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WEAKLY PARTITIVE FAMILIES ON INFINITE SETS

PIERRE ILLE AND ROBERT E. WOODROW

Abstract. Given a finite or infinite set S and a positive integer k,
a binary structure B of base S and of rank k is a function (S × S) \
{(x, x) : x ∈ S} −→ {0, . . . , k− 1}. A subset X of S is an interval of B
if for a, b ∈ X and x ∈ S \X, B(a, x) = B(b, x) and B(x, a) = B(x, b).
The family of intervals of B satisfies the following: ∅, B and {x}, where
x ∈ B, are intervals of B; for every family F of intervals of B, the
intersection of all the elements of F is an interval of B; given intervals
X and Y of B, if X ∩ Y 6= ∅, then X ∪ Y is an interval of B; given
intervals X and Y of B, if X \ Y 6= ∅, then Y \ X is an interval of
B; for every up-directed family F of intervals of B, the union of all the
elements of F is an interval of B. Given a set S, a family of subsets of
S is weakly partitive if it satisfies the properties above. After suitably
characterizing the elements of a weakly partitive family, we propose a
new approach to establish the following [6]: given a weakly partitive
family I on a set S, there is a binary structure of base S and of rank
≤ 3 whose intervals are exactly the elements of I.

1. Introduction

Given a (finite or infinite) set S and a positive integer k, a binary structure
is a function B : (S × S) \ {(x, x) : x ∈ S} −→ {0, . . . , k − 1}. The set
S is called the base of B. It is denoted by B. The integer k is called the
rank of B. It is denoted by rk(B). With each subset X of B associate
the binary substructure B[X] of B induced by X defined on B[X] = X by
B[X] = B|(X×X)\{(x,x) : x∈X}. Notice that rk(B[X]) = rk(B). With each
binary structure B associate its dual B? defined on B? = B by B?(x, y) =
B(y, x) for any x 6= y ∈ B. Notice that rk(B?) = rk(B).

A directed graph D = (V (D), A(D)) is defined by its vertex set V (D)
and by its arc set A(D), where an arc of D is an ordered pair of distinct
vertices of D. A connected component of a directed graph D is a subset X
of V (D) satisfying: for any x ∈ X and y ∈ V (D) \ X, (x, y) 6∈ A(D) and
(y, x) 6∈ A(D); for any x 6= x′ ∈ X, there are x = x0, . . . , xn = x′ ∈ X
such that (xi, xi+1) ∈ A(D) or (xi+1, xi) ∈ A(D) for 0 ≤ i ≤ n − 1. A
directed graph is connected if it possesses a unique connected component.
A directed graph D may be identified with the binary structure BD defined
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by BD = V (D), rk(BD) = 2 and (BD)−1({1}) = A(D). So given a directed
graph D, we denote by D[X] the directed subgraph of D induced by X ⊆
V (D). The dual of D is the directed graph D? defined by V (D?) = V (D)
and A(D?) = {(x, y) : (y, x) ∈ A(D)}.

A partial order O is a directed graph satisfying: for any x, y, z ∈ V (O), if
(x, y) ∈ A(O) and (y, z) ∈ A(O), then (x, z) ∈ A(O). Given a partial order
O, x < y modulo O means (x, y) ∈ A(O), where x, y ∈ V (O). A partial
order O is a total order if for any x 6= y ∈ V (O), either x < y modulo O or
y < x modulo O. Lastly, a partial order O is a tree if it is connected and if
for each x ∈ V (O), O[{y ∈ V (O) : x < y modulo O}] is a total order. Given
a tree τ , a branch of τ is a maximal subset under inclusion of V (τ) which
induces a total order. We will use the following property of a branch b of a
tree τ : for every x ∈ b, {y ∈ V (τ) : x < y modulo τ} ⊆ b.

A binary structure B is constant if there is i ∈ {0, . . . , rk(B) − 1} such
that B(x, y) = i for any x 6= y ∈ B. Given a binary structure B and
i 6= j ∈ {0, . . . , rk(B) − 1}, B is totally ordered by {i, j} if the directed
graph (B,B−1({i})) is a total order, the dual of which is (B,B−1({j})).
More simply, a binary structure B is totally ordered if it is totally ordered
by some unordered pair included in {0, . . . , rk(B)− 1}.

We use the following notation. Given sets X and Y , X ⊆ Y means that X
is a subset of Y whereas X ⊂ Y means that X is a proper subset of Y . Now,
consider a binary structure B. Given X ⊂ B and u ∈ B \X, B(u,X) = i,
where i ∈ {0, . . . , rk(B)−1}, means that B(u, x) = i for every x ∈ B. Given
X,Y ⊆ B such that X ∩ Y = ∅, B(X,Y ) = i, where i ∈ {0, . . . , rk(B)− 1},
means that B(x, Y ) = i for every x ∈ X.

Given a binary structure B, a subset X of B is an interval ([3, Subsec-
tion 9.8] and [7]) or an autonomous subset [9] or a homogeneous subset [4, 10]
or a clan [2, Subsection 3.2] of B if for any a, b ∈ X and x ∈ B \X, we have
B(a, x) = B(b, x) and B(x, a) = B(x, b). We denote by I(B) the family
of the intervals of B. The following properties of the intervals of a binary
structure are well known (see, for example, [2, Subsection 3.3]). Given a set
S, recall that a family F of subsets of S is up-directed if for any X,Y ∈ F ,
there is Z ∈ F such that X ∪ Y ⊆ Z.

Proposition 1.1. Given a binary structure B, the assertions below hold.
(A1) ∅, B and {x}, where x ∈ B, are intervals of B.
(A2) For every family F of intervals of B, the intersection ∩F of all the

elements of F is an interval of B. In particular, for any X,Y ∈
I(B), X ∩ Y ∈ I(B).

(A3) Given X,Y ∈ I(B), if X ∩ Y 6= ∅, then X ∪ Y ∈ I(B).
(A4) Given X,Y ∈ I(B), if X \ Y 6= ∅, then Y \X ∈ I(B).
(A5) For every up-directed family F of intervals of B, the union ∪F of

all the elements of F is an interval of B.

Notice that if B is finite, that is B is finite, then Assertion A5 is always
satisfied since an up-directed family of subsets of a finite set admits a largest
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element under inclusion. Given a set S, a family F of subsets of S satisfying
Assertions A1,...,A5 is said to be weakly partitive. Such a family is also called
siba (semi-independent boolean algebra) [2]. A family F of subsets of S is
partitive [1] if F satisfies Assertions A1, A2, A3, A5 and the following: given
X,Y ∈ F , ifX\Y 6= ∅, Y \X 6= ∅ andX∩Y 6= ∅, then (Y \X)∪(Y \X) ∈ F .
For instance, the family of the intervals of a binary structure B is partitive
if B = B?. We examine weakly partitive families in order to establish
the following theorem. It was obtained in [6] through a more complicated
approach; for instance, the notion of strong interval was not utilized. For
the finite case see, for example, [2, Theorem 5.7].

Theorem 1.2. Given a weakly partitive family I on a set S, there exists a
binary structure B such that B = S, rk(B) ≤ 3 and I(B) = I.

2. Decomposition of finite binary structures

Following Assertion A1, ∅, B and {x}, where x ∈ B, are intervals of B
called trivial. A binary structure all of whose intervals are trivial is inde-
composable [7] or prime [9] or primitive [2]. Otherwise, it is decomposable.
We recall further properties of intervals.

Proposition 2.1. Given a binary structure B, the assertions below hold.
• Given a subset V of B, if X ∈ I(B), then X ∩ V ∈ I(B[V ]).
• Given X ∈ I(B), we have for every Y ⊆ X: Y ∈ I(B[X]) if and

only if Y ∈ I(B).
• For any X,Y ∈ I(B), if we have X ∩ Y = ∅, then there exists
i ∈ {0, . . . , rk(B)− 1} such that B(X,Y ) = i.

Given a binary structure B, a partition P of B is an interval partition of
B when all the elements of P are intervals of B. Using the last assertion
of Proposition 2.1, for each interval partition P of B, we can define the
quotient B/P of B by P on B/P = P as follows. For any X 6= Y ∈ P ,
(B/P )(X,Y ) = B(X,Y ).

The following strengthening of the notion of interval is due to Gallai
[4, 10]. It is used to decompose finite directed graphs in an intrinsic and
unique way. Given a binary structure B, an interval X of B is strong if for
every interval Y of B not disjoint from X, we have X ⊆ Y or Y ⊆ X. We
denote by S(B) the family of strong intervals of B. Properties analogous to
those stated in Proposition 1.1 hold for strong intervals.

Proposition 2.2. Given a binary structure B, the assertions below hold.
(B1) ∅, B and {x}, where x ∈ B, are strong intervals of B.
(B2) For every family F of strong intervals of B, ∩F ∈ S(B).
(B3) For every up-directed family F of strong intervals of B, ∪F ∈ S(B).
(B4) Given X ∈ I(B), we have for every Y ⊂ X: Y is a strong interval

of B[X] if and only if Y is a strong interval of B.
(B5) Given X ∈ S(B), we have for every Y ⊆ X: Y ∈ S(B[X]) if and

only if Y ∈ S(B).
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For a proof of Assertion B4, we refer to [2, Lemma 3.11]. We denote the
family of the maximal elements of S(B) \ {∅, B} under inclusion by P (B).
In the finite case, P (B) yields the following decomposition theorem.

Theorem 2.3 (Gallai [4, 10], Ille [7]). Given a finite binary structure B,
with |B| ≥ 2, the family P (B) realizes an interval partition of B. Further-
more, the corresponding quotient B/P (B) is constant or totally ordered or
indecomposable, with |P (B)| ≥ 3.

In fact, given a finite binary structure B, all the strong intervals of
B/P (B) are trivial. Thus, the main step in the proof of Theorem 2.3 is
to establish the following

Theorem 2.4. Given a finite binary structure B, all the strong intervals of
B are trivial if and only if B is constant or totally ordered or indecomposable,
with |B| ≥ 3.

For a proof of this theorem see, for example, [8, Theorem 1]. Given
Theorem 2.3, we label the finite binary structures as below: given a finite
binary structure B,

• λ(B) = c if B/P (B) is constant;
• λ(B) = i if |P (B)| ≥ 3 and B/P (B) is indecomposable;
• λ(B) = t if B/P (B) is totally ordered.

Given a finite binary structure B, with |B| ≥ 2, the family S(B) \ {∅}
endowed with inclusion constitutes a tree which is called the decomposition
tree of B.

3. Weakly partitive families defined on finite sets

An analogous study can be done from a weakly partitive family on a finite
set without considering a binary structure.

3.1. Preliminaries. To commence, we recall the following result (see, for
example, [6, Lemma 2.3])

Lemma 3.1. Given a family I of subsets of a set S, if I satisfies Asser-
tions A1–A4, then the following are equivalent.

(A5) For every up-directed family F ⊆ I, ∪F ∈ I.
(A6) For every V ⊆ S, V ∈ I if and only if for any u, v ∈ V and x ∈ S\V ,

there exists X ∈ I such that u, v ∈ X and x 6∈ X.
(A7) Given F ⊆ I, ∪F ∈ I provided that for any x 6= y ∈ ∪F , there is

a sequence x = x0, . . . , xn = y ∈ S and a sequence X1, . . . , Xn ∈ F
such that xi−1, xi ∈ Xi for 1 ≤ i ≤ n.

We need the following notation. Given a set S, consider a family F of
subsets of S. For each V ⊆ S, set
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F/∩V = {U ∩ V : U ∈ F},
F/⊆V = {U ∈ F : U ⊆ V },
F/⊂V = {U ∈ F : U ⊂ V },

and

F/⊇V = {U ∈ F : U ⊇ V }.
For example, given a weakly partitive family I, it follows from Assertion A2
that I/∩X = I/⊆X for every X ∈ I.

