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CONES OF PARTIAL METRICS

MICHEL DEZA AND ELENA DEZA

Abstract. A partial semimetric on a set X is a function (x, y) 7→
p(x, y) ∈ R≥0 satisfying p(x, y) = p(y, x), p(x, y) ≥ p(x, x) and p(x, z) ≤
p(x, y) + p(y, z) − p(y, y) for all x, y, z ∈ X. Using computations done
for n ≤ 6, we study the polyhedral convex cone PMETn of all partial
semimetrics on n points and its subcone l1-PMETn generated by all
{0, 1}-valued, i.e., contaning {0, 1}-valued element, extreme rays. The
elements of this subcone correspond to natural quasi-metric analogue of
l1-semimetrics.

We present data on those cones and their relatives: the number of
facets, of extreme rays, of their orbits, incidences, characterize {0, 1}-
valued extreme rays and some classes of facets, including analoques of
the hypermetric ones.

1. Convex cones under consideration

There are following two main motivations for this study. Partial semi-
metrics are generalization of semimetrics, having important applications in
Computer Science (domain theory, analysis of data flow deadlock, complex-
ity analysis of programs, etc.). This is the first polyhedral appoach to them.
Also, we explore which part of rich theory of l1-semimetrics versus cuts (see,
for example, [6]) can be extended on quasi-metric analog of l1-semimetrics
versus oriented cuts. See [4] for generalizing of METn–CUTn pair to other
contexts.

A convex cone in Rm (see, for example, [16]) is defined either by generators
v1, . . . , vN , as {

∑
λivi : λi ≥ 0}, or by linear inequalities f1, . . . , fM , as

{x ∈ Rm : fi(x) ≥ 0}. We consider only polyhedral convex cones, i.e., the
number of generators and, alternatively, the number of defining inequalities
is finite. If a convex cone has dimension m′, then the ranks of the set of its
generators and the set of defining inequalities are m′.

Let C be an m′-dimensional convex cone in Rm. Given v ∈ Rm, the
inequality

∑m
i=1 vixi ≥ 0 is said to be valid for C if it holds for all x ∈ C.

Then the set {x ∈ C :
∑m

i=1 vixi = 0} is called the face of C, induced by the
valid inequality

∑m
i=1 vixi ≥ 0. A face of dimension m′ − 1, m′ − 2, 1 are

Received by the editors February 10, 2010, and in revised form November 15, 2010.
2010 Mathematics Subject Classification. 52B05, 54E99.
Key words and phrases. Partial metrics; quasi-semimetrics; oriented multicuts; convex

cones; computational experiments.

c©2011 University of Calgary

26



CONES OF PARTIAL METRICS 27

called a facet, ridge, extreme ray of C, respectively (a ray is a set R≥0x with
x ∈ C).

The incidence number of a facet (or of an extreme ray) is the number of
extreme rays lying on this facet (or, respectively, of facets containing this
extreme ray).

Two extreme rays (or facets) of C are said to be adjacent on C if they
span a 2-dimensional face (or, respectively, their intersection has dimension
m′ − 2). The skeleton graph of the convex cone C is the graph GC , whose
vertices are the extreme rays of C and with an edge between two vertices
if they are adjacent on C. The ridge graph of C is the graph G∗C , whose
vertices are the facets of C and with an edge between two vertices if they
are adjacent on C. So, the ridge graph of a convex cone is the skeleton of
its dual cone.

Set Vn = {1, . . . , n} and consider a function f = ((fij)) : V 2
n −→ R≥0

such that

(1.1) Trij,k : fik + fkj − fij − fkk ≥ 0

holds for all i, j, k ∈ Vn (called triangle inequality). The function f is called
weak partial semimetric if

(1.2) fij = fji for all i, j ∈ Vn (symmetry).

A weak partial semimetric f is called partial semimetric if

(1.3) Nij : fij ≥ fii for all i, j ∈ Vn.
A partial semimetric f is called semimetric if

(1.4) fii = 0 for all i ∈ Vn.
The function f is called quasi-semimetric if (1.4) holds; so, it is a semimetric
if, moreover, (1.2) holds. Clearly, for a quasi-semimetric f , the function
((fij + fji)) is a semimetric; it called symmetrization semimetric of f .

A weak partial metric, partial metric, quasi-metric, or metric f is respec-
tively weak partial, partial, quasi-, or simply semimetric, such that

(1.5) fii = fij = fjj implies i = j

for all different i, j ∈ Vn (separation axiom).
Let us denote the function f by p, q, or d if it is a weak partial semimetric,

quasi-semimetric, or semimetric, respectively.
The quasi-metrics (or asymmetric, directed, oriented distances) appeared

already in [11, pp. 145–146]. Examples of quasi-metrics on R are Sorgenfrey
quasi-metric (equal to y − x if y ≥ x and equal to 1, otherwise) and l1
quasi-semimetric max{y− x, 0}; see the next section. Real world examples:
one-way streets mileage, travel time, transportation costs (up/downhill or
up/downstream).

A quasi-semimetric q is weightable if there exists a (weight) function w =
(wi) : Vn −→ R≥0 such that

(1.6) qij + wi = qji + wj for all different i, j ∈ Vn,



28 MICHEL DEZA AND ELENA DEZA

i.e., ((2qij + wi − wj)) is the symmetrization semimetric of q.
Partial metrics were introduced by Matthews in [14] for treatment of

partially defined objects in computer science. He also remarked that a quasi-
semimetric q = ((qij)) is weightable if and only if the function ((qij + wi))
is a partial semimetric. (Moreover, ((qij + wi)) is a partial metric if q is an
weightable Albert quasi-metric, i.e., x = y whenever q(x, y) = q(y, x) = 0.)
Weak partial semimetrics were studied in [12]; an example: p(x, y) = x+ y
for x, y ∈ R≥0. If p(x, y) is a weak partial semimetric, then p′(x, y) =
max{p(x, y), p(x, x), p(y, y)} is a partial semimetric. In fact, p(x, y) is a
weak partial semimetric if and only if d(x, y) = 2p(x, y)− p(x, x)− p(y, y)}
is a semimetric.

Scott’s domain theory (see, for example, [8]) gives partial order and non-
Hausdorff topology on partial objects in computation. In quantitative do-
main theory, a “distance” between programs (points of a semantic domain)
is used to quantify speed (of processing or convergence) or complexity of
programs and algorithms. For instance, x � y (program y contains all in-
formation from program x) is the specialization preorder (x � y if and only
if p(x, y)=p(x, x) for a partial metric p on X. In computation over a metric
space of totally defined objects, partial metric models partially defined infor-
mation: p(x, x) > 0 or p(x, x) = 0 mean that object x is partially or totally
defined, respectively. For example, for vague real numbers x (i.e., non-empty
segments of R as, say, decimals approximating π), the self-distance p(x, x)
can be the length of the segment measuring the extent of ambiguity at point
x.

Any topology on a finite set X is defined by cl{x} = {y ∈ X : y � x} for
x ∈ X, where x � y is the specialization preorder, meaning p(x, y)=p(x, x)),
for some partial semimetric p onX ([10]). Not every finite topology is defined
from a semimetric on X by this way.

Consider the following polyhedral convex cones in Rn2
with apex in (0).

