpha^{\prime}\left(\{23\}+e_{14}\right)\right.$	0	1	1	1	2	1	1	1	1	0	0	1	1	1	0	24	30
O_{19}		1	1	1	2	2	1	1	1	1	0	1	1	1	1	0	23	30
O_{20}		2	2	1	2	2	1	2	1	1	0	2	1	1	1	0	19	30
O_{21}		1	2	2	1	2	0	2	2	1	1	2	2	1	2	1	17	20
O_{22}		0	1	1	2	2	1	1	1	1	0	1	1	1	1	0	17	60

TABLE 6. The representatives of orbits of extreme rays in PMET_{5}.

O_{i}	Representative $P(q)$	11	21	22	31	32	33	41	42	43	44	51	52	53	54	55	Inc.	$\left\|O_{i}\right\|$
O_{23}		1	2	1	1	2	0	2	1	1	0	1	1	1	1	0	16	60
O_{24}	O_{25}	1	2	2	1	2	0	2	2	1	1	2	2	1	2	0	16	60
O_{26}		1	2	2	1	2	0	2	2	1	0	2	2	1	2	0	15	60
O_{27}		0	2	2	1	2	0	2	2	1	0	2	2	1	2	0	14	20
O_{28}		0	2	2	1	3	0	2	2	1	0	2	2	$\mathbf{3}$	2	2	22	30
O_{29}		0	2	2	1	3	0	2	2	1	0	0	2	1	2	0	22	60
O_{30}		0	3	2	0	3	0	1	2	1	0	1	2	1	2	0	21	30
O_{31}		0	2		2	3	3	2	1	2	2	0	1	2	2	0	18	30
O_{32}		0	2	2	1	3	0	2	2	1	0	2	2	1	2	0	16	20
O_{33}		0	2	2	3	3	0	2	2	1	0	2	2	1	2	0	16	60
O_{34}	3	3	2	3	3	0	3	2	1	0	3	2	1	2	0	16	60	
O_{35}		1	3	2	1	3	0	2	2	1	0	1	2	1	2	0	16	120
O_{36}		0	3	2	2	3	0	1	2	1	0	1	2	1	2	0	15	30
O_{37}		2	3	2	2	3	0	3	2	1	0	3	2	1	2	0	15	60
O_{38}		0	2	2	2	3	1	1	2	1	0	1	2	2	2	0	15	120
O_{39}		0	2	2	2	3	0	1	2	1	0	1	2	1	2	0	14	60
O_{40}		0	2	2	3	3	2	1	2	2	0	1	2	2	2	0	14	60
O_{41}		2	3	2	2	3	0	3	2	1	0	1	1	1	1	0	14	120
O_{42}		2	4	2	3	3	0	2	2	1	0	2		1	2	0	16	30
O_{43}		0	2	2	3	4	2	1	2	2	0	1	2	2	2	0	15	60
O_{44}		2	3	2	2	3	0	3	2	1	0	4	3	2	3	2	14	60

TABLE 6. The representatives of orbits of extreme rays in PMET_{5}. (Continued.)