Lemma 3.2. Consider a weakly partitive family I on a set S. For each
V ⊆ S, I/∩V is a weakly partitive family on V .

Proof. Obviously, F/∩V satisfies Assertion A1.
For Assertion A2, consider F ⊆ I/∩V . For each Y ∈ F , denote by GY

the family of X ∈ I such that Y = X ∩ V . Set G = ∪Y ∈FGY . As I
satisfies Assertion A2, we have ∩G ∈ I. Therefore, ∩F ∈ I/∩V because
∩F = (∩G) ∩ V .

For Assertion A3, consider Y, Y ′ ∈ I such that Y ∩ Y ′ 6= ∅. There
exist X,X ′ ∈ I such that Y = X ∩ V and Y ′ = X ′ ∩ V . We clearly have
X ∩ X ′ 6= ∅ so that X ∪ X ′ ∈ I because I satisfies Assertion A3. Thus,
Y ∪ Y ′ ∈ I/∩V since Y ∪ Y ′ = (X ∩ V ) ∪ (X ′ ∩ V ) = (X ∪X ′) ∩ V .

For Assertion A4, consider Y, Y ′ ∈ I such that Y \ Y ′ 6= ∅. There exist
X,X ′ ∈ I such that Y = X ∩ V and Y ′ = X ′ ∩ V . We have X \ X ′ 6= ∅
since Y \ Y ′ = (X \ X ′) ∩ V . As I satisfies Assertion A4, X ′ \ X ∈ I.
Consequently, Y ′ \ Y ∈ I/∩V because Y ′ \ Y = (X ′ \X) ∩ V .

By the previous lemma, to show that I/∩V satisfies Assertion A5, it suf-
fices to prove that it satisfies Assertion A7. So consider F ⊆ I/∩V verifying
the following. For any u 6= v ∈ ∪F , there is a sequence u = u0, . . . , un =
v ∈ V and a sequence Y1, . . . , Yn ∈ F such that ui−1, ui ∈ Yi for 1 ≤ i ≤ n.
Moreover, assume that the elements of F are non-empty. As for Asser-
tion A2, set G = ∪Y ∈FGY . Consider x 6= x′ ∈ ∪G. There are Y, Y ′ ∈ F such
that x ∈ ∪GY and x′ ∈ ∪GY ′ . Thus, there are X ∈ GY and X ′ ∈ GY ′
such that x ∈ X and x′ ∈ X ′. As X ∈ GY and X ′ ∈ GY ′ , we have
Y = X ∩ V and Y ′ = X ′ ∩ V . Since Y 6= ∅ and Y ′ 6= ∅, consider u ∈ Y
and u′ ∈ Y ′. There exist a sequence u = u1, . . . , un = u′ ∈ V and a se-
quence Y2, . . . , Yn ∈ F such that ui−1, ui ∈ Yi for 2 ≤ i ≤ n. Now consider
the sequence x = u0, u = u1, . . . , un = u′, un+1 = x′ ∈ S and the sequence
X1 = X,X2, . . . , Xn, Xn+1 = X ′ ∈ G, where Xi ∈ GYi for 2 ≤ i ≤ n. They
verify ui−1, ui ∈ Xi for 1 ≤ i ≤ n+1. Consequently, ∪G ∈ I since I satisfies
Assertion A7. Finally, ∪F ∈ I/∩V because ∪F = (∪G) ∩ V . �

As for the strong intervals, we introduce the strong elements of a weakly
partitive family in the following way. Given a weakly partitive family I,
an element X of I is strong provided that for every Y ∈ I, we have: if
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X ∩Y 6= ∅, then X ⊆ Y or Y ⊆ X. We denote by S(I) the family of strong
elements of I. Properties analogous to those stated in Proposition 2.2 hold
for strong elements of a weakly partitive family.

Proposition 3.3. Given a weakly partitive family I on a set S, the asser-
tions below hold.

(B1) ∅, S and {x}, where x ∈ S, are strong elements of I.
(B2) For every F ⊆ S(I), ∩F ∈ S(I).
(B3) For every up-directed family F of elements of S(I), ∪F ∈ S(I).
(B4) For every X ∈ I, S(I/⊆X) \ {X} = S(I)/⊆X \ {X}.
(B5) For every X ∈ S(I), S(I/⊆X) = S(I)/⊆X .

Proof. Clearly, ∅, S ∈ S(I) and {x} ∈ S(I) for every x ∈ S.
For Assertion B2, consider F ⊆ S(I). Let Y ∈ I such that Y ∩(∩F) 6= ∅.

For every X ∈ F , we have X ∩ Y 6= ∅ so that X ⊆ Y or Y ⊆ X because
X ∈ S(I). If there is X ∈ F such that X ⊆ Y , then ∩F ⊆ Y . Otherwise,
Y ⊆ X for every X ∈ F and hence Y ⊆ ∩F .

For Assertion B3, consider an up-directed family F of elements of S(I).
Let Y ∈ I such that Y ∩ (∪F) 6= ∅. Set G = {X ∈ F : X ∩ Y 6= ∅}.
Obviously, G 6= ∅ because Y ∩ (∪F) 6= ∅. For every X ∈ G, we have X ⊆ Y
or Y ⊆ X because X ∈ S(I). If there is X ∈ G such that Y ⊆ X, then
Y ⊆ ∪F . Otherwise, X ⊆ Y for every X ∈ G. Consider X ∈ G. For
every X ′ ∈ F , there exists X ′′ ∈ F such that X ∪ X ′ ⊆ X ′′. We have
X ′′ ∈ G because X ∈ G. Therefore X ′′ ⊆ Y and thus X ′ ⊆ Y . Consequently
∪F ⊆ Y .

For Assertion B4, we first verify that S(I)/⊆X \ {X} ⊆ S(I/⊆X) \ {X}.
Let Y ∈ S(I)/⊆X \ {X}. Consider Z ∈ I/⊆X such that Y ∩ Z 6= ∅. As
Y ∈ S(I) and Z ∈ I, we have Y ⊆ Z or Z ⊆ Y . Second, we establish
that S(I/⊆X) \ {X} ⊆ S(I)/⊆X \ {X}. Let Y ∈ S(I/⊆X) \ {X}. Observe
that Y ∈ I because Y ∈ I/⊆X . Now consider Z ∈ I such that Y ∩ Z 6= ∅.
Clearly, Z∩X ∈ I/⊆X and (Z∩X)∩Y 6= ∅ because (Z∩X)∩Y = Y ∩Z. As
Y ∈ S(I/⊆X), we have either Y ⊆ Z∩X or Z∩X ⊂ Y . In the first instance,
we have Y ⊆ Z. Therefore, assume that Z ∩X ⊂ Y . For a contradiction,
suppose that Z \X 6= ∅. Then X \ Z ∈ I/⊆X . Since Z ∩X ⊂ Y , we have
(X \Z)∩ Y 6= ∅. As Y ∈ S(I/⊆X) \ {X}, we get Y ⊆ X \Z or X \Z ⊆ Y .
In the first instance, Y ∩ Z would be empty. In the second, Y would equal
X because Z∩X ⊂ Y . Consequently Z \X = ∅. We obtain Z ⊂ Y because
Z ∩X ⊂ Y .

Assertion B5 is an immediate consequence of Assertion B4 because X ∈
S(I/⊆X) ∩ S(I)/⊆X . �

Given a set S, consider a family F of subsets of S. A partition of S, all
the elements of which belong to F , is called an F-partition. Given such a
partition P , the quotient F/P of F by P is the family of the subsets Q of
P such that ∪Q ∈ F .



60 PIERRE ILLE AND ROBERT E. WOODROW

Lemma 3.4. Consider a weakly partitive family I on a set S. For
each I-partition P , the quotient I/P is a weakly partitive family on P .

Proof. The quotient I/P satisfies Assertion A1 because ∪∅ = ∅, ∪P = S
and ∪{X} = X for every X ∈ P .

For Assertion A2, consider Q ⊆ I/P . We easily verify that ∪(∩Q) =
∩{∪Q : Q ∈ Q}. As I satisfies Assertion A2 and as ∪Q ∈ I for every
Q ∈ Q, we have ∩{∪Q : Q ∈ Q} ∈ I and hence ∩Q ∈ I/P .

For Assertion A3, consider Q,R ∈ I/P such that Q ∩ R 6= ∅. By the
definition of I/P , we have ∪Q,∪R ∈ I. Obviously, (∪Q)∩(∪R) = ∪(Q∩R).
Therefore, (∪Q)∩ (∪R) 6= ∅ and hence (∪Q)∪ (∪R) ∈ I because I satisfies
Assertion A3. As (∪Q) ∪ (∪R) = ∪(Q ∪R), we obtain that Q ∪R ∈ I/P .

For Assertion A4, consider Q,R ∈ I/P such that Q \ R 6= ∅. By the
definition of I/P , we have ∪Q,∪R ∈ I. Obviously, ∪(Q \ R) = (∪Q) \
(∪R). Therefore, (∪Q) \ (∪R) 6= ∅ and hence (∪R) \ (∪Q) ∈ I because I
satisfies Assertion A4. Since ∪(R \Q) = (∪R)\ (∪Q), we have ∪(R \Q) ∈ I
so that R \Q ∈ I/P .

For Assertion A5, consider an up-directed family Q of elements of I/P .
Set F = {∪Q : Q ∈ Q}. Clearly, F is an up-directed family of elements of
I. As I satisfies Assertion A5, we obtain that ∪F ∈ I. We have ∪Q ∈ I/P
because ∪F = ∪(∪Q). �

Lemma 3.5. Consider a weakly partitive family I on a set S. For
each S(I)-partition P , we have S(I/P ) = S(I)/P .

Proof. To begin, we verify that S(I)/P ⊆ S(I/P ). Let Q ∈ S(I)/P . We
have ∪Q ∈ S(I). Consider R ∈ I/P such that Q∩R 6= ∅. We have ∪R ∈ I.
Furthermore, (∪Q) ∩ (∪R) 6= ∅ because (∪Q) ∩ (∪R) = ∪(Q ∩ R). Since
∪Q ∈ S(I), we obtain that ∪Q ⊆ ∪R or ∪R ⊆ ∪Q, which is equivalent to
Q ⊆ R or R ⊆ Q. It follows that Q ∈ S(I/P ).

Conversely, we establish that S(I/P ) ⊆ S(I)/P . Let Q ∈ S(I/P ). We
have to prove that ∪Q ∈ S(I). So consider Y ∈ I such that (∪Q)∩ Y 6= ∅.
Set R = {X ∈ P : X ∩ Y 6= ∅}. If there is X ∈ P such that Y ⊆ X, then
X ∈ Q and hence Y ⊆ X ⊆ ∪Q. Otherwise, |R| ≥ 2. As R ⊆ P ⊆ S(I),
we have X ⊆ Y or Y ⊆ X for every X ∈ R. Since |R| ≥ 2, we obtain
that X ⊆ Y for every X ∈ R. Therefore Y = ∪R and hence R ∈ I/P . As
(∪Q) ∩ Y 6= ∅, we have Q ∩ R 6= ∅. Since Q ∈ S(I/P ), we obtain that
Q ⊆ R or R ⊆ Q, which implies that ∪Q ⊆ ∪R or ∪R ⊆ ∪Q. Consequently
∪Q ∈ S(I). �

Consider a weakly partitive family I on a set S. We denote by P (I) the
family constituted by the maximal elements under inclusion of S(I)\{∅, S}.
Notice that if |S| ≤ 1, then P (I) = ∅. There are other cases when S is
infinite. For example, on the set of integers Z, consider the family

I = {∅,Z} ∪ {{n} : n ∈ Z} ∪ {(−∞, n] : n ∈ Z}.
We easily verify that I is a weakly partitive family on Z and that S(I) = I.
Therefore P (I) = ∅. So we say that a weakly partitive family I is a limit
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if P (I) = ∅. For convenience, given a weakly partitive family I, we denote
by L(I) the family of X ∈ S(I) such that I/⊆X is a limit.