(1)
(
n+1

2

)
-dimensional cone wPMETn of weak partial semimetrics p on

Vn; its facets are n facets Mii : pii ≥ 0 with i ∈ Vn and 3
(
n
3

)
facets

Trij,k with with k ∈ Vn, 1 ≤ i < j ≤ n.
(2)

(
n+1

2

)
-dimensional cone PMETn of partial semimetrics p; its facets

are n facets Mii : pii ≥ 0, n(n−1) facets Nij : pij ≥ pii with i, j ∈ Vn
and 3

(
n
3

)
facets Trij,k with k ∈ Vn, 1 ≤ i < j ≤ n (the inequalities

Trii,k are implied by pii ≤ pik = pki ≥ pkk).
(3)

(
n
2

)
-dimensional cone METn of semimetrics d; its facets are 3

(
n
3

)
facets Trij,k : dik + dkj − dij ≥ 0 with k ∈ Vn, 1 ≤ i < j ≤ n (the
inequalities dij ≥ 0 are implied by Trij,k and Trik,j).

(4) n(n− 1)-dimensional cone QMETn of quasi-semimetrics q; its facets
are n(n − 1) facets Nij : qij ≥ 0 with different i, j ∈ Vn and 6

(
n
3

)
facets Trij,k : qik + qkj − qij ≥ 0 with with k ∈ Vn, 1 ≤ i 6= j ≤ n
(now the order of k and j matters). This cone was introduced and
studied in [3], [5].
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(5)
(
n+1

2

)
-dimensional (since qji = qij + wi − wj by (6) above) cone

WQMETn of weightable quasi-semimetrics q; its facets are n(n− 1)
facets Nij : qij ≥ 0 with different i, j ∈ Vn and 3

(
n
3

)
facets Trij,k :

qik + qkj − qij ≥ 0 with k ∈ Vn, 1 ≤ i < j ≤ n (Trij,k = Trji,k for
weightable quasi-semimetrics). Clearly,

METn = PMETn ∩WQMETn .

Given an ordered partition {S1, . . . , St}, 2 ≤ t ≤ n, of Vn into non-empty
subsets, the oriented multicut quasi-semimetric (or o-multicut) δ

′
(S1, . . . , St)

on Vn is:

δ
′
ij(S1, . . . , St) =

{
1, if i ∈ Sh, j ∈ Sm,m > h;
0, otherwise.

The oriented anti-multicut quasi-semimetric (or o-anti-multicut) α
′
(S1, . . . ,

St) on Vn is α
′
ij(S1, . . . , St) = 1− δ′(S1, . . . , St) if 1 ≤ i 6= j ≤ n and = 0 if

1 ≤ i = j ≤ n.
The o-multicut δ

′
(S1, S2) = δ

′
(S, S) with t = 2 and S = S1 is called o-cut

and denoted by δ
′
(S); the o-anti-multicut α

′
(S1, S2) = α

′
(S, S) is called

o-anti-cut and denoted by α
′
(S). Set δ′(∅) = ((0)); so, α′(∅) = d(Kn), the

path metric of the complete graph.
Given an ordered partition {S1, . . . , St}, 2 ≤ t ≤ n, the multicut semi-

metric δS1,...,St is the symmetrization δ
′
(S1, . . . , St) + δ

′
(St, . . . , S1) of the

quasi-semimetric δ
′
(S1, . . . , St). The anti-multicut semimetric α(S1, . . . , St)

is the symmetrization α
′
(S1, . . . , St)+α

′
(St, . . . , S1) of the quasi-semimetric

α
′
(S1, . . . , St); in fact, it is the path metric d(K|S1|,...,|St|) of the complete

multipartite graph. In the case t = 2, the multicut and anti-multicut semi-
metrics are called cut and anti-cut semimetrics and denoted by δ(S) and
α(S), respectively. Set δ(∅) = ((0)) (it is zero cut) and α(∅) = d(Kn).

It was shown in [5] that none of semimetrics but all non-zero o-multicuts
represent extreme rays of QMETn. For n ≥ 4, this cone has other {0, 1}-
valued extreme ray representatives, including (conjecture, checked for n ≤ 5)
all o-anti-multicuts, except those of Lemma 2(3) and (4) below.

Lemma 1.1. o-multicuts and o-anti-multicuts are {0, 1}-valued quasi-semi-
metrics, which are weightable if and only if t ≤ 2. The weight functions of
o-cut δ

′
(S) and o-anti-cut α

′
(S) are wi = 1i/∈S and wi = 1i∈S, respectively.

Proof. In fact, let i ∈ S1, j ∈ S2, k ∈ S3 in the quasi-semimetric q=δ
′
(S1,

. . . , Sq). If q is weightable, then qij = (qji+wj)−wi = wj−wi. Impossible,
since also qik = wk − wi = 1, qjk = wk − wj = 1. The proof for o-anti-
multicuts is similar. �

The following equalities are easy to check.

Lemma 1.2.

(1) δ(S1, . . . , St) =
∑t

i=1 δ
′
(Si) =

∑t
i=1 δ

′
(Si) = 1

2

∑t
i=1 δ(Si).
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(2) α(∅) = d(Kn) and α(S1, . . . , St) = d(K|S1|,...,|St|).
(3) α

′
({i}) =

∑
j∈{i} δ

′
({j}).

(4) If t = n, i.e., all |Si| = 1, then α
′
(S1, . . . , St) = δ

′
(St, . . . , S1) (the

reversal of the ordered partition).

The
(
n
2

)
-dimensional cone generated by all non-zero cuts on Vn is denoted

by CUTn. It holds CUTn ⊂ METn with equality only for n = 3, 4. The
n(n − 1)-dimensional cone generated by all non-zero o-multicuts on Vn is
denoted by OMCUTn. It holds OMCUTn ⊂ QMETn with equality only
for n = 3. Denote by OCUTn the

(
n+1

2

)
-dimensional subcone of WQMETn

generated by all non-zero o-cuts; this is different from OCUTn as defined
in [5]. It holds OCUTn ⊂ WQMETn with equality only for n = 3. Denote
by l1-PMETn the

(
n+1

2

)
-dimensional subcone of PMETn generated by all its

{0, 1}-valued extreme rays. Section 3.1 below imply that p = ((pij)) ∈ l1-
PMETn if and only if ((pij − pii)) ∈ OCUTn.

A mapping f : Rm −→ Rm is called a symmetry of a cone C if it is an isom-
etry, satisfying f(C) = C (an isometry of Rm is a linear mapping preserving
the Euclidean distance). Every permutation of Vn induce a symmetry of
above cones METn, CUTn, QMETn and PMETn; so, the group Sym(n) is
a symmetry group of them. It is the full symmetry groups of METn and
CUTn for n ≥ 5 (see [2]). In QMETn, OMCUTn appears also a reversal
symmetry (see [5]), corresponding to transposition of matrix ((qij))). We
expect Z2×Sym(n) and Sym(n) to be the full symmetry groups of WQMETn,
OCUTn and PMETn, l1-PMETn, respectively.

In Table 1 we summarize the most important numeric information on
cones under consideration. The column 2 indicates the dimension of the
cone, the columns 3 and 4 give the number of extreme rays and facets,
respectively; in parenthesis are given the numbers of their orbits.

2. Weightable, l1- and digraphic quasi-semimetrics

We introduce the following short notation for the cyclic sum∑
1≤i≤k−1

q(xi, xi+1) + q(xk, x1) = x1x2 · · ·xkx1.