O_{i}	Representative	11	21	22	31	32	33	41	42	43	44	51	52	53	54	55	Inc.	$\left\|O_{i}\right\|$
O_{1}	$\mathrm{NN}_{11}: p_{11} \geq 0$	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	114	5
O_{2}	$\operatorname{Hyp}_{p}(1,1,-1,0,0) \geq 0$	-1	1	0	1	-1	0	0	0	0	0	0	0	0	0	0	92	30
O_{3}	$\operatorname{Hyp}_{p}(1,-1,0,0,0) \geq 0$	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	81	20
O_{4}	$\operatorname{Hyp}_{p}(1,1,1,-1,-1) \geq 0$	0	-1	0	-1	-1	0	1	1	1	-1	1	1	1	-1	-1	62	10
O_{5}	$\operatorname{Hyp}_{p}(1,1,-1,-1,0) \geq 0$	0	-1	0	1	1	-1	1	1	-1	-1	0	0	0	0	0	54	30
O_{6}	$\operatorname{Hyp}_{p}(1,1,1,-1,-2) \geq 0$	0	-1	0	-1	-1	0	1	1	1	-1	2	2	2	-2	-3	36	20
O_{7}	$A_{p}(2,1,-1,-1,0) \geq 0$	-2	-2	0	2	1	0	2	1	-1	0	0	0	0	0	0	31	60
O_{8}	$\operatorname{Hyp}_{p}(2,1,-1,-1,-1) \geq 0$	-1	-2	0	2	1	-1	2	1	-1	-1	2	1	-1	-1	-1	29	20
O_{9}	$A_{p}(3,1,-1,-1,-1) \geq 0$	-5	-3	0	3	1	0	3	1	-1	0	3	1	-1	-1	0	23	20
O_{10}	$A_{p}(2,2,-1,-1,-1) \geq 0$	-2	-4	-2	2	2	0	2	2	-1	0	2	2	-1	-1	0	20	10
O_{11}	$A_{p}(2,1,1,-1,-2) \geq 0$	-2	0	-2	-1	0	2	1	1	0	4	2	2	-2	-2	2	20	60
O_{12}		-5	-5	-2	3	2	0	3	2	-1	0	5	3	-2	-2	0	19	60
O_{13}		0	2	-2	-1	2	0	-1	0	1	0	2	-2	0	2	-2	18	60
O_{14}	-2	-3	0	4	2	-2	3	1	-2	0	4	2	-2	-2	-2	18	60	
O_{15}		-2	-2	2	1	0	2	2	-1	-2	2	1	0	-2	0	2	17	120

Table 7. The representatives of orbits of facets in $l_{1}-\mathrm{PMET}_{5}$

For any $0 \leq k \leq t$, let $\alpha_{k}=\sum_{i \in S_{k}} b_{i}$; so, $\sum(b)=\sum_{k=0}^{t} \alpha_{k}$. It holds that

$$
\begin{aligned}
2 H_{p}(b) & =\sum_{i=1}^{n} b_{i}^{2} p_{i i}-\sum_{1 \leq i, j \leq n} b_{i} b_{j} p_{i j} \\
& =\sum_{i \in S_{0}} b_{i}^{2}-\sum_{i \in S_{0}} b_{i} \sum(b)-\sum_{k=1}^{t}\left(\sum_{i \in S_{k}} b_{i}\right)\left(\sum_{i \notin S_{k}} b_{i}\right) \\
& =\sum_{i \in S_{0}} b_{i}^{2}-\alpha_{0} \sum^{t}(b)-\sum_{k=1}^{t} \alpha_{k}\left(\sum(b)-\alpha_{k}\right) \\
& =\sum_{i \in S_{0}} b_{i}^{2}+\sum_{k=1}^{t}\left(\alpha_{k}\right)^{2}-\left(\sum(b)\right)^{2} \\
& =\sum_{i \in S_{0}} b_{i}\left(b_{i}-1\right)+\sum_{k=1}^{t} \alpha_{k}\left(\alpha_{k}-1\right)-\sum(b)\left(\sum(b)-1\right) .
\end{aligned}
$$

So, $2 \operatorname{Hyp}_{p}(b)=\sum_{k=1}^{t} \alpha_{k}\left(\alpha_{k}-1\right) \geq 0$, i.e., (i) holds.
Now,

$$
\begin{aligned}
2 A_{p}(b) & =\left(\sum_{i \in S_{0}} b_{i}^{2}+\sum_{k=1}^{t}\left(\alpha_{k}\right)^{2}-\left(\sum(b)\right)^{2}\right)-\left(\sum_{i \in S_{0}}\left|b_{i}\right|^{2}-\sum_{i \in S_{0}}\left|b_{i}\right|+2\left|S_{0}^{\prime}\right|\right) \\
& =\sum_{k=1}^{t}\left(\alpha_{k}\right)^{2}-\left(\sum(b)\right)^{2}+\sum_{i \in S_{0}}\left|b_{i}\right|-2\left|S_{0}^{\prime}\right|
\end{aligned}
$$

where $S_{0}^{\prime}=\left\{i \in S_{0}: b_{i} \neq 0\right\}$. If $\sum(b)=0$, then $2 A_{p}(b) \geq 0$. If $\sum(b)=1$, then either $\sum_{k=1}^{t}\left(\alpha_{k}\right)^{2}$, or $2\left|S_{0}^{\prime}\right|-\sum_{i \in S_{0}}\left|b_{i}\right|$ is at least 1 . So, (ii) holds.