The next lemma is known when the weakly partitive family considered
is the family of the intervals of a binary structure (see, for example, [5,
Theorem 4.2]).

Lemma 3.6. Consider a weakly partitive family I on a set S. If I is not
a limit, then P (I) realizes an S(I)-partition of S. Moreover, for every
X ∈ S(I) \ {S}, there is Y ∈ P (I) such that X ⊆ Y .

Proof. The elements of P (I) are pairwise disjoint. Indeed, consider Y,Z ∈
P (I) such that Y ∩ Z 6= ∅. As Y,Z ∈ S(I), we have Y ⊆ Z or Z ⊆ Y .
Since Y and Z are maximal elements under inclusion of S(I) \ {∅, S}, we
have Y = Z. Therefore, it suffices to verify that ∪P (I) = S when P (I) 6=
∅. Let X ∈ P (I). For each x ∈ S \ X, denote by Fx the family of the
strong elements of I which are distinct from S and which contain x. Notice
that Fx 6= ∅ because {x} ∈ Fx. Consider x ∈ S \ X. Since Fx ⊆ S(I)
and since x ∈ ∩Fx, Fx is a total order under inclusion. By Assertion B3
of Proposition 3.3, we have ∪Fx ∈ S(I). Furthermore X ∩ (∪Fx) = ∅.
Otherwise, there is Yx ∈ Fx such that X ∩ Yx 6= ∅. As X ∈ S(I) and as
x ∈ Yx \X, we obtain that X ⊂ Yx, which is not possible because X ∈ P (I)
and Yx ∈ S(I) \ {∅, S}. In particular, we proved that ∪Fx ∈ S(I) \ {∅, S}.
To conclude, it is sufficient to show that P (I) \ {X} = {∪Fx : x ∈ S \X}.
First, consider Y ∈ P (I) \ {X}. Given y ∈ Y , we have Y ∈ Fy and hence
Y ⊆ ∪Fy. Since ∪Fy ∈ S(I)\{∅, S}, we obtain Y = ∪Fy. Second, consider
x ∈ S \ X and Y ∈ S(I) \ {∅, S} such that ∪Fx ⊆ Y . Clearly, Y ∈ Fx
and hence Y = ∪Fx. Thus ∪Fx ∈ P (I). Consequently, P (I) is an S(I)-
partition of S. Lastly, consider X ∈ S(I) \ {S}. There is Y ∈ P (I) such
that Y ∩ X 6= ∅. We have either Y ⊂ X or X ⊆ Y . As Y is a maximal
element under inclusion of S(I) \ {∅, S}, we get X ⊆ Y . �

To state the analogue of Theorem 2.4 for weakly partitive families, we
introduce the following. Consider a family F of subsets of a set S. The
family F is trivial if F = {∅, S} ∪ {{x} : x ∈ S}. It is said to be complete
if F = 2S . Given a total order T such that V (T ) = S, F is totally ordered
by {T, T ?} if F coincides with the family of the intervals of T (or of T ?).
Notice that such a total order is unique up to duality. So we simply say
that F is totally ordered when such a total order T exists. As consequence
of Lemmas 3.5 and 3.6, we obtain

Corollary 3.7. Consider a weakly partitive family I on a set S. If I is not
a limit, then S(I/P (I)) is trivial.

Proof. By Lemma 3.6, P (I) is an S(I)-partition of S. It follows from
Lemma 3.5 that S(I/P (I)) = S(I)/P (I). Now consider Q ∈ S(I)/P (I)
such that |Q| ≥ 2. We have to show that Q = P (I). Since Q ∈ S(I)/P (I),
we have ∪Q ∈ S(I). Given X ∈ Q, we have X ⊂ ∪Q because |Q| ≥ 2. As
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X is a maximal element under inclusion of S(I)\{∅, S}, we obtain ∪Q = S
or, equivalently, Q = P (I). �

To study a weakly partitive family, we will demonstrate the following
result. It constitutes the main part of our study.

Theorem 3.8. Given a weakly partitive family I on a set S, S(I) is
trivial if and only if I is trivial or complete or totally ordered.

3.2. Theorem 3.8 in the finite case. Theorem 3.8 is known in the finite
case. For instance, it is easy to adapt the proof of [2, Theorem 5.3] or of [8,
Theorem 1]. Theorem 3.8 allows a description of the elements of a weakly
partitive family as follows.

Consider a weakly partitive family I on a finite set S, with |S| ≥ 2. We
will localize and decompose the elements of I according to the tree consti-
tuted by the non-empty strong elements of I. Since S is finite, the family I
is not a limit. By Lemma 3.6, P (I) realizes an S(I)-partition of S such that
S(I/P (I)) = S(I)/P (I) by Lemma 3.5. Furthermore, by Corollary 3.7, the
family S(I/P (I)) of the strong elements of the corresponding quotient is
trivial. Consequently, it follows from Theorem 3.8 that I/P (I) is trivial or
complete or totally ordered. In the last instance, there is a total order T (I)
defined on P (I) such that I/P (I) is totally ordered by {T (I), T (I)?}. For
convenience, we label I as

• λ(I) = c if I/P (I) is complete;
• λ(I) = i if |P (I)| ≥ 3 and I/P (I) is trivial;
• λ(I) = t if I/P (I) is totally ordered.

For each X ∈ S(I), with |X| ≥ 2, we carry out the same study to obtain
with the corresponding labeling λ(I/⊆X) that (I/⊆X)/P (I/⊆X) is trivial or
complete or totally ordered.

For each non-empty subset V of S, the family S(I)/⊇V endowed with
inclusion is a total order. Its smallest element ∩(S(I)/⊇V ) belongs to S(I)

by Assertion B2 of Proposition 3.3. It is denoted by V I or simply V .
Finally, every X ∈ I, with |X| ≥ 2, is decomposed as follows. Clearly,

X ∈ I/⊆X . Denote by QX the family of Y ∈ P (I/⊆X) such that Y ∩X 6= ∅.
It follows from the definition of X that |QX | ≥ 2. As P (I/⊆X) ⊆ S(I/⊆X),
we obtain that X = ∪QX and hence QX ∈ (I/⊆X)/P (I/⊆X). In addition,
it follows from the definition of λ(I/⊆X) that QX = P (I/⊆X) if λ(I/⊆X) = i
and that QX is an interval of T (I/⊆X) if λ(I/⊆X) = t.

Conversely, consider a subset V of S, with |V | ≥ 2, such that there
is QV ⊆ P (I/⊆V ) satisfying V = ∪QV . Furthermore, assume that QV =
P (I/⊆V ) if λ(I/⊆V ) = i and thatQV is an interval of T (I/⊆V ) if λ(I/⊆V ) = t.
Whatever λ(I/⊆V ), we obtain that QV ∈ (I/⊆V )/P (I/⊆V ). Consequently,
V = ∪QV ∈ I/⊆V and hence V ∈ I.

We summarize the previous discussion in the following theorem.
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Theorem 3.9. Consider a weakly partitive family I on a finite set S, with
|S| ≥ 2. For every V ⊆ S, we have V ∈ I if and only if either |V | ≤ 1 or
|V | ≥ 2 and there is QV ⊆ P (I/⊆V ) such that V = ∪QV and satisfying

• if λ(I/⊆V ) = i, then QV = P (I/⊆V );
• if λ(I/⊆V ) = t, then QV is an interval of T (I/⊆V ).

Consequently, the elements of a weakly partitive family I on a finite set
S, with |S| ≥ 2, are decomposed into a union of elements of S(I)\{∅}. The
family S(I) \ {∅} endowed with inclusion is a tree called the decomposition
tree of I and denoted by D(I).

3.3. The zigzag. Consider a weakly partitive family I on a set S. Given
a 6= b ∈ S and c 6= d ∈ S, (a, b) ∨I (c, d) signifies that one of the following
holds

• a = c and there is X ∈ I such that b, d ∈ X and a ∈ S \X;
• b = d and there is X ∈ I such that a, c ∈ X and b ∈ S \X.

Notice that (a, b) ∨I (a, b) and that (a, b) ∨I (c, d) if and only if (c, d) ∨I
(a, b).

Given a ∈ S and b, b′, b′′ ∈ S \ {a}, if (a, b) ∨I (a, b′) and (a, b′) ∨I (a, b′′),
then there are X,X ′ ∈ I such that b, b′ ∈ X, a ∈ S \ X, b′, b′′ ∈ X ′ and
a ∈ S\X ′. As b′ ∈ X∩X ′, X∪X ′ ∈ I by Assertion A3. Since b, b′′ ∈ X∪X ′
and a ∈ S \ (X ∪X ′), we get (a, b) ∨I (a, b′′). Thus, when we consider the
transitive closure of ∨I , we can return to a sequence where pivots alternate.
So a sequence (a0, b0), . . . , (an, bn) of ordered pairs of distinct elements of
S is called a zigzag modulo I between (a0, b0) and (an, bn) if (ai, bi) ∨I
(ai+1, bi+1)for 0 ≤ i ≤ n−1. A subset of S is a support of this zigzag modulo
I if it contains a0, b0, . . . , an, bn. Given a 6= b ∈ S and c 6= d ∈ S, (a, b)!I
(c, d) means that there is a zigzag modulo I between (a, b) and (c, d). Clearly,
!I constitutes an equivalence relation on (S × S) \ {(x, x) : x ∈ S}. For
a 6= b ∈ S, [(a, b)]I denotes the equivalence class of (a, b) modulo !I .
Given a 6= b ∈ S and c 6= d ∈ S, notice that (a, b) !I (c, d) if and only if
(b, a)!I (d, c). When S is finite, we obtain the following characterization
of the equivalence classes of !I .

Proposition 3.10. Consider a weakly partitive family I on a finite set S,
with |S| ≥ 2. Given a 6= b ∈ S, the equivalence class [(a, b)]I satisfies
one of the following, where for x ∈ {a, b}, {a, b}x denotes the element of
P (I

/⊆{a,b}) which contains x.

• If λ(I
/⊆{a,b}) = i, then [(a, b)]I = {a, b}a × {a, b}b.

• If λ(I
/⊆{a,b}) = c, then

[(a, b)]I = {(x, y) ∈ {a, b} × {a, b} : {a, b}x 6= {a, b}y}.

• If λ(I
/⊆{a,b}) = t, then

[(a, b)]I = {(x, y) ∈ {a, b} × {a, b} : {a, b}x < {a, b}y modulo T{a,b}},
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where T{a,b} is either T (I
/⊆{a,b}) or (T (I

/⊆{a,b}))
? chosen so that

{a, b}a < {a, b}b modulo T{a,b}.

Proof. Let c 6= d ∈ S such that (a, b) ∨I (c, d). For instance, assume that
a = c. Then, there is X ∈ I such that b, d ∈ X and a ∈ S \X. As {a, b} ∈
S(I) and as b ∈ X ∩ {a, b} and a ∈ {a, b} \X, we have X ⊂ {a, b} so that
d ∈ {a, b} and {a, d} ⊆ {a, b}. By interchanging (a, b) and (a, d), we obtain
{a, b} ⊆ {a, d} and hence {a, b} = {a, d}. In particular, {a, b}a 6= {a, b}d.
Furthermore, observe that if {a, b}b 6= {a, b}d, then {a, b}b ∪ {a, b}d ⊆ X

because {a, b}b and {a, b}d are strong elements of I intersected by X. Since
X ⊂ {a, b}, we have X = {a, b}. Consequently, if {a, b}b 6= {a, b}d, then
λ(I

/⊆{a,b}) 6= i and there is QX ⊂ P (I
/⊆{a,b}), with |QX | ≥ 2, such that

X = ∪QX . Now we distinguish the three cases below.