A quasi-semimetric q onX has relaxed symmetry if for different x, y, z ∈ X
it holds xyzx = xzyx, i.e.,

q(x, y) + q(y, z) + q(z, x) = q(x, z) + q(z, y) + q(y, x)

implying

Trxz,y = q(x, y) + q(y, z)− q(x, z) = q(z, y) + q(y, x)− q(z, x) = Trzx,y .

Lemma 2.1 ([21]). A quasi-semimetric q on X has relaxed symmetry if and
only if it is weightable.
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Table 1. Some parameters of cones for n ≤ 6

Cone Dim. Nr. of extreme Nr. of facets
rays (orbits) (orbits)

CUT3=MET3 3 3 (1) 3 (1)
CUT4=MET4 6 7 (2) 12 (1)

CUT5 10 15 (2) 40 (2)
MET5 10 25 (3) 30 (1)
CUT6 15 31 (3) 210 (4)
MET6 15 296 (7) 60 (1)

OMCUT3=QMET3 6 12 (2) 12 (2)
OMCUT4 12 74 (5) 72 (4)
QMET4 12 164 (10) 36 (2)

OMCUT5 20 540 (9) 35320 (194)
QMET5 20 43590 (229) 80 (2)

OMCUT6 30 4682 (19)
≥ 217847040

(≥ 163822)

QMET6 30
≥ 492157440

150 (2)
(≥ 343577)

l1-PMET3=PMET3 6 13 (5) 12 (3)
l1-PMET4 10 44 (9) 46 (5)
PMET4 10 62 (11) 28 (3)
l1-PMET5 15 166 (14) 585 (15)
PMET5 15 1696 (44) 55 (3)
l1-PMET6 21 705 (23)
PMET6 21 337092 (734) 96 (3)

Proof. Relaxed symmetry means

q(x, y)− q(y, x) = (q(z, y)− q(y, z))− (q(z, x)− q(x, z)).
Equivalently, q is weightable: fix point z0 ∈ X and define w(x) = q(z0, x)−
q(x, z0) + maxz(q(z, z0)− q(z0, z)) ≥ 0 for all x ∈ X. On the other hand, it
is easy to see that the above equality holds if q is weightable. �

Given k ≥ 3, a quasi-semimetric q is called k-cyclically symmetric if it
holds

x1x2x3 · · ·xkx1 = x1xkxk−1 · · ·x2x1

for any different x1x2 · · ·xk ∈ X. So, a quasi-semimetric has relaxed sym-
metry if and only if it 3-cyclically symmetric, respectively.



32 MICHEL DEZA AND ELENA DEZA

Lemma 2.2. A quasi-semimetric q on X has relaxed symmetry if and only
if it is k-cyclically symmetric for any k ≥ 3.

Proof. In fact, it holds

(x1x2x3x1 − x1x3x2x1) + (x1x3x4x1 − x1x4x3x1) + · · ·
+ (x1xk−1xkx1 − x1xkxk−1x1) = (x1x2 · · ·xkx1 − x1xk · · ·x2x1)

for any k ≥ 4. For example, for k = 4 it holds:

(x1x2x3x1−x1x3x2x1)+(x1x3x4x1−x1x4x3x1) = x1x2x3x4x1−x1x4x3x2x1.

In the other direction, we have:

(k − 2) · (x1x2 · · ·xk−1x1 − x1xk−1 · · ·x2x1)

= (x1x2 · · ·xk−1xkx1 − x1xk · · ·x2x1)

+ (x1x2 · · ·xkxk−1x1 − x1xk−1xk · · ·x2x1)

+ · · · (x1xkx2 · · ·xk−1x1 − x1xk−1 · · ·x2xkx1).

For example,

2(x1x2x3x1 − x1x3x2x1) = (x1x2x3x4x1 − x1x4x3x2x1)

+ (x1x2x4x3x1 − x1x3x4x2x1) + (x1x4x2x3x1 − x1x3x2x4x1).

�

Clearly, any finite quasi-semimetric q can be realized as the (shortest di-
rected) path quasi-semimetric of a R≥0-weighted digraph: take the complete
digraph and put on each arc (ij) the weight qij . The earliest known to us
occurrence of the notion, but not the term, of relaxed symmetry was in [15].

Theorem 1 ([15, Theorem 5]). A finite quasi-metric q can be realized as the
path quasi-metric of a R≥0-weighted bidirectional tree (a tree with all edges
replaced by 2 oppositely directed arcs) if and only if q has relaxed symmetry
and its symmetrization ((qij + qji)) can be realized as the path metric of a
R≥0-weighted tree.

Example. Consider random walks on a connected graph G = (V,E), where
at each step walk moves with uniform probability from current vertex to a
neighboring one. The hitting time quasi-metric H(u, v) on V is the expected
number of steps (edges) for a random walk on beginning at vertex u to reach
v for the first time; put H(u, u) = 0. The cyclic tour property of reversible
Markov chains implies that H(u, v) is weightable. The commuting time
metric C(u, v) = H(u, v) + H(v, u) is ([20]) 2|E|R(u, v), where R(u, v) is
the effective resistance metric, i.e., 0 if u = v and, otherwise, 1

R(u,v) is the
current flowing into v, when grounding v and applying 1 volt potential to u
(each edge is seen as a resistor of 1 ohm). It holds

R(u, v) = sup
f :V→R, D(f)>0

(f(u)− f(v))2

D(f)
,
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where D(f) =
∑

st∈E(f(s)− f(t))2.
Define for p ≥ 1 oriented lp-norm on Rm as

||x||p, or =
( m∑
k=1

(max(xk, 0))p
) 1

p

and oriented l∞-norm as ||x||∞, or = maxmk=1 max(xk, 0), where xk is the k-
th coordinate of x. Then, lp quasi-semimetric lp, or is defined as ||x− y||p, or.
The quasi-semimetric space (Rm, lp, or) is abbreviated as lmp, or.

Theorem 2 ([5, Theorem 1]).

(i) Any quasi-semimetric q on Vn is embeddable in lm1, or for some m if
and only if q ∈ OCUTn.

(ii) Any quasi-semimetric q on Vn is embeddable in ln∞, or.

In [1], oriented lp semimetric on Rm was given as

||x− y||CMM
p, or =

( m∑
i=1

|xi − yi|p
) 1

p +
( m∑
i=1

|yi|p
) 1

p −
( m∑
i=1

|xi|p
) 1

p
.

Those two definitions are very similar on Rm
≥0 for p = 1:

||x− y||CMM
1, or = 2||y − x||1, or.