In fact, the typical facet-defining inequalities $N_{12}: p_{12}-p_{22} \geq 0$ and $\operatorname{Tr}_{12,3}: p_{13}+p_{23}-p_{12}-p_{33} \geq 0$ of PMET_{n} are instances of $\operatorname{Hyp}_{p}(b) \geq 0$ for $b=(1,-1,0, \ldots, 0)$ and $b=(1,1,-1,0, \ldots, 0)$, respectively.

The cone $l_{1}-\mathrm{PMET}_{4}$ (besides orbits O_{1}, O_{2}, O_{3} of sizes $4,12,12$ of facets of PMET_{4}) has orbits O_{4}, O_{5} (of sizes 6,12) of facets, represented by:
$\operatorname{Hyp}_{p}\left((1,1,-1,-1)=\left(p_{13}+p_{23}+p_{14}+p_{24}\right)-\left(p_{12}+p_{34}\right)-\left(p_{33}+p_{44}\right) \geq 0\right.$ and

$$
A_{p}(2,1,-1,-1)=\left(2 p_{13}+p_{23}+2 p_{14}+p_{24}\right)-\left(2 p_{12}+p_{34}\right)-2 p_{11} \geq 0
$$

Note that the orbits O_{10} and O_{11} of extreme rays in PMET_{4} excluded in $l_{1}-\mathrm{PMET}_{4}$ by orbits O_{4} and O_{5}, respectively. In fact, $P\left(\alpha^{\prime}\{1,2\}\right)$ violates $\operatorname{Hyp}_{p}(1,1,-1,-1) \geq 0$, while $P\left(\delta(\{1\})+2 \delta^{\prime}(\overline{\{2\}})+2 d\left(K_{\{3,4\}}\right)\right.$ violates $A_{p}(2,1,-1,-1) \geq 0$.

The cone $l_{1}-\mathrm{PMET}_{5}$ has 585 facets in 15 orbits, represented in Table 8 up to a permutation (orbits $O_{1}, O_{2}, O_{3}, O_{5}, O_{7}$ consist of 0 -extensions of facets of $\left.l_{1}-\mathrm{PMET}_{4}\right)$.

O_{i}	Size	Representative
O_{1}	5	$N_{11}: p_{11} \geq 0$
O_{2}	30	$\operatorname{Tr}_{12,3}=\operatorname{Hyp}_{p}(1,1,-1,0,0) \geq 0$.
O_{3}	20	$N_{12}: \operatorname{Hyp}_{p}(1,-1,0,0,0) \geq 0$.
O_{4}	10	$\operatorname{Hyp}_{p}(1,1,1,-1,-1) \geq 0$.
O_{5}	30	$\operatorname{Hyp}_{p}(1,1,-1,-1,0) \geq 0$.
O_{6}	20	$\operatorname{Hyp}_{p}(1,1,1,-1,-2) \geq 0$.
O_{7}	20	$A_{p}(2,1,-1,-1,0)=H_{p}(2,1,-1,-1,0)-2 p_{11} \geq 0$.
O_{8}	20	$\operatorname{Hyp}_{p}(2,1,-1,-1,-1) \geq 0$.
O_{9}	20	$A_{p}(3,1,-1,-1,-1)=H_{p}(3,1,-1,-1,-1)-5 p_{11} \geq 0$.
O_{10}	10	$A_{p}(2,2,-1,-1,-1)=H_{p}(2,2,-1,-1,-1)-2\left(p_{11}+p_{22}\right) \geq 0$.
O_{11}	60	$A_{p}(2,1,1,-1,-2)=H_{p}(2,1,1,-1,-2)-2\left(p_{11}+p_{55}\right) \geq 0$.
O_{12}	60	$H_{p}(3,2,-1,-1,-2) \geq-p_{12}+5 p_{11}+2 p_{22}+p_{15}+p_{25}$.
O_{13}	60	$2 p_{12}+2 p_{23}+p_{34}+2 p_{45}+2 p_{51} \geq 2 p_{22}+p_{13}+2 p_{25}+p_{41}+2 p_{55}$.
O_{14}	60	$\left(4 p_{13}+3 p_{14}+4 p_{15}\right)+\left(2 p_{23}+p_{24}+2 p_{25}\right) \geq 2\left(p_{34}+p_{35}+p_{45}\right)+3 p_{12}+2\left(p_{11}+p_{33}+p_{55}\right)$.
O_{15}	120	$H_{p}(-2,-1,1,2,1) \geq 2\left(p_{14}+p_{34}+p_{11}+p_{44}\right)$,
		i.e., $2\left(p_{13}+p_{14}+p_{15}\right)+\left(p_{23}+2 p_{24}+p_{25}\right) \geq\left(p_{34}+2 p_{45}\right)+2 p_{12}+2\left(p_{11}+p_{44}\right)$.