Case 1: λ(I
/⊆{a,b}) = i.

By the preceding observation, we have {a, b}b = {a, b}d. Therefore
(a, d) ∈ {a, b}a × {a, b}b. Now consider any zigzag (a0, b0) = (a, b), . . . ,
(an, bn) modulo I. We similarly obtain by induction on 0 ≤ i ≤ n that
(ai, bi) ∈ {a, b}a×{a, b}b. Consequently [(a, b)]I ⊆ {a, b}a×{a, b}b. The
opposite inclusion is clear.

Case 2: λ(I
/⊆{a,b}) = t.

By the preceding observation, if {a, b}b 6= {a, b}d, then there is QX ⊂
P (I

/⊆{a,b}), with |QX | ≥ 2, such that X = ∪QX . By Theorem 3.9,

QX is an interval of T{a,b}. Since {a, b}b, {a, b}d ∈ QX and {a, b}a ∈
P (I

/⊆{a,b}) \ QX and since {a, b}a < {a, b}b modulo T{a,b}, we have

{a, b}a < {a, b}d modulo T{a,b}. By using an induction as in the first
case, we obtain that [(a, b)]I ⊆ {(x, y) ∈ {a, b} × {a, b} : {a, b}x <

{a, b}y modulo T{a,b}}. The opposite inclusion is easily verified.

Case 3: λ(I
/⊆{a,b}) = c.

For any x 6= y ∈ {a, b} such that {a, b}x 6= {a, b}y, we clearly have
(a, b)!I (x, y). Then, the conclusion follows from the previous obser-
vation.

�

Lemma 3.11. Consider a weakly partitive family I on a set S. Given V ⊆
S, for any (a, b), (c, d) ∈ (V × V ) \ {(x, x) : x ∈ V }, if (a, b)!I/∩V (c, d),
then (a, b)!I (c, d).

Proof. It suffices to verify that for any (a, b), (c, d) ∈ (V ×V )\{(x, x) : x ∈
V }, if (a, b) ∨I/∩V (c, d), then (a, b) ∨I (c, d). For instance, assume that
a = c. Then, there exists X ∈ I such that b, d ∈ X ∩V and a ∈ V \ (X ∩V ).
Obviously, b, d ∈ X and a ∈ S \X. Thus (a, b) ∨I (c, d). �
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Lemma 3.12. Consider a weakly partitive family I on a set S. For any
(a, b), (c, d) ∈ (S×S) \ {(x, x) : x ∈ S}, if (a, b)!I (c, d) and if V ⊆ S is
a support of a zigzag modulo I between (a, b) and (c, d), then (a, b)!I/∩V
(c, d).

Proof. It suffices to verify that for any (a, b), (c, d) ∈ (S×S) \ {(x, x) : x ∈
S}, if (a, b) ∨I (c, d) and if a subset V of S contains a, b, c and d, then
(a, b) ∨I/∩V (c, d). For instance, assume that a = c. Then, there exists
X ∈ I such that b, d ∈ X and a ∈ S \ X. Obviously, b, d ∈ X ∩ V and
a ∈ V \ (X ∩ V ). Thus (a, b) ∨I/∩V (c, d). �

Corollary 3.13. Consider a weakly partitive family I on a set S. For any
distinct elements a, b and c of S, if (a, c)!I (b, c), then (a, c) ∨I (b, c).

Proof. Since (a, c)!I (b, c), there is a finite support F of a zigzag modulo
I between (a, c) and (b, c). By Lemma 3.2, I/∩F is a weakly partitive family
on F and (a, c)!I/∩F (b, c) by Lemma 3.12. We distinguish the three cases
below according to Proposition 3.10. For convenience, denote I/∩F by J
and then denote {a, c}J by X. So X ∈ S(J ). Furthermore, for u ∈ X,
denote by Xu the element of P (J/⊆X) containing u. Given u ∈ X, we have
Xu ∈ S(J/⊆X). Thus Xu ∈ J/⊆X and hence Xu ∈ J .

Case 1: λ(J/⊆X) = i.
By Proposition 3.10, [(a, c)]J = Xa × Xc. Thus b ∈ Xa and hence
(a, c) ∨J (b, c) because a, b ∈ Xa and c ∈ F \Xa.

Case 2: λ(J/⊆X) = c.
We have [(a, c)]J = {(u, v) ∈ X ×X : Xu 6= Xv}. We obtain that Xc 6=
Xa and Xc 6= Xb. Moreover, as λ(J/⊆X) = c, we have Xa ∪Xb ∈ J/⊆X .
Therefore Xa ∪Xb ∈ J , with a, b ∈ Xa ∪Xb and c ∈ F \ (Xa ∪Xb).

Case 3: λ(J/⊆X) = t.
Let TX = T (J/⊆X) or (T (J/⊆X))? such that Xa < Xc modulo TX .

We obtain that Xb < Xc modulo TX as well. For example, assume that
Xa < Xb modulo TX and denote by [Xa, Xb] the intersection of all the
intervals of TX which contain Xa and Xb. Clearly, [Xa, Xb] is an interval
of TX and hence ∪[Xa, Xb] ∈ J/⊆X . Once again, we get ∪[Xa, Xb] ∈ J ,
with a, b ∈ ∪[Xa, Xb] and c ∈ F \ (∪[Xa, Xb]).

In the three cases above, we obtain (a, c)∨J (b, c), that is, (a, c)∨I/∩F (b, c).
As observed in the proof of Lemma 3.11, we get (a, c) ∨I (b, c). �

4. Theorem 3.8 in the infinite case

We commence with some results on weakly partitive families defined on
infinite sets.

Lemma 4.1. Given a weakly partitive family I on a set S, if X1, . . . , Xn

are pairwise disjoint elements of I, where n ≥ 2, then X1 ∪ · · · ∪Xn ∈
S(I) \ L(I).
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Proof. We already observed thatX1 ∪ · · · ∪Xn ∈ S(I). Choose a1 ∈ X1, . . . ,

an ∈ Xn. We have {a1, . . . , an} ∈ S(I) as well. Clearly, {a1, . . . , an}
⊆ X1 ∪ · · · ∪Xn. As {a1, . . . , an} ∩X1 6= ∅, . . . , {a1, . . . , an} ∩Xn 6= ∅ and
the Xi are pairwise disjoint, we obtain that X1 ∪ · · · ∪ Xn ⊆ {a1, . . . , an}.
Therefore {a1, . . . , an} = X1 ∪ · · · ∪Xn. Denote by F the family of the
elements of S(I)

/⊂{a1,...,an} which contains a1. Since {a1} ∈ F , F 6= ∅.
As F ⊆ S(I), we obtain that F endowed with inclusion is a total order
so that ∪F ∈ S(I) by Assertion B3 of Proposition 3.3. Furthermore,
∪F ⊆ {a1, . . . , an} because F ⊆ S(I)

/⊂{a1,...,an}. For every X ∈ F , we

have {a1, . . . , an} \ X 6= ∅ because X ⊂ {a1, . . . , an}. It follows that
{a1, . . . , an} \ ∪F 6= ∅ and hence ∪F ⊂ {a1, . . . , an}. By Assertion B5
of Proposition 3.3, we have S(I)

/⊆{a1,...,an} = S(I
/⊆{a1,...,an}). In partic-

ular, ∪F ∈ S(I
/⊆{a1,...,an}). Lastly, consider Y ∈ S(I

/⊆{a1,...,an}) such

that ∪F ⊂ Y ⊆ {a1, . . . , an}. As a1 ∈ Y and as Y 6∈ F , we obtain
that Y = {a1, . . . , an}. Consequently, ∪F ∈ P (I

/⊆{a1,...,an}) and hence
I
/⊆{a1,...,an} is not a limit. �

Corollary 4.2. Given a weakly partitive family I on a set S, with |S| ≥ 2,
the next assertions are equivalent.

(1) I is a limit.
(2) S(I)\{S} is up-directed.
(3) (S(I) \ L(I))\{S} is up-directed and ∪((S(I) \ L(I))\{S}) = S.

Proof. Assume that I is a limit and consider X,Y ∈ S(I)\{S}. If X∩Y 6= ∅,
then one of these contains the other. If X∩Y = ∅, it follows from Lemma 4.1
that X ∪ Y is not a limit. Therefore X ∪ Y ∈ S(I)\{S}. Consequently,
S(I)\{S} is up-directed. Conversely, assume that S(I)\{S} is up-directed
and consider X ∈ S(I)\{∅, S}. Given x ∈ S \ X, as {x} ∈ S(I)\{S},
there exists Y ∈ S(I)\{S} such that X ∪ {x} ⊆ Y and hence X ⊂ Y .
Consequently P (I) = ∅.

Assume that I is a limit or equivalently that S(I)\{S} is up-directed. We
have ∪(S(I)\{S}) = S because {x} ∈ S(I)\{S} for each x ∈ S. Therefore, to
establish that (S(I)\L(I))\{S} is up-directed and ∪((S(I)\L(I))\{S}) = S,
it is sufficient to establish that for every X ∈ S(I) \ {S}, there is Y ∈
(S(I) \ L(I))\{S} such that X ⊆ Y . In fact, by the previous lemma,
for every x ∈ S \ X, we have X ∪ {x} ∈ S(I) \ L(I). Since S ∈ L(I),
X ∪ {x} 6= S. Conversely, assume that (S(I)\L(I))\{S} is up-directed and
∪((S(I) \ L(I))\{S}) = S. Consider X ∈ S(I)\{∅, S}. For x ∈ X and
y ∈ S \X, there are Y, Y ′ ∈ (S(I) \ L(I))\{S} such that x ∈ Y and y ∈ Y ′
because ∪((S(I) \ L(I))\{S}) = S. As (S(I) \ L(I))\{S} is up-directed,
there exists Z ∈ (S(I) \ L(I))\{S} such that Y ∪ Y ′ ⊆ Z. Since x ∈ X ∩Z
and y ∈ Z \X, we obtain that X ⊂ Z. Therefore P (I) = ∅. �

Corollary 4.2 is also formulated as
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Corollary 4.3. Consider a weakly partitive family I on a set S. For every
X ∈ S(I), with |X| ≥ 2, the following assertions are equivalent.

(1) X ∈ L(I).
(2) S(I)/⊂X is up-directed.
(3) (S(I) \ L(I))/⊂X is up-directed and ∪((S(I) \ L(I))/⊂X) = X.

Consequently, if X ∈ L(I), then ∪(S(I)/⊂X) = ∪((S(I) \ L(I))/⊂X) = X.

Proof. By applying the previous corollary to I/⊆X , we obtain that the fol-
lowing assertions are equivalent.

• I/⊆X is a limit, that is, X ∈ L(I).
• S(I/⊆X)\{X} is up-directed.
• (S(I/⊆X)\L(I/⊆X))\{X} is up-directed and ∪((S(I/⊆X)\L(I/⊆X))\
{X}) = X.

AsX ∈ S(I), it follows from Assertion B5 of Proposition 3.3 that S(I/⊆X)
= S(I)/⊆X . Thus S(I/⊆X)\{X} = S(I)/⊂X . Furthermore, by definition,
L(I/⊆X) is the family of Y ⊆ X such that Y ∈ S(I/⊆X) and (I/⊆X)/⊆Y
is a limit. Since S(I/⊆X) = S(I)/⊆X and since (I/⊆X)/⊆Y = I/⊆Y , we
obtain that L(I/⊆X) = L(I)/⊆X . Therefore (S(I/⊆X) \ L(I/⊆X))\{X} =
(S(I) \ L(I))/⊂X . �

Proposition 4.4. Given a weakly partitive family I on a set S, I is not
a limit and I/P (I) is non-trivial if and only if there exists a non-empty
proper subset C of S such that {C, S \ C} is an I-partition and not an
S(I)-partition.