Given a measure space (Ω,A, µ), then the measure semimetric on the set
Aµ = {A ∈ A : µ(A) <∞} is µ(A4B), where A4B = (A ∪ B)\(A ∩ B) =
(A\B) ∪ (B\A) is the symmetric difference of sets A and B. If µ(A) =
|A|, then µ(A4B) = |A4B| a metric. A measure quasi-semimetric on
the set Aµ is q(A,B) = µ(A4B) + µ(B) − µ(A) = µ(B\A). In fact (as
well as for semimetrics), the measure quasi-semimetrics are exactly l1-quasi-
semimetrics ([3, p. 780]).
Example. Let q be a quasi-metric on V3 with q21=q23=2 and qij=1 for other
i 6= j. In fact, q = δ′({1})+2δ′({2})+δ′({3}) ∈ OCUT3 = WQMET3. So, q
is weightable (wi = 1, 0, 1 for i = 1, 2, 3) and P (q) = P (δ′({1}) + δ′({2})) +
P (δ′({2})+δ′({3})) (P (q) is defined in Section 3 below). The quasi-metric q
is a l1-quasi-semimetric with qij =

∑5
s=1 max(0, x(i)

s −x(j)
s ) (1 ≤ i, j ≤ 3) for

x(1) = (1, 1, 0, 0, 0), x(2) = (1, 0, 0, 1, 1), x(3) = (1, 0, 1, 0, 0) ∈ R5. In other
words, q is a measure quasi-semimetric with qij = µ(A(j)\A(i)) (for the
counting measure µ(A) = |A|) on the following subsets of V5: A(1) = {1, 2},
A(2) = {1, 4, 5}, A(3) = {1, 3}.

3. The cone PMETn

Call a partial semimetric p = ((pij)) ∈ PMETn reducible if min1≤i≤n pii =
0. For any quasi-semimetric q = ((qij)) 6= ((0)) in the cone WQMETn, there
exist a (weight) function w = (wi) : Vn −→ R≥0 such that ((qij + wi)) is a
partial semimetric. Clearly, ((qij + w′i)) is also a partial semimetric for any
(weight) function w′ = (w′i) with w′i = wi − min1≤j≤nwj + λ, λ ≥ 0. In
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other words, there is a bijection P between all weightable non-zero quasi-
semimetrics q ∈WQMETn and all reducible partial semimetrics p = P (q) ∈
PMETn. For q = ((0)), set P (q) = J , where J = ((Jij)) with Jij = 1. So,
P is a bijection between WQMETn and the set of rays {P (q) + λJ}, where
λ ≥ 0. Here, for q = ((0)), P (q) = J and, otherwise, it is a reducible partial
semimetric. For an element c of a convex cone C denote by rank(c) the
rank of the set of defining inequalities of the cone, which become equalities
for c, i.e., the set of facets to which c belongs.

Lemma 3.1. If q = ((qij)) ∈ WQMETn with a weight function w = (wi)
and p = ((qij + wi)), then rank(p) = rank(q) + |{1 ≤ i ≤ n : wi = 0}|.

Proof. Clearly, p lies on the facet Nij : pij − pii ≥ 0 with i 6= j of PMETn

if and only if q lies on the facet Nij : qij ≥ 0 of WQMETn. Also, p lies on
the facet Trik,j : pij + pjk − pik − pjj ≥ 0 of PMETn if and only if q lies
on the facets Trik,j : qij + qjk − qik ≥ 0 and Trki,j = qkj + qji − qki ≥ 0
of WQMETn. The equality Trik,j = Trki,j is exactly relaxed symmetry
characterizing weightable quasi-semimetrics. So, all triangle equalities for
q stay for p, while equalities qij = 0 for 1 ≤ i 6= j ≤ n transform into
pij − pii = 0. Only the equalities pii = 0, corresponding to the equalities
wi = 0 became new and they increase rank. �

The previous lemma implies that if q ∈WQMETn represents an extreme
ray, then P (q) ∈ PMETn also represents an extreme ray. In fact, the cones
have the same dimension. But more extreme rays appear in PMETn. For
q(1), q(2) ∈WQMETn, P (q(1)) +P (q(2)) belongs to the ray {P (q(1) + q(2)) +
λJ}, i.e., P (q(1) +q(2)) = P (q(1))+P (q(2))−λJ with λ ≥ 0, which is weaker
than linearity, corresponding to λ = 0.

Recall that METn = PMETn ∩WQMETn. The previous lemma also
implies that a semimetric represents an extreme ray in

(
n+1

2

)
-dimensional

cone PMETn if and only if it represents an extreme ray in
(
n
2

)
-dimensional

cone METn. In fact, exactly n new valid equalities pii = 0 appear for
it in PMETn. See the number of such extreme rays for n ≤ 6 in Table
1. For n ≤ 6, the orbit-representing semimetrics, besides cuts δ(S) with
1 ≤ |S| ≤ bn2 c, are d(K{1,2},{3,4,5}) and d(K{1=6,2},{3,4,5}), d(K{1,2},{3,4,5=6}),
d(K{1,2},{3,4,5,6}), d(K{1,2,3},{4,5,6}), d(K{1,2,3},{4,5,6} − e14). Here notation
−eij means that the edge ij is deleted.

3.1. {0, 1}-valued elements of PMETn. For any subset S0 ⊂ Vn, denote
by J(S0) the function a : V 2

n −→ {0, 1} with aij = 1 exactly when i, j ∈ S0;
so, J(Vn) = J , where, as above, J is the partial semimetric with all values 1.

Given integer i ≥ 0, let Q(i) denote i-th partition number, i.e., the number
of ways to write i as a sum of positive integers; Q(i) form the sequence
A000041 in [19]: 1, 1, 2, 3, 5, 7, 11, 15, . . . . Given integer i ≥ 0, let B(i)
denote i-th Bell number, i.e., the number of partitions of Vi = {1, . . . , i};
B(i) form the sequence A000110 in [19]: 1, 1, 2, 5, 15, 52, 203, 877, . . . . So,
B(n) is the number of all multicuts on Vn, while the number of all cuts is
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2n−1. Note that the number of all o-cuts on Vn is 2n, while the number of all
o-multicuts is n-th ordered Bell number Bo(n), i.e., the number of ordered
partitions of Vn; Bo(n) form the sequence A000670 in [19]: 1, 1, 3, 13, 75,
541, 4683, 47293, . . . .

Theorem 3.

(i) All {0, 1}-valued elements of PMETn are
∑

0≤i≤n
(
n
i

)
B(n− i) (orga-

nized into
∑

0≤i≤nQ(i) orbits under Sym(n)) elements of the form
J(S0) + δ(S0, S1, . . . , St) = P (

∑
1≤i≤t δ

′(Si)), where S0 is any subset
of Vn and S1, . . . , St is any partition of S0.

(ii) The incidence number (defined in Section 1) of {0, 1}-valued element
p = J(S0) + δ(S0, S1, . . . , St), is: n − |S0| (to facets Mii : pii ≥
0) plus

∑
1≤k≤t |Sk|(|Sk| − 1) + (|S0|(|S0| − 1) + |S0|(n − |S0|) (to

facets Nij : pij − pii ≥ 0, i 6= j, with 0 − 0 = 0 and 1 − 1 = 0,
respectively) plus 3

∑
1≤k≤t

(|Sk|
3

)
+
∑

1≤k≤t |Sk|(|Sk| − 1)(n− |Sk|) +
|S0|

∑
1≤k≤k′≤t |Sk||Sk′ | (to facets Trij,k : pik + pkj − pij − pkk ≥ 0

with 0 + 0− 0− 0 = 0, 1 + 0− 1− 0 = 0 and 1 + 1− 1− 1 = 0).
(iii) All {0, 1}-valued representatives of extreme rays of PMETn are 2n−1

+
∑

1≤i≤n−1

(
n
i

)
B(n − i) (organised into 1 + bn2 c +

∑
1≤i≤n−1Q(i)

orbits under Sym(n)) elements of the form J(S0)+δ(S0, S1, . . . , St),
where t = 2 if S0 = ∅ (w.l.o.g. suppose Si 6= ∅ for 1 ≤ i ≤ t).