TABLE 8. The cone $l_{1}-\mathrm{PMET}_{5}$.

Denote by INHYP $_{n}$ the inhomogeneous hypermetric cone of all symmetric $n \times n$ matrices $\left(\left(a_{i j}\right)\right)$ with $a_{i j} \geq 0$ defined by the inequalities $\operatorname{Hyp}_{a}(b) \geq 0$ for all sequence of n integers $b=\left(b_{1}, \ldots, b_{n}\right)$, with $\sum_{i=1}^{n} b_{i} \in\{0,1\}$. Clearly,

$$
l_{1}-\mathrm{PMET}_{n} \subset \mathrm{INHYP}_{n} \subset \mathrm{PMET}_{n}
$$

generalizing

$$
\mathrm{CUT}_{n} \subset \mathrm{HYP}_{n} \subset \mathrm{MET}_{n}
$$

for the restrictions of cones on the semi-metrics.
Remind Theorem 2(i) that the cone OCUT_{n} of all quasi-semimetrics on V_{n} embeddable into $l_{1, o r}^{m}$ for some m consists of all $n \times n$ matrices $\left(\left(q_{i j}=\right.\right.$ $\left.p_{i j}-p_{i i}\right)$), where $\left(\left(p_{i j}\right)\right) \in l_{1}-\mathrm{PMET}_{n}$; so, any $\left(\left(q_{i j}\right)\right)$ is a weightable quasi-semimetric with weights $w_{i}=p_{i i}, 1 \leq i \leq n$. Using

$$
\begin{aligned}
2 H_{p}(b)-\sum_{i=1}^{n} b_{i}^{2} p_{i i} & =-\sum_{1 \leq i, j \leq n} b_{i} b_{j} p_{i j} \\
& =-\sum_{1 \leq i, j \leq n} b_{i} b_{j} q_{i j}-\sum_{i=1}^{n} b_{i} p_{i i} \sum_{j=1}^{n} b_{j} \\
& =-\sum_{1 \leq i, j \leq n} b_{i} b_{j} q_{i j}-\sum(b) \sum_{i=1}^{n} b_{i} w_{i}
\end{aligned}
$$

we can reformulate above Lemma as follows.
Corollary 1. Given a sequence of n integers $b=\left(b_{1}, \ldots, b_{n}\right)$, with $\sum(b)=$ $\sum_{i=1}^{n} b_{i} \in\{0,1\}$, the following two inequalities are valid on OCUT_{n} :

$$
\begin{gather*}
-\sum_{1 \leq i, j \leq n} b_{i} b_{j} q_{i j}+\left(1-\sum(b)\right) \sum_{i=1}^{n} b_{i} w_{i} \geq 0 \tag{4.1}\\
-\sum_{1 \leq i, j \leq n} b_{i} b_{j} q_{i j}+\sum_{i=1: b_{i} \neq 0}^{n}\left(2-\left|b_{i}\right|-b_{i} \sum(b)\right) w_{i} \geq 0 \tag{4.2}
\end{gather*}
$$

if $\max _{1 \leq i \leq n}\left|b_{i}\right| \leq 2$.