Proof. Assume that I is a non-limit and I/P (I) is non-trivial. Consider
Q ∈ I/P (I) such that |Q| ≥ 2 and Q 6= P (I). Let X ∈ P (I)\Q and denote
byQ the family of R ∈ I/P (I) such that Q ⊆ R and X 6∈ R. By Lemmas 3.1
and 3.4, I/P (I) satisfies Assertion A7 so that ∪Q ∈ I/P (I). Now let R
be the family of R ∈ I/P (I) such that (∪Q) ∩ R = ∅ and X ∈ R. By
Assertion A7, ∪R ∈ I/P (I). Since Q ⊆ ∪Q and X 6∈ ∪Q, ∪Q is not strong
by Corollary 3.7. Therefore, there is Q′ ∈ I/P (I) such that Q′∩ (∪Q) 6= ∅,
Q′ \ (∪Q) 6= ∅ and (∪Q) \ Q′ 6= ∅. We obtain that Q′ ∪ (∪Q) ∈ I/P (I)
and ∪Q ⊂ Q′ ∪ (∪Q). Thus Q′ ∪ (∪Q) 6∈ Q and hence X ∈ Q′ \ (∪Q).
As (∪Q) \ Q′ 6= ∅, we have Q′ \ (∪Q) ∈ I. Therefore Q′ \ (∪Q) ∈ R and
Q′ ⊆ (∪Q) ∪ (∪R). Since Q′ ∪ (∪Q) ∈ I and X ∈ Q′ ∪ (∪Q), we get (Q′ ∪
(∪Q))∪(∪R) ∈ I, that is, (∪Q)∪(∪R) ∈ I. Suppose for a contradiction that
(∪Q)∪ (∪R) 6= P (I). As previously for ∪Q, there is Q′ ∈ I/P (I) such that
Q′∩((∪Q)∪(∪R)) 6= ∅, Q′\((∪Q)∪(∪R)) 6= ∅ and ((∪Q)∪(∪R))\Q′ 6= ∅.
We haveQ′∩(∪R) 6= ∅; otherwiseQ′∪(∪Q) ∈ I/P (I), with ∪Q ⊂ Q′∪(∪Q)
and X 6∈ Q′∪(∪Q). Similarly, we have Q′∩(∪Q) 6= ∅; otherwise Q′∪(∪R) ∈
I/P (I), with ∪R ⊂ Q′ ∪ (∪R) and (∪Q) ∩ (Q′ ∪ (∪R)) = ∅. But, since
((∪Q)∪ (∪R))\Q′ 6= ∅, we get (∪R)\Q′ 6= ∅ or (∪Q)\Q′ 6= ∅. In the first
instance, Q′ \ (∪R) ∈ I/P (I). As Q′ ∩ (∪Q) 6= ∅, (Q′ \ (∪R))∩ (∪Q) 6= ∅;
which leads to the following contradiction: (Q′ \ (∪R)) ∪ (∪Q) ∈ I/P (I),
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with ∪Q ⊂ (Q′ \ (∪R)) ∪ (∪Q) and X 6∈ (Q′ \ (∪R)) ∪ (∪Q). In the second
instance, we also obtain a contradiction in a similar way. Consequently
(∪Q) ∪ (∪R) = P (I). Finally, ∪(∪Q) and ∪(∪R) are non-empty elements
of I such that (∪(∪Q))∪(∪(∪R)) = S. Furthermore, since |Q| ≥ 2, we have
|∪Q| ≥ 2. As ∪Q ∈ I/P (I) and ∪Q 6= P (I), we obtain that λ(I/P (I)) 6= i.
Consider Y 6= Z ∈ ∪Q. Firstly, if λ(I/P (I)) = c, then X ∪Y ∈ I such that
X ⊆ (X∪Y )\(∪(∪Q)), Y ⊆ (X∪Y )∩(∪(∪Q)) and Z ⊆ (∪(∪Q))\(X∪Y ).
Secondly, if λ(I/P (I)) = t, then assume that Y < Z modulo T (I/P (I)).
As ∪Q ∈ I/P (I), ∪Q is an interval of T (I/P (I)) and hence either X <
Y < Z modulo T (I/P (I)) or Y < Z < X modulo T (I/P (I)). For example,
assume that the first instance holds. Denote by [X,Y ] the intersection of the
elements of (I/P (I))/⊇{X,Y }. By Assertion A2, [X,Y ] ∈ I/P (I). Moreover,
X ⊆ [X,Y ] \ (∪(∪Q)), Y ⊆ [X,Y ]∩ (∪(∪Q)) and Z ⊆ (∪(∪Q)) \ [X,Y ]. In
both cases, we conclude that ∪(∪Q) 6∈ S(I).

Conversely, assume that there exists a non-empty proper subset C of
S such that {C, S \ C} is an I-partition and not an S(I)-partition. By
Lemma 4.1 applied to C and S \ C, C ∪ (S \ C) = S is not a limit, that is,
I is not a limit. Without loss of generality, assume that C 6∈ S(I). There is
Y ∈ I such that C∩Y 6= ∅, C\Y 6= ∅ and Y \C 6= ∅. Furthermore, for each
Z ∈ P (I), either Z ∩ C = ∅ or Z ⊆ C. Thus C = ∪(P (I)/⊆C). Therefore
P (I)/⊆C 6= P (I) and P (I)/⊆C ∈ I/P (I). Lastly, there are Z,Z ′ ∈ P (I)
such that Z∩(C∩Y ) 6= ∅ and Z ′∩(C \Y ) 6= ∅. Suppose for a contradiction
that Z = Z ′. Since Z ⊆ C ∩Y or C ∩Y ⊆ Z and since Z ∩ (C \Y ) 6= ∅, we
have C∩Y ⊆ Z. Moreover, as Y \C 6= ∅, we get C \Y ∈ I. Since C \Y ⊆ Z
or Z ⊆ C \ Y , and since Z ∩ (C ∩ Y ) 6= ∅, we obtain that C \ Y ⊆ Z. Thus
C ⊆ Z. As previously observed, either Z∩C = ∅ or Z ⊆ C. It would follow
that C = Z, which contradicts C 6∈ S(I). Consequently, Z 6= Z ′ and, by
the previous observation, Z ⊆ C and Z ′ ⊆ C. It follows that |P (I)/⊆C | ≥ 2
and hence I/P (I) is not trivial. �

Proposition 4.4 leads us to the following definition. Given a weakly par-
titive family I on a set S, X ⊆ S is a cut of I if X ∈ I and S \X ∈ I. For
convenience, the family of the cuts of I is denoted by C(I). We introduce
the following equivalence relation on S. Given x, y ∈ S, x ∼C(I) y if for each
C ∈ C(I), either x, y ∈ C or x, y ∈ S \ C.

Proposition 4.5. Given a weakly partitive family I on a set S, each equiv-
alence class of ∼C(I) is a strong element of I.

Proof. Let E be an equivalence class of ∼C(I). Given e ∈ E, since E is the
intersection of the cuts containing e, E ∈ I. For a contradiction, suppose
that there exists X ∈ I such that there are a ∈ E ∩ X, b ∈ E \ X and
x ∈ X \ E. As a and x are not equivalent modulo ∼C(I), there exists
C ∈ C(I) such that x ∈ C and a ∈ S \ C. We have E ∩ C = ∅ because
E is an equivalence class of ∼C(I). To obtain a contradiction, it suffices
to prove that C ∪ X ∈ C(I) because we would then have a ∈ C ∪ X and
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b ∈ S \ (C ∪ X). We have C ∩ X 6= ∅ and X \ (S \ C) 6= ∅ because
x ∈ C ∩X. Thus C ∪X ∈ I and (S \C) \X = S \ (C ∪X) ∈ I. Therefore
(S \ C) \X = S \ (C ∪X) ∈ I. �

Lemma 4.6. Consider a weakly partitive family I on a set S, with |S| ≥ 2,
such that I is not trivial and S(I) is trivial. Let a 6= b ∈ S. For any
x 6= y ∈ S, we have (x, y)!I (a, b) or (y, x)!I (a, b).

Proof. Since |S| ≥ 2 and S(I) is trivial, we have P (I) = {{x} : x ∈ S}, and
hence I is not a limit. Therefore, I/P (I) is not trivial because I is not.
By Proposition 4.4, there exists C ∈ C(I) such that C 6= ∅ and C 6= S.
Consequently, for every equivalence class E of ∼C(I), E 6= S. Furthermore,
by Proposition 4.5, E is a strong element of I. Since S(I) is trivial, |E| = 1.
It follows that there is C ∈ C(I) such that a ∈ C and b ∈ S\C. Similarly, for
any x 6= y ∈ S, there is D ∈ C(I) such that x ∈ D and y ∈ S \D. If x ∈ C
and y ∈ S \ C, then (x, y) !I (a, b). Similarly, if y ∈ C and x ∈ S \ C,
then (y, x) !I (a, b). So assume that either x, y ∈ C or x, y ∈ S \ C. In
the same way, assume that a, b ∈ D or a, b ∈ S \ D. For instance, assume
that x, y ∈ C and a, b ∈ D. As b, x ∈ D and y ∈ S \D, (y, x) ∨I (y, b). As
a, y ∈ C and b ∈ S \C, (y, b)∨I (a, b). For the other three cases, we proceed
in the same manner by interchanging a and b and by interchanging C and
S \ C, and similarly for x, y and D,S \D if necessary. �

Consider a weakly partitive family I on a set S. Given a 6= b ∈ S, D(a,b)

denotes the directed graph (S, [(a, b)]I). Given distinct elements a1, . . . , an
of S, where n ≥ 2, recall that the sequence (a1, . . . , an, an+1 = a1) is a
circuit of D(a,b) of length n when (a1, a2), . . . , (an, a1) ∈ [(a, b)]I .

Proposition 4.7. Consider a weakly partitive family I on a set S, with
|S| ≥ 2, such that I is not trivial and S(I) is trivial. The following asser-
tions are equivalent.

(1) I is complete.
(2) !I admits a unique equivalence class.
(3) There are a 6= b ∈ S such that D(a,b) contains a circuit.

Proof. Obviously, the first assertion implies the second. Conversely, consider
any V ⊆ S. By Assertion A6, it suffices to verify that for any a, b ∈ V and
x ∈ S \ V , there is X ∈ I such that a, b ∈ X and x ∈ S \ X, that is,
(a, x) ∨I (b, x). Since (a, x)!I (b, x), apply Corollary 3.13.

Clearly, if !I admits a unique equivalence class, then D(a,b) contains
the circuit (a, b, a) for any a 6= b ∈ S. Conversely, assume that D(a,b)

contains a circuit (a1, . . . , an, an+1 = a1). Consider a finite set F which
is a support of a zigzag modulo I between (ai, ai+1) and (ai+1, ai+2) for
1 ≤ i ≤ n − 1. By Lemma 3.12, (ai, ai+1) !I/∩F (ai+1, ai+2) for 1 ≤ i ≤
n − 1. For convenience, denote I/∩F by J and then denote {a1, a2}

J
by

X; then X ∈ S(J ). Furthermore, for u ∈ X, denote by Xu the element
of P (J/⊆X) containing u. We have Xu ∈ S(J/⊆X). Thus Xu ∈ J/⊆X and
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hence Xu ∈ J . By Proposition 3.10, a1, . . . , an ∈ X and Xai 6= Xai+1 for
1 ≤ i ≤ n − 1. Suppose for a first contradiction that λ(J/⊆X) = i. By
Proposition 3.10, we then have Xa1 ×Xa2 = Xa2 ×Xa3 , which implies that
Xa1 = Xa2 . Suppose for a second contradiction that λ(J/⊆X) = t. Let
TX = T (J/⊆X) or (T (J/⊆X))? selected so that Xa1 < Xa2 modulo TX . By
Proposition 3.10, we obtain

Xa1 < Xa2 < · · · < Xan < Xan+1 = Xa1 modulo TX .