Proof.

(i) Given an {0, 1}-valued element p of PMETn, let us construct parti-
tion S0, S1, . . . , St such that p = J(S0) + δ(S0, S1, . . . , St).

See, for example, below the partial semimetric

p = ((pij)) = J({67}) + δ({67}, {1}, {23}, {45}) = P (q)

({0, 1}-valued extreme ray of PMET7) and corresponding weightable
quasi-semimetric

q = ((qij = pij − pii))

({0, 1}-valued non-extreme ray of WQMET7).

0 1 1 1 1 1 1 0 1 1 1 1 1 1
1 0 0 1 1 1 1 1 0 0 1 1 1 1
1 0 0 1 1 1 1 1 0 0 1 1 1 1
1 1 1 0 0 1 1 1 1 1 0 0 1 1
1 1 1 0 0 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0

Set S0 = {1 ≤ k ≤ n : pkk = 1}; then pkk′ = pk′k = 1 for any
k ∈ S0 and 1 ≤ k′ ≤ n by definition of the facets Nkk′ , Nk′k. Let S1

be a maximal subset of S0 such that pkk′ = 0 for k, k′ ∈ S1, then
S2 be a maximal subset of S0 ∪ S1 such that pkk′ = 0 for k, k′ ∈ S2
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and so on. It remains to show that pkk′ = 1 if k ∈ Si, k′ ∈ Si′
with different 1 ≤ i, i′ ≤ t. W.l.o.g. suppose |Si| ≥ 2 for some
1 ≤ i ≤ n, since, otherwise, (i) holds by construction of sets Si. The
inequalities Trkj,k′ ≥ 0 and Trk′j,k ≥ 0, where k, k′ ∈ Si and j ∈ Si′ ,
imply pkj = pk′j , since pkk′ = pkk = pk′k′ = 0. Now, pkj = pk′j = 0
is impossible by construction of sets Si; so, pkj = pk′j = 1.

(ii) It can be checked by direct computation.
(iii) If S0 = ∅, then p is a multicut; so, by first equality in Lemma 2,

it represents an extreme ray if and only if it is a non-zero cut. Let
S0 6= ∅; let order it as S0 = {z1, . . . , zs}, where s = |S0|. The
following list of

(
n+1

2

)
− 1 linearly independent (as vectors) facets

among those, to which p is incident, show (iii):
• Nij : pij − pii = 0− 0 = 0 with i, j ∈ Sk, 1 ≤ k ≤ t;
• Trij,z1 : piz1 + pjz1 − pij − pz1z1 = 1 + 1− 1− 1 = 0 with i ∈ Sk,
j ∈ Sk′ and different 1 ≤ k, k′ ≤ t;
• n − 1 − s + k facets Nizk

: pzki − pzkzk
= 1 − 1 = 0 with

i ∈ S0 ∪ {z1, . . . , zk−1} for each 1 ≤ k ≤ s;
• s− 1 facets Nzkz1 : pzkz1 − pz1z1 = 1− 1 = 0 with 2 ≤ k ≤ s;
• n− s facets Mii : pii = 0 with i ∈ S0.

So, {0, 1}-valued partial semimetric

p = J(S0) + δ(S0, S1, . . . , St) = P (
∑

1≤i≤t δ
′(Si))

consists of all ones if S0 = Vn; it is a semimetric (moreover, the
multicut δ(S0, S1, . . . , St)) if S0 = ∅.

For S0 = Vn,∅, exactly 2n−1 partial semimetrics p represent an
extreme ray: p = J(Vn) = J = P (δ(∅)) (one orbit) and 2n−1 − 1
non-zero cuts δ(S) (bn2 c orbits).

The incidence number of the extreme ray represented by P (δ(S)) = δ(S)
(cut semimetric) is

3
(
n

3

)
− n(n− |S|)(|S| − 2)

2
+ |S|2

=
(

3
(
n

3

)
+ n2

)
− n|S|(n− |S|)

2
− |S|(n− |S|).

The incidence number of the extreme ray represented by P (δ′(S)) = J(S) +
δ(S) is

(3
(
n

3

)
+ n2)− n|S|(n− |S|)

2
− (n− |S|).

The case S = ∅ corresponds to the extreme ray J = J(Vn) + δ(∅)) of
all-ones. The orbit size of P (δ(S)) and P (δ′(S)) is

(
n
|S|
)
, except the case

|S| = n
2 , when it is 1

2

(
n
|S|
)
.
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The incidence number of the extreme ray represented by P (
∑

1≤i≤t δ
′({i}))

is

t+ t(n− t) + (n− t)
(
n− 1

2

)
.

The size of its orbit is
(
n
t

)
. For t = n − 1, it is a simplicial extreme ray

represented by P (α′{n}). �

3.2. Some other extreme rays of PMETn. The partial semimetric ((pij))
= P (α′(S)) have pij = 2 if |{i, j} ∩ S| = 2, pii = 0 if i /∈ S and pij = 1,
otherwise. So, it is the matrix J of all-ones if S = ∅. If |S| ≥ 2, then the
incidence number of P (α′(S)) is n|S|(n−|S|)

2 + (n− |S|). It is the sum of:

• (n− |S|) (to facets Mii, i /∈ S),
• |S|(n− |S|) (to facets Nij , i ∈ S, j /∈ S), and
• (|S|

(
n−|S|

2

)
+ (n − |S|)

(|S|
2

)
) (to facets Tij,k = 1 + 1 − 2 − 0 or =

1 + 1− 1− 1 for i, j ∈ S, k /∈ S or i, j /∈ S, k ∈ S, respectively).

It can be shown, similarly to the proof of Theorem 3(iii), that P (α′(S))
represents an extreme ray of PMETn and this ray is simplicial if and only
if |S| = 1.

The partial semimetric ((pij)) = P (α(S)) is the semimetric α(S) =
d(KS,S), which represent also an extreme ray in METn if 2 ≤ |S| ≤ n − 2.
The incidence number of it, as an extreme ray of PMETn, is

n+0+
(
|S|
(
n− |S|

2

)
+ (n− |S|)

(
|S|
2

))
=
n|S|(n− |S|)

2
+n−|S|(n−|S|).

We conjecture that o-cuts δ
′
(S) with 1 ≤ |S| ≤ n−1 and o-anticuts α

′
(S)

with 2 ≤ |S| ≤ n − 2 are only representatives q of extreme ray in QMETn

such that P (q) represent an extreme ray in PMETn.
Above formulae for incidence numbers imply that, for any n, the partial

metrics P (α′({i})) =
∑

j∈{i} δ
′
({j}) form unique orbit of {0, 1}-valued rep-

resentatives of a simplicial (i.e., with incidence number
(
n+1

2

)
− 1) extreme

ray in PMETn. Besides, PMETn with n = 4, 5, 6 have, respectively, 0, 1, 16
such orbits of size n! and 1, 3, 8 such orbits of size n!

2 and 0, 1, 1 such orbits
of size n!

3! . Also, PMET4 has one such orbit of size 10. Hence, altogether
PMETn with n = 3, 4, 5, 6 have 3, 16, 340, 14526 simplicial extreme rays,
organized in 1, 2, 7, 26 orbits, respectively.

