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COEFFICIENTS OF CHROMATIC POLYNOMIALS AND

TENSION POLYNOMIALS

MARTIN KOCHOL AND NAD’A KRIVOŇÁKOVÁ

Abstract. We evaluate coefficients of the chromatic polynomial of a
graph G as sums of zero values of tension polynomials of certain “max-
imal” subgraphs of G.

The chromatic polynomial χG(k) of a graph G evaluates the number of
k-colorings of G. It is known that

(1) χG(k) = kc(G) · TG(k),

where TG(k) is the tension polynomial of G and c(G) is the number of
components of G. For more details about the interpretation of TG(k), we
refer to [1, 3, 5, 7]. Coefficients of chromatic polynomials are studied in
[2, 6, 7]. In this paper we evaluate these coefficients using zero values of
some tension polynomials.

If G is a graph, then V (G) and E(G) denote the vertex and edge sets of
G, respectively. If e ∈ E(G), then G−e and G/e denote the graphs obtained
from G after deleting and contracting e (i.e., deleting e and identifying its
ends into a new vertex), respectively.

It is well known that (see, e.g., [5])

TG(k) = 0 if G has a loop,(2)

TG(k) = 1 if E(G) = ∅,(3)

TG(k) = (k − 1) · TG−e(k) if e is a bridge (1-edge cut) of G,(4)

TG(k) = TG−e(k)− TG/e(k) if e is not a bridge of G.(5)

If G is a disjoint union of H1, H2, and G′ is obtained from G after identifying
a vertex from H1 with a vertex from H2, then (see [5])

(6) TG(k) = TG′(k) = TH1(k) · TH2(k).

By (3)–(5) and induction on |E(G)| we can check that,

(7) TG(0) is a nonzero integer with sign (−1)|V (G)|−c(G)
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for each graph G without loops. Items (1) and (7) indicate that TG(k) is a
nontrivial divisor of χG(k).

If X ⊆ V (G), then G[X] denotes the subgraph of G induced by X (i.e.,
V (G[X]) = X and E(G[X]) consists of the edges of G with both ends from
X). If P = {X1, . . . , Xr} is a partition of V (G), then denote by G[P ] the
disjoint union of G[Xi], i = 1, . . . , r. Note that |P | = r. Denote by PG the
set of partitions of V (G) such that c(G[P ]) = |P |, (i.e., P = {X1, . . . , Xr} ∈
PG if and only if G[Xi] is connected for every i = 1, . . . , r).

Theorem 1. For every graph G,

χG(k) =
∑

P∈PG

TG[P ](0) · k|P |.

Proof. We use induction on |E(G)|. By (1)–(3), the statement holds true if
E(G) = ∅ or G has a loop. Consider e ∈ E(G) having two different ends u
and v. It is well known (see [1, 7]) that

(8) χG(k) = χG−e(k)− χG/e(k).

PG (PG−e) is the disjoint union of P1, P2, P3 (P ′1, P ′2), where

P1 = {P ∈ PG : e ∈ E(G[P ]) is not a bridge of G[P ]},
P2 = {P ∈ PG : e is a bridge of G[P ]},
P3 = {P ∈ PG : e /∈ E(G[P ])},
P ′1 = {P ∈ PG−e : u, v are in one component of G[P ]},
P ′2 = {P ∈ PG−e : u, v are in two components of G[P ]}.

Let w be the vertex of G/e arising from u and v after contracting e. If
H is a subgraph of G/e containing w, then denote by ρ(H) the subgraph of
G− e with vertex set (V (H) \w)∪{u, v} and edge set E(H) (supposing the
ends of edges are the same as in G− e). Define

P ′′1 = {P ∈ PG/e : u, v are in one component of ρ(G[P ])},
P ′′2 = {P ∈ PG/e : u, v are in two components of ρ(G[P ])}.

PG/e is the disjoint union of P ′′1 , P ′′2 .
P ∈ P1 if and only if P ∈ P ′1, and if and only if the partition arising from

P after identifying u and v into w belongs to P ′′1 . Thus by (5),∑
P∈P1

TG[P ](0)k|P | =
∑
P∈P ′1

T(G−e)[P ](0)k|P | −
∑
P∈P ′′1

T(G/e)[P ](0)k|P |.

P ∈ P2 if and only if the partition arising from P after identifying u and
v into w belongs to P ′′2 (note that P2 = P ′′2 = ∅ if e has a parallel edge).
Thus by (4) and (6),∑

P∈P2

TG[P ](0)k|P | = −
∑
P∈P ′′2

T(G/e)[P ](0)k|P |.
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P ∈ P3 if and only if P ∈ P ′2, whence∑
P∈P3

TG[P ](0)k|P | =
∑
P∈P ′2

T(G−e)[P ](0)k|P |.

Therefore∑
P∈PG

TG[P ](0)k|P | =
∑

P∈PG−e

T(G−e)[P ](0)k|P | −
∑

P∈PG/e

T(G/e)[P ](0)k|P |.

|E(G− e)|, |E(G/e)| < |E(G)|, whence by the induction hypothesis,∑
P∈PG

TG[P ](0)k|P | = χG−e(k)− χG/e(k).

and by (8), ∑
P∈PG

TG[P ](0)k|P | = χG(k).

�

Denote by PG,r = {P ∈ PG; |P | = r}, 1 ≤ r ≤ |V (G)|.

Theorem 2. If G is a graph with n vertices and χG(k) =
∑n

r=0 αr ·kr, then

αr =
∑

P∈PG,r

TG[P ](0) for r=0,. . . ,n.

Proof. This follows immediately from Theorem 1 and the definition of PG,r.
�

Notice that αr = 0 and PG,r = ∅ for each 0 ≤ r < c(G). Thus αr = 0 for
each 0 ≤ r < c(G), and the statement of Theorem 2 is nontrivial only for
r = c(G), . . . , n.

If G has no loops, then by (7), TG[P ](0) has sign (−1)n−r for each P ∈
PG,r. Thus Theorem 2 gives a formula expressing αr as a sum of numbers
with the same sign. Hence αr is a nonzero integer with sign (−1)n−r (see,
e.g., [4, 7]).

Let us call a subgraph H of G edge-maximal if V (H) = V (G) and each
edge e ∈ E(G) \ E(H) joins two components of H. Clearly, the set of
graphs G[P ], P ∈ PG, equals the set of edge-maximal subgraphs of G. Thus
by Theorem 2, αr =

∑
TH(0) where the sum is considered over the set of

edge-maximal subgraphs H of G with r components.
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