Consequently λ(J/⊆X) = c. For any u, v ∈ X, we have Xu∪Xv ∈ J/⊆X and
hence Xu ∪Xv ∈ J . Therefore, we have (a1, a2)∨J (a3, a2) because a1, a3 ∈
Xa1 ∪Xa3 and a2 ∈ F \ (Xa1 ∪Xa3). If a3 ∈ Xa1 , then (a3, a2) ∨J (a1, a2)
because a1, a3 ∈ Xa1 and a2 ∈ F \ Xa1 . If a3 ∈ Xa1 , then (a3, a2) ∨J
(a3, a1) because a1, a2 ∈ Xa1 ∪Xa2 and a3 ∈ F \ (Xa1 ∪Xa2). Furthermore,
(a3, a1) ∨J (a2, a1) because a2, a3 ∈ Xa2 ∪ Xa3 and a1 ∈ F \ (Xa2 ∪ Xa3).
Consequently, we get (a1, a2)!J (a2, a1), that is, (a1, a2)!I/∩F (a2, a1).
By Lemma 3.11, we have (a1, a2) !I (a2, a1). It follows from Lemma 4.6
that !I admits a unique equivalence class. �

Proof of Theorem 3.8 in the infinite case. Let I be a weakly partitive fam-
ily on an infinite set S. Obviously, if I is complete, trivial or totally ordered,
then S(I) is trivial. Conversely, we will prove the following: if I is not triv-
ial and if S(I) is trivial, then I is complete or totally ordered. Consider
a 6= b ∈ S. By Proposition 4.7, if D(a,b) contains a circuit, then I is com-
plete. Otherwise, it follows from Lemma 4.6 that D(a,b) is a total order. Let
I be an interval of D(a,b). By Assertion A6, to prove that I ∈ I, it suffices to
verify that for any u, v ∈ I and x ∈ S \ I, there is X ∈ I such that u, v ∈ X
and x ∈ S \X, that is, (u, x)∨I (v, x). As I is an interval of D(a,b), we obtain
that (u, x) !I (v, x), and we conclude by Corollary 3.13. Conversely, let
X ∈ I. Consider any u, v ∈ X and x ∈ S \X. We have (u, x)∨I (v, x), and
hence either u < x and v < x modulo D(a,b) when (u, x) ∈ [(a, b)]I , or x < u
and x < v modulo D(a,b) when (x, u) ∈ [(a, b)]I . Consequently, I is totally
ordered by {D(a,b), (D(a,b))?}. �

Given a weakly partitive family I on an infinite set S, we define λ(I) as
in the finite case when I is not a limit. Furthermore, when λ(I) = t, T (I)
still denotes the unique total order up to duality defined on P (I) such that
I is totally ordered by {T (I), (T (I))?}.

In the infinite case, Theorem 3.9 becomes

Theorem 4.8. Consider a weakly partitive family I on an infinite set S.
For every V ⊆ S, we have V ∈ I if and only if one of the following holds:

• V = ∅;
• V = {x}, where x ∈ S;
• |V | ≥ 2, V ∈ L(I) and V = V ;
• |V | ≥ 2, V ∈ S(I) \ L(I) and there is QV ⊆ P (I/⊆V ) such that
V = ∪QV , and furthermore
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– if λ(I/⊆V ) = i, then QV = P (I/⊆V );
– if λ(I/⊆V ) = t, then QV is an interval of T (I/⊆V ).

Proof. To begin, consider X ∈ I such that |X| ≥ 2. First, assume that
X ∈ L(I). By Corollary 4.3, S(I)/⊂X is up-directed. Given a ∈ X, for
every Y ∈ S(I)/⊂X , there is Z ∈ S(I)/⊂X such that Y ∪ {a} ⊆ Z. As
Z ∈ S(I), with a ∈ X ∩ Z, we get either X ⊂ Z or Z ⊆ X. Since Z ⊂ X,
we have Z ⊆ X and hence Y ⊆ X. Therefore ∪(S(I)/⊂X) ⊆ X. As
{x} ∈ S(I)/⊂X for each x ∈ X, we obtain that X = X. Secondly, assume
that X ∈ S(I) \ L(I). Denote by QX the family of Y ∈ P (I/⊆X) such that
Y ∩ X 6= ∅. Given Y ∈ QX , since Y ∈ S(I/⊆X) and since X ∈ I/⊆X ,
we have either X ⊆ Y or Y ⊂ X. As Y ⊂ X, we get Y ⊂ X. Therefore
|QX | ≥ 2, X = ∪QX and hence QX ∈ (I/⊆X)/P (I/⊆X).

Conversely, consider V ⊆ S such |V | ≥ 2. Obviously, if V = V , then
V ∈ I. So assume that the last assertion holds. We obtain that QV ∈
(I/⊆V )/P (I/⊆V ). Thus V = ∪QV ∈ I/⊆V and hence V ∈ I. �

Given a weakly partitive family I on an infinite set S, it follows from this
theorem that the elements of I are decomposed into a union of elements of

D(I) =
⋃

X∈S(I)\L(I)

{X} ∪ P (I/⊆X) .

Clearly, D(I) endowed with inclusion constitutes a tree, called the de-
composition tree of I. The following corollary of Theorem 4.8 ends this
section.

Corollary 4.9. Given weakly partitive families I and J on the same in-
finite set S, we have I = J if and only if S(I) \ L(I) = S(J ) \ L(J )
and for each X ∈ S(I) \ L(I), P (I/⊆X) = P (J/⊆X), λ(I/⊆X) = λ(J/⊆X)
and {T ( I/⊆X), (T (I/⊆X))?} = {T (J/⊆X), (T (J/⊆X))?} when λ(I/⊆X) =
λ(J/⊆X) = t.

Proof. Consider I ∈ I such that |I| ≥ 2. First, assume that II ∈ L(I).
By Theorem 4.8 applied to I, we have I = I

I and hence I ∈ L(I). It
follows from Corollary 4.3, applied to I ∈ L(I), that (S(I) \ L(I))/⊂I is
up-directed and ∪((S(I) \ L(I))/⊂I) = I. As S(I) \ L(I) = S(J ) \ L(J ),
we have (S(I) \ L(I))/⊂I = (S(J ) \ L(J ))/⊂I and hence (S(J ) \ L(J ))/⊂I
is up-directed. By Assertion A5, ∪((S(I) \ L(I))/⊂I) = I belongs to J .

Secondly, assume that II ∈ S(I) \ L(I). So we have II ∈ S(J ) \ L(J ) and
P (I

/⊆II ) = P (J
/⊆II ). By Theorem 4.8 applied to I, there is QI ⊆ P (I

/⊆II )

such that I = ∪QI . By definition of II , |QI | ≥ 2. Recall that P (J
/⊆II ) is

constituted by the maximal elements under inclusion of S(J
/⊆II ) \ {∅, I

I}.
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Moreover S(J
/⊆II ) \ {∅, I

I} = S(J )
/⊆II \ {∅, I

I}. Consequently IJ = I
I .

To obtain that I ∈ J , it suffices to apply the preceding theorem to J
by using the facts that λ(I

/⊆IJ ) = λ(J
/⊆IJ ) and that QI is an interval

of T (I
/⊆IJ ), and hence of T (J

/⊆IJ ) when λ(I
/⊆IJ ) = λ(J

/⊆IJ ) = t. It
follows that I ⊆ J . The opposite inclusion is obtained by interchanging I
and J in what precedes. �

Theorem 4.8 also allows the extension of Proposition 3.10 to the infinite
case.

5. Theorem 1.2 in the infinite case

We say that a binary structure B is a limit if P (B) = ∅. For convenience,
denote by L(B) the family of the strong intervals X of B such that B[X] is
a limit.

Observation 5.1. Consider a binary structure B. Clearly, S(B) = S(I(B)).
Let X ∈ S(B). By Assertion B5 of Proposition 2.2, we have S(B[X]) =
S(B)/⊆X . As S(B) = S(I(B)), we get S(B)/⊆X = S(I(B))/⊆X . But, by
Assertion B5 of Proposition 2.2, we have S(I(B))/⊆X = S(I(B)/⊆X). It
follows that for each X ∈ S(B), P (B[X]) = P (I(B)/⊆X). Thus L(B) =
L(I(B)). Lastly, let X ∈ S(B) \ L(B). For every Q ⊆ P (B[X]), it is easy
to verify that Q is an interval of the quotient B[X]/P (B[X]) if and only if
∪Q is an interval of B[X]. In other words,

I(B[X]/P (B[X])) = I(B[X])/P (B[X]).

By Proposition 2.1, I(B[X]) = I(B)/⊆X . As P (B[X]) = P (I(B)/⊆X), we
obtain that I(B[X]/P (B[X])) = (I(B)/⊆X)/P (I(B)/⊆X). Therefore, we
clearly have that B[X]/P (B[X]) is:

• indecomposable if and only if (I(B)/⊆X)/P (I(B)/⊆X) is trivial;
• constant if and only if (I(B)/⊆X)/P (I(B)/⊆X) is complete;
• totally ordered if and only if (I(B)/⊆X)/P (I(B)/⊆X) is totally or-

dered.
Consequently λ(B[X]) = λ(I(B)/⊆X).

We utilize the following to demonstrate Theorem 1.2 in the infinite case.
Let O be a partial order. A bicoloring of O is a function C : V (O) −→

{0, 1}. A subset X of V (O) is monochromatic if there is i ∈ {0, 1} such
that C (x) = i for every x ∈ X. With each bicoloring C of O associate its
complement C defined by C (x) = 1−C (x) for each x ∈ V (O). A bicoloring
C of O is dense provided that for any x 6= y ∈ V (O), if x < y modulo O
and if C (x) = C (y), then there is z ∈ V (O) such that x < z < y modulo O
and C (z) 6= C (x). For a total order T , we then have: a bicoloring C of T
is dense if the only monochromatic intervals of T are the empty set and the
singletons.
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Proposition 5.2 ([6]). (Axiom of Choice) Every total order admits a dense
bicoloring.

This result easily extends to trees.

Corollary 5.3. (Axiom of Choice) Every tree admits a dense bicoloring.