The diameter of the skeleton of PMETn is, perhaps, 2, because the ex-
treme ray J of all ones is incident to all facets incident to any extreme
ray {p + λJ}, except Mii, whenever pii > 0. If p is any other {0, 1}-
valued partial semimetric, i.e., p = P (

∑
1≤k≤t δ

′(Sk)), then n − |S0| such
facets are excluded. In particular, for simplicial extreme ray represented by
p = P (α′({i}) =

∑
j∈{i} δ

′
({j}), the common facets are

(
n+1

2

)
−1 facets of p,

except n− 1 facets pjj = 0 with 1 ≤ j ≤ n, j 6= i; so, they are not adjacent.
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3.3. Vertex-splitting. The vertex-splitting of a function f = ((fij)) on V 2
n

is a function fvs = ((fvsij )) on V 2
n+1, defined, for 1 ≤ i, j ≤ n+ 1, by

fvsn+1n+1 = fvsnn+1 = fvsn+1n = 0,
fvsi n+1 = fi n,

fvsn+1 i = fn i, and
fvsi j = fi j .

The vertex-splitting of an o-multicut δ′(S1, . . . , Sq) is the o-multicut δ′(S1,
. . . , Sl ∪ {n+ 1}, . . . , Sq) if n ∈ Sl.

The vertex-splitting of a generic {0, 1}-valued element J(S0) + δ(S0, S1,
. . ., St) of PMETn is J(S0)+δ(S0, S1, . . . , Sl∪{n+1}, . . . , St) ∈ PMETn+1

if n ∈ Sl with l 6= 0, and it is not a partial metric, otherwise. So, the
only {0, 1}-valued elements, which are not vertex-splittings, are those with
|Si| = 1 for all 1 ≤ i ≤ t.

Finally, the vertex-splitting of a ({0, 1, 2}-valued) extreme ray represen-
tative P (α′(S)) is a P (α′(S) + enn+1) ∈ PMETn+1 if n /∈ S and it is not a
partial metric, otherwise. The orbit O18 of extreme ray representatives in
PMET5 consists of vertex-splittings of ones of the orbit O10 of P (α′({14})
in PMET4. The orbits O28 and O29 of ({0, 1, 2, 3}-valued) extreme ray rep-
resentatives in PMET5 consist of vertex-splittings (two ways) of ones of the
orbit O11 in PMET4.

Theorem 4. If a partial semimetric p represents an extreme ray of PMETn

and has pnn = 0, then its vertex-splitting pvs represents an extreme ray of
PMETn+1.

Proof. The condition pnn = 0 is needed since, othervise, pvs violate the
inequality fn+1n+1 − fnn ≥ 0, which is valid in PMETn+1. It suffice to
present n + 1 facets which, together with

(
n+1

2

)
− 1 linearly independent

facets (seen as vectors) containing p, will form
(
n+2

2

)
−1 linearly independent

facets containing pvs. Such facets are two of type Nij (pn+1n+1 ≥ 0 and
pnn+1 − pn+1n+1 ≥ 0) and n − 1 of type Trin,n+1 : pi n+1 + pnn+1 − pin −
pn+1n+1 ≥ 0. �

Above theorem gives another proof for the completeness of the list of
{0, 1}-valued extreme rays of PMETn.

4. The cone l1-PMETn

The subcone l1-PMETn of PMETn, generated by all its {0, 1}-valued
extreme rays consists of all partial semimetrics p = ((pij)) such that q =
((pij − pii)) ∈ OCUTn, i.e., the quasi-semimetric q is l1-embeddable. l1-
PMETn coincides with PMETn only for n = 3.

A zero-extension of an inequality
∑

1≤i 6=j≤n−1 fijdij ≥ 0, is an inequality∑
1≤i 6=j≤n

f ′ijdij ≥ 0 with f ′ni = f ′in = 0 and f ′ij = fij , otherwise.
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Oi Representative P (q) 11 21 22 31 32 33 Inc. |Oi|
O1 P (δ′(∅)) 1 1 1 1 1 1 9 1
O2 P (δ′({1})) 1 1 0 1 0 0 8 3
O3 P (δ′({1})) 0 1 1 1 1 1 7 3
O4 P (δ({1}) = δ′({1}) + δ′({1}) 0 1 0 1 0 0 7 3
O5 P (α′({3}) = δ′({1}) + δ′({2}) 0 1 0 1 1 1 5 3

Table 2. The representatives of orbits of extreme rays in PMET3

Oi Representative 11 21 22 31 32 33 Inc. |Oi|
O1 NN11 : p11 ≥ 0 1 0 0 0 0 0 8 3
O2 Tr23,1 : p21 + p31 ≥ p32 + p11 -1 1 0 1 -1 0 8 3
O3 NN21 : p21 ≥ p11 -1 1 0 0 0 0 7 6

Table 3. The representatives of orbits of facets in PMET3 =
l1 − PMET3

Easy to see that zero-extension of any facet-defining inequality of l1-
PMETn−1 is a valid inequality of l1-PMETn. We conjecture that, moreover,
it is a facet-defining inequality of l1-PMETn.

Given a sequence of n integers b = (b1, . . . , bn), let
∑

(b) denote
∑n

i=1 bi
and, for any p = ((pij)) ∈ l1-PMETn, denote

Hp(b) = −
∑

1≤i<j≤n
bibjpij ,

Hypp(b) = Hp(b)−
1
2

n∑
i=1

bi(bi − 1)pii, and

Ap(b) = Hp(b)−
1
2

n∑
i=1

max{0, |bi|(|bi|+ 1)− 2}pii.

For
∑

(b) ∈ {0, 1}, call Hypp(b) ≥ 0 and Ap(b) ≥ 0 hypermetric inequality
and modular inequality, respectively.

Lemma 4.1.

(i) Any hypermetric inequality Hypp(b) ≥ 0 is valid on l1-PMETn.
(ii) Any modular inequality Ap(b) ≥ 0 with max1≤i≤n |bi| ≤ 2 is valid on

l1-PMETn.

Proof. In fact, it suffices to check its validity for a typical extreme ray of
l1-PMETn represented by p = J(S0) + δ(S0, S1, . . . , St) = P (

∑
1≤i≤t δ

′(Si)).
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Oi Representative P (q) 11 21 22 31 32 33 41 42 43 44 Inc. |Oi|
O1 P (δ′(∅)) 1 1 1 1 1 1 1 1 1 1 24 1
O2 P (δ′({2}) 0 1 1 0 1 0 0 1 0 0 21 4
O3 P (δ′({3}) 1 1 1 1 1 0 1 1 1 1 19 4
O4 P (δ({3}) 0 0 0 1 1 0 0 0 1 0 19 4
O5 P (δ′({3, 4}) 1 1 1 1 1 0 1 1 0 0 18 6
O6 P (δ({3, 4}) 0 0 0 1 1 0 1 1 0 0 16 3
O7 P (δ′({2}) + δ′({3}) 1 1 0 1 1 0 1 1 1 1 14 6
O8 P (δ′({2}) + δ′({3, 4}) 1 1 0 1 1 0 1 1 0 0 14 12
O9 P (α′({4}) 0 1 0 1 1 0 1 1 1 1 9 4
O10 P (α′({1, 4}) 1 1 0 1 1 0 2 1 1 1 10 6
O11 P (δ({3}) + 2δ′({4}) + 2d(K{1,2}) 0 2 0 1 1 0 2 2 3 2 9 12