Acknowledgement

The authors are grateful to Achill Schürmann who, using the program [18] by Mathieu Dutour, made all computations on which based this paper.

References

1. M. Charikar, K. Makarychev, and Y. Makarychev, Directed metrics and directed graph partitioning problems, Proc. of 17th ACM-SIAM Symposium on Discrete Algorithms, 2006, pp. 51-60.
2. A. Deza, B. Goldengorin, and D. V. Pasechnik, The isometries of the cut, metric and hypermetric cones, Journal of Algebraic Combinatorics 23 (2006), 197-203.
3. M. Deza and E. Deza, Quasi-metrics, directed multi-cuts and related polyhedra, European Journal of Combinatorics, Special Issue "Discrete Metric Spaces", vol. 21-6, 2000, pp. 777-796.
4. M. Deza and M. Dutour, Cones of metrics, hemi-metrics and super-metrics, Annales of European Academy of Sciences (2003), 141-162.
5. M. Deza, M. Dutour, and E. Deza, Small cones of oriented semimetrics, American Journal of Mathematics and Management Science 22 (2002), no. 3,4, 199-225.
6. M. Deza and M. Laurent, Geometry of cuts and metrics, Springer-Verlag, Berlin, 1997.
7. K. Fukuda, The cdd program, http://www.ifor.math.ethz.ch/~fukuda/cdd_home/ cdd.html.
8. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott, Continuous lattices and domains, Encyclopedia of Mathematics and its Applications, vol. 93, Cambridge University Press, 2003.
9. V. P. Grishukhin, Computing extreme rays of the metric cone for seven points, European Journal of Combinatorics 13 (1992), 153-165.
10. A. Güldürek and T. Richmond, Every finite topology is generated by a partial pseudometric, Order 22 (2005), 415-421.
11. F. Hausdorff, Grundzüge der Mengenlehre, Leipzig, 1914.
12. R. Heckmann, Approximation of metric spaces by partial metric spaces, Applied Categorical Structures 7 (1999), 7-83.
13. P. Hitzler, Generalized metrics and topology in logic programming semantics, Ph.D. thesis, National University of Ireland, University College Cork, 2001.
14. S. G. Matthews, Partial metric topology, Research Report 212, Dept. of Computer Science, University of Warwick, 1992.
15. A. N. Patrinos and S. L. Hakimi, Distance matrix of a graph and its tree realization, Quarterly of Applied Mathematics 30 (1972), 255-269.
16. A. Schrijver, Theory of linear and integer programming, Wiley, 1986.
17. A. K. Seda, Quasi-metrics and the semantic of logic programs, Fundamenta Informaticae 29 (1997), 97-117.
18. M. Dutour Sikirić, Polyhedral, http://www.liga.ens.fr/~dutour/polyhedral, 2010.
19. N. Sloane, The on-line encyclopedia of integer sequences, http://www.research.att. com/~njas/sequences.
20. P. Tetali, Random walks and the effective resistance of networks, Journal of Theoretical Probability 4 (1991), 101-109.
21. P. Vitolo, The representation of weighted quasi-metric spaces, Rend. Inst. Mat. Univ. Trieste 31 (1999), 95-100.

École Normale Supérieure,
45, rue d'Ulm F-75230 Paris cedex 05
E-mail address: Michel.Deza@ens.fr
Moscow State Pedagogical University, 14, Krasnoprudnaya 107140, Moscow, Russia

E-mail address: Elena.Deza@gmail.com

[^0]: Received by the editors February 10, 2010, and in revised form November 15, 2010. 2010 Mathematics Subject Classification. 52B05, 54E99.
 Key words and phrases. Partial metrics; quasi-semimetrics; oriented multicuts; convex cones; computational experiments.