Proof. Consider a tree τ . Using the Axiom of Choice, there exists an ordinal
α and an ordinal sequence (bβ)β<α of all the branches of τ . We will define
by transfinite induction a sequence (Cβ)β<α of bicolorings such that Cβ is
a dense bicoloring of τ [∪δ≤βbδ] for β < α and Cγ is a restriction of Cβ
for γ < β < α. Once again, we use the Axiom of Choice as follows. For
each β < α, associate a dense bicoloring Dβ of τ [bβ]. Set C0 = D0. Now,
given 0 < β < α, assume that the bicolorings (Cγ)γ<β are well defined.
The bicolorings (Cγ)γ<β admit a common extension, denoted by ∪γ<βCγ ,
which is a dense bicoloring of τ [∪γ<βbγ ]. If bβ ⊆ ∪γ<βbγ , then set Cβ =
∪γ <βCγ . Now assume that bβ \ (∪γ<βbγ) 6= ∅. As τ is connected, consider
a shortest sequence x0, . . . , xn of vertices of τ satisfying x0 ∈ ∪γ<βbγ , xn ∈
bβ \ (∪γ<βbγ), and for 0 ≤ i ≤ n− 1, either (xi, xi+1) ∈ A(τ) or (xi+1, xi) ∈
A(τ). For a contradiction, suppose that n ≥ 2. Let 0 ≤ i ≤ n−2. Since n is
the smallest for such a sequence, we have (xi, xi+2) 6∈ A(τ). As τ is a tree, we
get xi < xi+1 and xi+2 < xi+1 modulo τ . It follows that n = 2 and x0 < x1

and x2 < x1 modulo τ . But, since x0 ∈ ∪γ<βbγ , we have x1 ∈ ∪γ<βbγ .
So we could have considered the sequence (x1, x2) instead of (x0, x1, x2).
Consequently n = 1. As previously observed, if x0 < x1 modulo τ , then x1 ∈
∪γ<βbγ . Thus x1 < x0 and hence x0 ∈ bβ ∩ (∪γ<βbγ). For x ∈ bβ ∩ (∪γ<βbγ)
and y ∈ V (τ), if x < y modulo τ , then y ∈ bβ ∩ (∪γ<βbγ). Therefore,
for x ∈ bβ ∩ (∪γ<βbγ) and y ∈ bβ \ (∪γ<βbγ), we have y < x modulo τ . If
τ [bβ \(∪γ<βbγ)] does not possess a biggest element or if τ [bβ∩(∪γ<βbγ)] does
not possess a smallest element, then choose for Cβ the common extension of
∪γ<βCγ and of Dβ |(bβ\(∪γ<βbγ)). So assume that τ [bβ \ (∪γ<βbγ)] admits a
biggest element denoted byM and τ [bβ∩(∪γ<βbγ)] admits a smallest element
denoted by m. If (∪γ<βCγ)(m) 6= Dβ |(bβ\(∪γ<βbγ))(M), then we choose for
Cβ the common extension of ∪γ<βCγ and of Dβ |(bβ\(∪γ<βbγ)) as well. If
(∪γ<βCγ)(m) = Dβ |(bβ\(∪γ<βbγ))(M), then Cβ is the common extension of
∪γ<βCγ and of Dβ |(bβ\(∪γ<βbγ)). In this manner, we complete the definition
of the required sequence of bicolorings (Cβ)β<α. Their common extension
∪β<αCβ realizes a dense bicoloring of τ . �

The following is deduced from Proposition 5.2 as well.

Corollary 5.4. (Axiom of Choice) For every set S, there exists a binary
structure B such that B = S, rk(B) = 3 and B is indecomposable.

Proof. By the Ultrafilter Axiom, there exists a total order T defined on
V (T ) = S. By Proposition 5.2, T admits a dense coloring C . Define B
as follows. Given x 6= y ∈ S, B(x, y) = 0 if x < y modulo T and if
C (x) = C (y); B(x, y) = 1 if x < y modulo T and if C (x) 6= C (y); otherwise,
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B(x, y) = 2. For every proper subset X of S, we have X is an interval of B
if and only if X is a monochromatic interval of T . Since C is dense, B does
not have a non-trivial interval. �

Proof of Theorem 1.2 in the general case. (Using the Axiom of Choice)
Consider a weakly partitive family I on a set S, with |S| ≥ 2. The family

S(I) \ L(I) endowed with inclusion constitutes a tree. By Corollary 5.3, it
admits a dense bicoloring C . Let X ∈ S(I)\L(I). We associate with X the
binary structure BX defined on P (I/⊆X) by distinguishing the three cases
below.

Case 1: λ(I/⊆X) = c.
The binary structure BX is constant, and is defined by: for any Y 6=
Z ∈ P (I/⊆X), BX(Y,Z) = C (X).

Case 2: λ(I/⊆X) = i.
Using the preceding corollary, we choose for BX an indecomposable bi-
nary structure defined on P (I/⊆X) of rank 3.

Case 3: λ(I/⊆X) = t.
There is a total order T (I/⊆X) such that (I/⊆X)/P (I/⊆X) is totally or-
dered by {T (I/⊆X), (T (I/⊆X))?}. Recall that T (I/⊆X) is identified with
the binary structure BT (I/⊆X) of rank 2 defined on P (I/⊆X). We define
BX as follows: for any Y 6= Z ∈ P (I/⊆X), BX(Y, Z) = BT (I/⊆X)(Y, Z) +
C (X). Thus, BX is totally ordered by {0, 1} if C (X) = 0 and by {1, 2}
if C (X) = 1.

Now we define a binary structure B of rank 3 on S as follows. Let a 6=
b ∈ S. By Lemma 4.1 applied to {a} and {b}, {a, b}I ∈ S(I) \ L(I). For
x ∈ {a, b}I , denote by {a, b}Ix the element of P (I

/⊆{a,b}I
) which contains x.

Lastly, set B(a, b) = B
({a,b}I)

({a, b}Ia , {a, b}
I
b ). To prove that I(B) = I, we

establish the next claims. The first one follows directly from the definition
of BX , where X ∈ S(I) \ L(I), and of B.

Claim 5.5. Let X ∈ S(I) \ L(I).
• I(BX) = (I/⊆X)/P (I/⊆X).
• For every I ∈ I(B[X]), we have

{Y ∈ P (I/⊆X) : Y ∩ I 6= ∅} ∈ I(BX).

• For every Q ∈ I(BX), ∪Q ∈ I(B[X]).

Claim 5.6. S(I) \ L(I) ⊆ I(B) and for every X ∈ S(I) \ L(I), we have
P (I/⊆X) ⊆ I(B).

Proof. Given X ∈ S(I)\L(I), consider a, b ∈ X and x ∈ S\X. Clearly, X ⊂
{a, b, x}I , and {a, b, x}I ∈ S(I) \ L(I) by Lemma 4.1. By Assertion B5 of
Proposition 3.3, X ∈ S(I

/⊆{a,b,x}I
)\{{a, b, x}I}. It follows from Lemma 3.6
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applied to I
/⊆{a,b,x}I

that there is Y ∈ P (I
/⊆{a,b,x}I

) such that X ⊆ Y .

As a, b ∈ Y and Y ⊂ {a, b, x}I , we have x 6∈ Y . Thus, there is Z ∈
P (I

/⊆{a,b,x}I
) \ {Y } such that x ∈ Z. We also deduced that {a, x}I =

{b, x}I = {a, b, x}I . So we have

B(a, x) = B
({a,b,x}I)

(Y, Z) = B(b, x)

and

B(x, a) = B
({a,b,x}I)

(Z, Y ) = B(x, b).

Consequently X ∈ I(B).
Given X ∈ S(I) \ L(I), consider Y ∈ P (I/⊆X). Since X ∈ I(B), it

follows from Proposition 2.1 that it suffices to verify that Y is an interval of
B[X]. So consider a, b ∈ Y and x ∈ X \Y . As Y is a maximal element under
inclusion of S(I/⊆X)\{∅, X} and as S(I/⊆X) = S(I)/⊆X by Assertion B5 of

Proposition 3.3, we have {a, x}I = {b, x}I = X. Denote by Z the element of
P (I/⊆X)\{Y } which contains x. We get B(a, x) = BX(Y,Z) = B(b, x) and
B(x, a) = BX(Z, Y ) = B(x, b). Consequently Y is an interval of B[X]. �

Claim 5.7. Let X ∈ S(I) \ L(I). Given an interval I of B[X], denote by
QI the family of Y ∈ P (I/⊆X) such that Y ∩ I 6= ∅. If |QI | ≥ 2, then
I = ∪QI .

Proof. By contradiction.
Suppose that there is Y ∈ QI such that Y \I 6= ∅. Consider Z ∈ QI \{Y }

and elements a ∈ I ∩ Y , b ∈ I ∩ Z and y ∈ Y \ I. Clearly, {y, b}I = X and
hence B(y, b) = BX(Y,Z) and B(b, y) = BX(Z, Y ). Moreover, by Claim 5.5,
QI is an interval of BX . Thus, if QI 6= P (I/⊆X), then λ(I/⊆X) 6= i. So
assume that QI = P (I/⊆X). By Claim 5.6, Y is an interval of B[X]. Since
Y \I 6= ∅, we have I \Y is an interval of B[X]. By Claim 5.5, P (I/⊆X)\{Y }
is an interval of BX and hence λ(I/⊆X) 6= i as well.

Clearly, {a, y}I ⊆ Y and, by Lemma 4.1, {a, y}I ∈ S(I) \ L(I). We will
prove that for every U ∈ S(I)\L(I), if {a, y}I ⊆ U ⊂ X, then λ(I/⊆U ) 6= i.
By Lemma 3.6, U ⊆ Y . For every u ∈ U , denote by Uu the element of
P (I/⊆U ) which contains u. We have Ua ∈ {Y ′ ∈ P (I/⊆U ) : Y ′ ∩ I 6= ∅}.
By Claim 5.6, U is an interval of B and hence U∩I is an interval of B[U ]. By
Claim 5.5 applied to U , {Y ′ ∈ P (I/⊆U ) : Y ′ ∩ I 6= ∅} is an interval of BU .
Thus, if |{Y ′ ∈ P (I/⊆U ) : Y ′∩I 6= ∅}| ≥ 2 and if {Y ′ ∈ P (I/⊆U ) : Y ′∩I 6=
∅} 6= P (I/⊆U ), then λ(I/⊆U ) 6= i. By distinguishing the two cases below,
we will show that we always have λ(I/⊆U ) 6= i. First, assume that |{Y ′ ∈
P (I/⊆U ) : Y ′ ∩ I 6= ∅}| = 1, that is, {Y ′ ∈ P (I/⊆U ) : Y ′ ∩ I 6= ∅} = {Ua}.
By Claim 5.6, Ua is an interval of B and hence I ∪Ua is an interval of B[X].
Since b ∈ (I ∪Ua) \U , we obtain that U \ (I ∪Ua) = U \Ua is an interval of
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B[U ]. It follows from Claim 5.5 that P (I/⊆U ) \ {Ua} is an interval of BU .
Therefore λ(I/⊆U ) 6= i. Second, assume that {Y ′ ∈ P (I/⊆U ) : Y ′ ∩ I 6=
∅} = P (I/⊆U ). As previously observed, U ∩ I is an interval of B[U ]. Since
y ∈ Uy \ (U ∩ I), we obtain that (U ∩ I) \ Uy is an interval of B[U ]. By
Claim 5.5, P (I/⊆U ) \ {Uy} is an interval of BU and hence λ(I/⊆U ) 6= i.

Now, we will establish that λ(I
/⊆{a,y}I

) = λ(I/⊆X) and C ({a, y}I) =

C (X). For U = X or {a, y}I , we proved that BU is either constant or
totally ordered. Thus, given W 6= W ′ ∈ P (I/⊆U ), we have BU is con-
stant if and only if BU (W,W ′) = BU (W ′,W ). We also have BU is to-
tally ordered if and only if BU (W,W ′) 6= BU (W ′,W ). Furthermore, if BU
is constant then C (U) = BU (W,W ′), and if BU is totally ordered, then
C (U) = min(BU (W,W ′), BU (W ′,W )). Consequently, it suffices to find
X ′ 6= X ′′ ∈ P (I/⊆X) and Y ′ 6= Y ′′ ∈ P (I

/⊆{a,y}I
) such that

{BX(X ′, X ′′), BX(X ′′, X ′)} = {B
{a,y}I

(Y ′, Y ′′), B
{a,y}I

(Y ′′, Y ′)}.

We already obtained that B(y, b) = BX(Y, Z) and B(b, y) = BX(Z, Y ).
Since I is an interval of B[X], B(y, a) = B(y, b) and B(a, y) = B(b, y). But
B(y, a) = B

{a,y}I
({a, y}Iy , {a, y}

I
a) and B(a, y) = B

{a,y}I
({a, y}Ia , {a, y}

I
y ).

Therefore

{BX(Y,Z), BX(Z, Y )} = {B
{a,y}I

({a, y}Iy , {a, y}
I
a),

B
{a,y}I

({a, y}Ia , {a, y}
I
y )}.