Table 4. The representatives of orbits of extreme rays in PMET4

Oi Representative 11 21 22 31 32 33 41 42 43 44 Inc. |Oi|
O1 NN11 : p11 ≥ 0 1 0 0 0 0 0 0 0 0 0 29 4
O2 Hypp(−1, 1, 1, 0) = p21 + p31 − p32 − p11 ≥ 0 -1 1 0 1 -1 0 0 0 0 0 26 12
O3 NN21 = Hypp(1,−1, 0, 0) = p21 − p11 ≥ 0 -1 1 0 0 0 0 0 0 0 0 23 12
O4 Hypp(1, 1,−1,−1) ≥ 0 0 -1 0 1 1 -1 1 1 -1 -1 16 6
O5 Ap(2, 1,−1,−1) = Hp(2, 1,−1,−1)− 2p11 ≥ 0 -2 -2 0 2 1 0 2 1 -1 0 9 12

Table 5. The representatives of orbits of facets in l1-PMET4
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Oi Representative P (q) 11 21 22 31 32 33 41 42 43 44 51 52 53 54 55 Inc. |Oi|
O1 P (δ′(∅)) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 90 1
O2 P (δ′({5}) 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 44 5
O3 P (δ′({5}) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 41 5
O4 P (δ({1}) 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 41 5
O5 P (δ′({1, 5}) 1 1 0 1 0 0 1 0 0 0 1 1 1 1 1 38 10
O6 P (δ′({1, 5}) 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 37 10
O7 P (δ({1, 5}) 0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 34 10
O8 P (δ′({5}) + δ′({4})) 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 32 10
O9 P (δ′({1}) + δ′({1, 2})) 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0 32 20
O10 P (δ′({1}+ δ′({1, 5})) 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 29 30
O11 P (δ′({1, 5}+ δ′({3, 4})) 0 1 1 1 1 0 1 1 0 0 0 1 1 1 0 28 15
O12 P (δ′({5}+δ′({4})+δ′({1})) 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 23 10
O13 P (δ′({5}+δ′({4})+δ′({1, 3})) 0 1 1 0 1 0 1 1 1 0 1 1 1 1 0 21 30
O14 P (α′({1}) 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 14 5
O15 P (α′({2, 3}) 0 1 1 1 2 1 1 1 1 0 1 1 1 1 0 18 10
O16 P (α′({4, 5}) 1 2 1 2 2 1 1 1 1 0 1 1 1 1 0 17 10
O17 P (α({4, 5}) = d(K2,3) 0 2 0 2 2 0 1 1 1 0 1 1 1 2 0 14 10
O18 P (α′({23}+ e14) 0 1 1 1 2 1 1 1 1 0 0 1 1 1 0 24 30
O19 1 1 1 2 2 1 1 1 1 0 1 1 1 1 0 23 30
O20 2 2 1 2 2 1 2 1 1 0 2 1 1 1 0 19 30
O21 1 2 2 1 2 0 2 2 1 1 2 2 1 2 1 17 20
O22 0 1 1 2 2 1 1 1 1 0 1 1 1 1 0 17 60

Table 6. The representatives of orbits of extreme rays in PMET5.
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Oi Representative P (q) 11 21 22 31 32 33 41 42 43 44 51 52 53 54 55 Inc. |Oi|
O23 1 2 1 1 2 0 2 1 1 0 1 1 1 1 0 16 60
O24 1 2 2 1 2 0 2 2 1 1 2 2 1 2 0 16 60
O25 1 2 2 1 2 0 2 2 1 0 2 2 1 2 0 15 60
O26 0 2 2 1 2 0 2 2 1 0 2 2 1 2 0 14 20
O27 0 2 2 1 3 0 2 2 1 0 2 2 3 2 2 22 30
O28 0 2 2 1 3 0 2 2 1 0 0 2 1 2 0 22 60
O29 0 3 2 0 3 0 1 2 1 0 1 2 1 2 0 21 30
O30 0 2 2 3 3 2 1 2 2 0 1 2 2 0 18 30
O31 0 2 2 1 3 0 2 2 1 0 2 2 1 2 0 16 20
O32 0 2 2 3 3 0 2 2 1 0 2 2 1 2 0 16 60
O33 3 3 2 3 3 0 3 2 1 0 3 2 1 2 0 16 60
O34 1 3 2 1 3 0 2 2 1 0 1 2 1 2 0 16 120
O35 0 3 2 2 3 0 1 2 1 0 1 2 1 2 0 15 30
O36 2 3 2 2 3 0 3 2 1 0 3 2 1 2 0 15 60
O37 0 2 2 2 3 1 1 2 1 0 1 2 2 2 0 15 120
O38 0 2 2 2 3 0 1 2 1 0 1 2 1 2 0 14 60
O39 0 2 2 3 3 2 1 2 2 0 1 2 2 2 0 14 60
O40 2 3 2 2 3 0 3 2 1 0 1 1 1 1 0 14 120
O41 2 4 2 3 3 0 2 2 1 0 2 1 2 0 16 30
O42 0 2 2 3 4 2 1 2 2 0 1 2 2 2 0 15 60
O43 2 3 2 2 3 0 3 2 1 0 4 3 2 3 2 14 60
O44 0 4 4 3 5 0 2 4 1 0 2 4 3 4 2 15 120

Table 6. The representatives of orbits of extreme rays in PMET5. (Continued.)
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Oi Representative 11 21 22 31 32 33 41 42 43 44 51 52 53 54 55 Inc. |Oi|
O1 NN11 : p11 ≥ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 114 5
O2 Hypp(1, 1,−1, 0, 0) ≥ 0 -1 1 0 1 -1 0 0 0 0 0 0 0 0 0 0 92 30
O3 Hypp(1,−1, 0, 0, 0) ≥ 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 81 20
O4 Hypp(1, 1, 1,−1,−1) ≥ 0 0 -1 0 -1 -1 0 1 1 1 -1 1 1 1 -1 -1 62 10
O5 Hypp(1, 1,−1,−1, 0) ≥ 0 0 -1 0 1 1 -1 1 1 -1 -1 0 0 0 0 0 54 30
O6 Hypp(1, 1, 1,−1,−2) ≥ 0 0 -1 0 -1 -1 0 1 1 1 -1 2 2 2 -2 -3 36 20
O7 Ap(2, 1,−1,−1, 0) ≥ 0 -2 -2 0 2 1 0 2 1 -1 0 0 0 0 0 0 31 60
O8 Hypp(2, 1,−1,−1,−1) ≥ 0 -1 -2 0 2 1 -1 2 1 -1 -1 2 1 -1 -1 -1 29 20
O9 Ap(3, 1,−1,−1,−1) ≥ 0 -5 -3 0 3 1 0 3 1 -1 0 3 1 -1 -1 0 23 20
O10 Ap(2, 2,−1,−1,−1) ≥ 0 -2 -4 -2 2 2 0 2 2 -1 0 2 2 -1 -1 0 20 10
O11 Ap(2, 1, 1,−1,−2) ≥ 0 -2 0 -2 -1 0 2 1 1 0 4 2 2 -2 -2 2 20 60
O12 -5 -5 -2 3 2 0 3 2 -1 0 5 3 -2 -2 0 19 60
O13 0 2 -2 -1 2 0 -1 0 1 0 2 -2 0 2 -2 18 60
O14 -2 -3 0 4 2 -2 3 1 -2 0 4 2 -2 -2 -2 18 60
O15 -2 -2 2 1 0 2 2 -1 -2 2 1 0 -2 0 2 17 120

Table 7. The representatives of orbits of facets in l1-PMET5
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For any 0 ≤ k ≤ t, let αk =
∑

i∈Sk
bi; so,

∑
(b) =

∑t
k=0 αk. It holds that

2Hp(b) =
n∑
i=1

b2i pii −
∑

1≤i,j≤n
bibjpij

=
∑
i∈S0

b2i −
∑
i∈S0

bi
∑

(b)−
t∑

k=1

(∑
i∈Sk

bi

)(∑
i/∈Sk

bi

)

=
∑
i∈S0

b2i − α0

∑
(b)−

t∑
k=1

αk

(∑
(b)− αk

)

=
∑
i∈S0

b2i +
t∑

k=1

(αk)2 −
(∑

(b)
)2

=
∑
i∈S0

bi(bi − 1) +
t∑

k=1

αk(αk − 1)−
∑

(b)
(∑

(b)− 1
)
.

So, 2 Hypp(b) =
∑t

k=1 αk(αk − 1) ≥ 0, i.e., (i) holds.
Now,

2Ap(b) =
(∑
i∈S0

b2i +
t∑

k=1

(αk)2 −
(∑

(b)
)2)− (∑

i∈S0

|bi|2 −
∑
i∈S0

|bi|+ 2|S′0|
)

=
t∑

k=1

(αk)2 −
(∑

(b)
)2

+
∑
i∈S0

|bi| − 2|S′0|,

where S
′
0 = {i ∈ S0 : bi 6= 0}. If

∑
(b) = 0, then 2Ap(b) ≥ 0. If

∑
(b) = 1,

then either
∑t

k=1(αk)2, or 2|S′0| −
∑

i∈S0
|bi| is at least 1. So, (ii) holds. �

In fact, the typical facet-defining inequalities N12 : p12 − p22 ≥ 0 and
Tr12,3 : p13 + p23− p12− p33 ≥ 0 of PMETn are instances of Hypp(b) ≥ 0 for
b = (1,−1, 0, . . . , 0) and b = (1, 1,−1, 0, . . . , 0), respectively.

The cone l1-PMET4 (besides orbits O1, O2, O3 of sizes 4, 12, 12 of facets
of PMET4) has orbits O4, O5 (of sizes 6, 12) of facets, represented by:

Hypp((1, 1,−1,−1) = (p13 + p23 + p14 + p24)− (p12 + p34)− (p33 + p44) ≥ 0

and

Ap(2, 1,−1,−1) = (2p13 + p23 + 2p14 + p24)− (2p12 + p34)− 2p11 ≥ 0.

Note that the orbits O10 and O11 of extreme rays in PMET4 excluded
in l1-PMET4 by orbits O4 and O5, respectively. In fact, P (α′{1, 2}) vio-
lates Hypp(1, 1,−1,−1) ≥ 0, while P (δ({1}) + 2δ′({2}) + 2d(K{3,4}) violates
Ap(2, 1,−1,−1) ≥ 0.

The cone l1-PMET5 has 585 facets in 15 orbits, represented in Table 8 up
to a permutation (orbits O1, O2, O3, O5, O7 consist of 0-extensions of facets
of l1-PMET4).



C
O

N
E

S
O

F
P
A

R
T

IA
L

M
E

T
R

IC
S

4
5

Oi Size Representative

O1 5 N11 : p11 ≥ 0

O2 30 Tr12,3 = Hypp(1, 1,−1, 0, 0) ≥ 0.

O3 20 N12 : Hypp(1,−1, 0, 0, 0) ≥ 0.

O4 10 Hypp(1, 1, 1,−1,−1) ≥ 0.

O5 30 Hypp(1, 1,−1,−1, 0) ≥ 0.

O6 20 Hypp(1, 1, 1,−1,−2) ≥ 0.

O7 20 Ap(2, 1,−1,−1, 0) = Hp(2, 1,−1,−1, 0)− 2p11 ≥ 0.

O8 20 Hypp(2, 1,−1,−1,−1) ≥ 0.

O9 20 Ap(3, 1,−1,−1,−1) = Hp(3, 1,−1,−1,−1)− 5p11 ≥ 0.

O10 10 Ap(2, 2,−1,−1,−1) = Hp(2, 2,−1,−1,−1)− 2(p11 + p22) ≥ 0.

O11 60 Ap(2, 1, 1,−1,−2) = Hp(2, 1, 1,−1,−2)− 2(p11 + p55) ≥ 0.

O12 60 Hp(3, 2,−1,−1,−2) ≥ −p12 + 5p11 + 2p22 + p15 + p25.

O13 60 2p12 + 2p23 + p34 + 2p45 + 2p51 ≥ 2p22 + p13 + 2p25 + p41 + 2p55.

O14 60 (4p13 + 3p14 + 4p15) + (2p23 + p24 + 2p25) ≥ 2(p34 + p35 + p45) + 3p12 + 2(p11 + p33 + p55).

O15 120 Hp(−2,−1, 1, 2, 1) ≥ 2(p14 + p34 + p11 + p44),

i.e., 2(p13 + p14 + p15) + (p23 + 2p24 + p25) ≥ (p34 + 2p45) + 2p12 + 2(p11 + p44).

Table 8. The cone l1-PMET5.
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Denote by INHYPn the inhomogeneous hypermetric cone of all symmetric
n× n matrices ((aij)) with aij ≥ 0 defined by the inequalities Hypa(b) ≥ 0
for all sequence of n integers b = (b1, . . . , bn), with

∑n
i=1 bi ∈ {0, 1}. Clearly,

l1 − PMETn ⊂ INHYPn ⊂ PMETn,

generalizing
CUTn ⊂ HYPn ⊂ METn,

for the restrictions of cones on the semi-metrics.
Remind Theorem 2(i) that the cone OCUTn of all quasi-semimetrics on

Vn embeddable into lm1,or for some m consists of all n × n matrices ((qij =
pij − pii)), where ((pij)) ∈ l1 − PMETn; so, any ((qij)) is a weightable
quasi-semimetric with weights wi = pii, 1 ≤ i ≤ n. Using

2Hp(b)−
n∑
i=1

b2i pii = −
∑

1≤i,j≤n
bibjpij

= −
∑

1≤i,j≤n
bibjqij −

n∑
i=1

bipii

n∑
j=1

bj

= −
∑

1≤i,j≤n
bibjqij −

∑
(b)

n∑
i=1

biwi,

we can reformulate above Lemma as follows.

Corollary 1. Given a sequence of n integers b = (b1, . . . , bn), with
∑

(b) =∑n
i=1 bi ∈ {0, 1}, the following two inequalities are valid on OCUTn:

−
∑

1≤i,j≤n
bibjqij + (1−

∑
(b))

n∑
i=1

biwi ≥ 0,(4.1)

−
∑

1≤i,j≤n
bibjqij +

n∑
i=1:bi 6=0

(2− |bi| − bi
∑

(b))wi ≥ 0(4.2)

if max1≤i≤n |bi| ≤ 2.
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