Finally, to obtain a contradiction, we will show that the bicoloring C
is not dense. In fact, we will verify that for every U ∈ S(I) \ L(I), if
{a, y}I ⊆ U ⊆ X, then C (U) = C (X). Let U ∈ S(I) \ L(I) be such that
{a, y}I ⊂ U ⊂ X. For every u ∈ U , denote by Uu the element of P (I/⊆U )

which contains u. By Lemma 3.6, {a, y}I ⊆ Ua = Uy and U ⊆ Y . Let
u ∈ U \ Ua. First, assume that u ∈ I. Since I is an interval of B[X], we
have B(u, y) = B(b, y) and B(y, u) = B(y, b). Thus

{BU (Uu, Uy), BU (Uy, Uu)} = {BX(Y,Z), BX(Z, Y )}.

Second, assume that u ∈ U \ I. As I is an interval of B[X], we have
B(u, a) = B(u, b) and B(a, u) = B(b, u). Moreover, since U ⊆ Y , we have
B(u, b) = BX(Y,Z) and B(b, u) = BX(Z, Y ). So

{BU (Uu, Ua), BU (Ua, Uu)} = {BX(Y, Z), BX(Z, Y )}.

�

Claim 5.8. S(I) \ L(I) ⊆ S(B) and for every X ∈ S(I) \ L(I), we have
P (I/⊆X) ⊆ S(B).



WEAKLY PARTITIVE FAMILIES ON INFINITE SETS 77

Proof. Let X ∈ S(I) \ L(I). By Claim 5.6, X is an interval of B. So
consider an interval Y of B such that Y \ X 6= ∅ and Y ∩ X 6= ∅. We
have to show that X ⊆ Y . Let a ∈ Y \X and b ∈ Y ∩X. By Lemma 4.1,
{a, b}I ∈ S(I) \ L(I). Since b ∈ X ∩ {a, b}I , we have either X ⊂ {a, b}I

or {a, b}I ⊆ X. We get X ⊂ {a, b}I because a 6∈ X. By Lemma 3.6,
there is Zb ∈ P (I

/⊆{a,b}I
) such that X ⊆ Zb. As b ∈ Zb and Zb ⊂ {a, b}

I
,

a 6∈ Zb. Denote by Za the element of P (I
/⊆{a,b}I

) which contains a. By

Claim 5.6, {a, b}I is an interval of B and hence Y ∩ {a, b}I is an interval
of B[{a, b}I ]. Denote by Q the family of elements Z of P (I

/⊆{a,b}I
) such

that Z ∩ (Y ∩ {a, b}I) 6= ∅. We have |Q| ≥ 2 because Za 6= Zb ∈ Q.
It follows from the preceding claim that Y ∩ {a, b}I = ∪Q. Consequently
X ⊆ Zb ⊆ Y ∩ {a, b}

I ⊆ Y .
Let X ∈ S(I) \ L(I). We showed that X ∈ S(B). Thus, it follows

from Assertion B5 of Proposition 2.2 that P (I/⊆X) ⊆ S(B) if and only if
P (I/⊆X) ⊆ S(B[X]). But, by Claim 5.7, we have P (I/⊆X) ⊆ S(B[X]). �

Claim 5.9. I ⊆ I(B).

Proof. Let X ∈ I. Firstly, assume that XI ∈ L(I). By Theorem 4.8,
X = X

I . By Corollary 4.3, (S(I) \ L(I))/⊂X is up-directed and ∪((S(I) \
L(I))/⊂X) = X. By the previous claim, (S(I) \ L(I))/⊂X ⊆ S(B) and
X = ∪((S(I) \ L(I))/⊂X) ∈ S(B) by Assertion B3 of Proposition 2.2.

Secondly, assume that XI ∈ S(I)\L(I). By Theorem 4.8, there is QX ∈
(I
/⊆XI )/P (I

/⊆XI ) such that X = ∪QX . By Claim 5.5, QX ∈ I(B
(X
I
)
) and

X = ∪QX ∈ I(B[XI ]). By Claim 5.6, XI ∈ I(B) and hence X ∈ I(B) by
Proposition 2.1. �

Claim 5.10. I(B) ⊆ I.

Proof. Let X ∈ I(B). To begin, assume that XI ∈ L(I). By Corollary 4.3,
(S(I) \ L(I))

/⊂XI is up-directed and ∪((S(I) \ L(I))
/⊂XI ) = X

I . By
Claim 5.8, (S(I) \ L(I))

/⊂XI ⊆ S(B)
/⊂XI . We verify that S(B)

/⊂XI is
up-directed. Indeed, let Y,Z ∈ S(B)

/⊂XI . If Y ∩ Z 6= ∅, then Y ⊆ Z or
Z ⊆ Y . Thus, assume that Y ∩ Z = ∅ and consider y ∈ Y and z ∈ Z. As
(S(I) \ L(I))

/⊂XI is up-directed and ∪((S(I) \ L(I))
/⊂XI ) = X

I , there is
U ∈ (S(I) \ L(I))

/⊂XI such that y, z ∈ U . By Claim 5.8, U ∈ S(B)
/⊂XI

and hence X∪Y ⊆ U because y ∈ Y ∩U , z ∈ U \Y , z ∈ Z∩U and y ∈ U \Z.
Consequently, S(B)

/⊂XI is up-directed. By Assertion B3 of Proposition 2.2,
∪(S(B)

/⊂XI ) ∈ S(B). Since (S(I)\L(I))
/⊂XI ⊆ S(B)

/⊂XI , we obtain that

X
I = ∪((S(I) \ L(I))

/⊂XI ) ⊆ ∪(S(B)
/⊂XI ) ⊆ X

I . Therefore XI ∈ S(B).
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Lastly, we show that XI = X. As ∪((S(I) \ L(I))
/⊂XI ) = X

I , there is
U0 ∈ (S(I) \ L(I))

/⊂XI such that U0 ∩ X 6= ∅. For each U ∈ (S(I) \
L(I))

/⊂XI , there exists U ′ ∈ (S(I) \ L(I))
/⊂XI such that U0 ∪ U ⊆ U ′

because (S(I) \ L(I))
/⊂XI is up-directed. Obviously, U ′ ∩ X 6= ∅. By

Claim 5.8, U ′ ∈ S(B)
/⊂XI . Since X ∈ I(B), we get either X ⊂ U ′ or

U ′ ⊆ X. In the first instance, we obtain that X ⊂ U ′ ⊂ X
I , which is

impossible because U ′ ∈ S(I). Thus U ′ ⊆ X and hence U ⊆ X. It follows
that XI = ∪((S(I) \ L(I))

/⊂XI ) ⊆ X so that XI = X.

To finish, assume that XI ∈ S(I) \ L(I). By Claim 5.8, XI ∈ S(B) and
hence X ∈ I(B[XI ]) by Proposition 2.1. Denote by QX the elements Y
of P (I

/⊆XI ) such that Y ∩ X 6= ∅. By definition of XI , |QX | ≥ 2. By
Claim 5.8, QX ⊆ S(B) so that X = ∪QX . By Claim 5.5, as ∪QX ∈ I(B),
we have QX ∈ I(B

X
I ) and QX ∈ (I

/⊆XI )/P (I
/⊆XI ) as well. Thus X =

∪QX ∈ I/⊆XI . �

6. Another proof of Theorem 3.8 using the Axiom of Choice

We will use the following lemma.

Lemma 6.1 ([6]). Consider a weakly partitive family I on a set S. Assume
that there is a total order T defined on S such that all the intervals of T
belong to I. Then, either I is complete or I is totally ordered by {T, T ?}.

Another proof of Theorem 3.8. Let I be a weakly partitive family on a set
S such that |S| ≥ 2. As in Section 4, we will prove the following: if I
is not trivial and if S(I) is trivial, then I is complete or totally ordered.
Using Zorn’s lemma, consider a maximal family M under inclusion among
the families of cuts of I which are total orders under inclusion. As M is
maximal, we have ∅, S ∈ M. Furthermore, as seen at the beginning of the
proof of Lemma 4.6, there is C ∈ C(I) such that C 6= ∅ and C 6= S. Thus
|M| ≥ 3.

Consider C ∈M. Denote ∪(M/⊂C) by C−. SinceM/⊂C is a total order
under inclusion, C− ∈ I by Assertion A5. We have S \C− = ∩{S \D : D ∈
M/⊂C} belongs to I by Assertion A2. Therefore C− ∈ C(I). Clearly,
M∪ {C−} endowed with inclusion is a total order and, M being maximal
for this property, we get C− ∈ M. By Assertion A2, C \ C− ∈ I because
C\C− = C∩(S\C−). Now we show that C\C− ∈ S(I). For a contradiction,
suppose that there is X ∈ I such that X ∩ (C \C−) 6= ∅, X \ (C \C−) 6= ∅
and (C \ C−) \ X 6= ∅. Notice that {S \ D : D ∈ M} is also maximal
under inclusion among the families of cuts of I which are totally ordered by
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inclusion. Furthermore

∪({S \D : D ∈M}/⊂(S\C−)) = ∩({E ∈M : C− ⊂ E})
= ∩({E ∈M : C ⊆ E}) = C.

By interchangingM and {S \D : D ∈M}, we can assume that X ∩C− 6=
∅. By Assertion A2, X ∩ C ∈ I and, since (X ∩ C) ∩ C− = X ∩ C−,
C− ∪ (X ∩C) ∈ I by Assertion A3. Clearly, C− 6= ∅ because X ∩C− 6= ∅.
By Assertion A4, as S \C− ∈ I and as (C− ∪ (X ∩C)) \ (S \C−) = C−, we
have (S \ C−) \ (C− ∪ (X ∩ C)) = S \ (C− ∪ (X ∩ C)) ∈ I. Consequently,
C−∪ (X ∩C) ∈ C(I), which is impossible because C− ⊂ C−∪ (X ∩C) ⊂ C.
It follows that C \ C− ∈ S(I). As S(I) is trivial and as M\ {∅, S} 6= ∅,
we obtain that |C \ C−| ≤ 1.

For each x ∈ S, set Cx = ∩(M/⊇{x}). It follows from Assertions A2
and A5 that Cx ∈ C(I). Given C ∈ M, either x ∈ C and Cx ⊆ C or
x 6∈ C. In the last instance, we have C ⊂ D for every D ∈ M/⊇{x} and
hence C ⊆ Cx. Therefore, M ∪ {Cx} endowed with inclusion is a total
order, so that Cx ∈ M. Furthermore, for every C ∈ M such that C ⊂ Cx,
we have x 6∈ C. As (Cx)− = ∪(M/⊂Cx), x ∈ Cx \ (Cx)−. Consequently
Cx \ (Cx)− = {x}. Finally, we define an order T on S as follows. Given
x 6= y ∈ S, x < y modulo T if Cx ⊂ Cy. Given an interval I of T , we use
Assertion A6 to verify that I ∈ I. For x ∈ S\I and for a 6= b ∈ I, with a < b
modulo T , we have either x < a or b < x. In the first case, a, b ∈ S \ (Ca)−

and x 6∈ S \ (Ca)−. In the second, a, b ∈ Cb and x 6∈ Cb. To conclude, it
suffices to apply Lemma 6.1. �
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8. , La décomposition intervallaire des structures binaires, La Gazette des

Mathématiciens 104 (2005), 39–58.
9. D. Kelly, Comparability graphs, Graphs and Orders (I. Rival, ed.), Reidel, Drodrecht,

1985, pp. 3–40.
10. F. Maffray and M. Preissmann, A translation of Tibor Gallai’s paper: Transitiv ori-

entierbare Graphen, Perfect Graphs (J. L. Ramirez-Alfonsin and B. A. Reed, eds.),
Wiley, New York, 2001, pp. 25–66.



80 PIERRE ILLE AND ROBERT E. WOODROW
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