Contributions to Discrete Mathematics

Volume 6, Number 1, Pages 48–51 ISSN 1715-0868

COEFFICIENTS OF CHROMATIC POLYNOMIALS AND TENSION POLYNOMIALS

MARTIN KOCHOL AND NADA KRIVOŇÁKOVÁ

ABSTRACT. We evaluate coefficients of the chromatic polynomial of a graph G as sums of zero values of tension polynomials of certain "maximal" subgraphs of G.

The chromatic polynomial $\chi_G(k)$ of a graph G evaluates the number of k-colorings of G. It is known that

(1)
$$\chi_G(k) = k^{c(G)} \cdot T_G(k),$$

where $T_G(k)$ is the tension polynomial of G and c(G) is the number of components of G. For more details about the interpretation of $T_G(k)$, we refer to [1, 3, 5, 7]. Coefficients of chromatic polynomials are studied in [2, 6, 7]. In this paper we evaluate these coefficients using zero values of some tension polynomials.

If G is a graph, then V(G) and E(G) denote the vertex and edge sets of G, respectively. If $e \in E(G)$, then G-e and G/e denote the graphs obtained from G after deleting and contracting e (i.e., deleting e and identifying its ends into a new vertex), respectively.

It is well known that (see, e.g., [5])

- (2) $T_G(k) = 0$ if G has a loop,
- (3) $T_G(k) = 1$ if $E(G) = \emptyset$,
- (4) $T_G(k) = (k-1) \cdot T_{G-e}(k)$ if e is a bridge (1-edge cut) of G,
- (5) $T_G(k) = T_{G-e}(k) T_{G/e}(k)$ if e is not a bridge of G.

If G is a disjoint union of H_1 , H_2 , and G' is obtained from G after identifying a vertex from H_1 with a vertex from H_2 , then (see [5])

(6)
$$T_G(k) = T_{G'}(k) = T_{H_1}(k) \cdot T_{H_2}(k).$$

By (3)–(5) and induction on |E(G)| we can check that,

(7) $T_G(0)$ is a nonzero integer with sign $(-1)^{|V(G)|-c(G)|}$

Key words and phrases. Chromatic polynomial, tension polynomial, partition, girth of a graph, induced subgraph.

©2008 University of Calgary

Received by the editors January 27, 2010, and in revised form December 21, 2010. 2000 Mathematics Subject Classification. 05C15.

This work was supported by grant VEGA 2/0118/10.

for each graph G without loops. Items (1) and (7) indicate that $T_G(k)$ is a nontrivial divisor of $\chi_G(k)$.

If $X \subseteq V(G)$, then G[X] denotes the subgraph of G induced by X (i.e., V(G[X]) = X and E(G[X]) consists of the edges of G with both ends from X). If $P = \{X_1, \ldots, X_r\}$ is a partition of V(G), then denote by G[P] the disjoint union of $G[X_i]$, $i = 1, \ldots, r$. Note that |P| = r. Denote by \mathcal{P}_G the set of partitions of V(G) such that c(G[P]) = |P|, (i.e., $P = \{X_1, \ldots, X_r\} \in \mathcal{P}_G$ if and only if $G[X_i]$ is connected for every $i = 1, \ldots, r$).

Theorem 1. For every graph G,

$$\chi_G(k) = \sum_{P \in \mathcal{P}_G} T_{G[P]}(0) \cdot k^{|P|}.$$

Proof. We use induction on |E(G)|. By (1)–(3), the statement holds true if $E(G) = \emptyset$ or G has a loop. Consider $e \in E(G)$ having two different ends u and v. It is well known (see [1, 7]) that

(8)
$$\chi_G(k) = \chi_{G-e}(k) - \chi_{G/e}(k).$$

 $\mathcal{P}_G(\mathcal{P}_{G-e})$ is the disjoint union of $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3(\mathcal{P}'_1, \mathcal{P}'_2)$, where

 $\mathcal{P}_1 = \{ P \in \mathcal{P}_G : e \in E(G[P]) \text{ is not a bridge of } G[P] \},$ $\mathcal{P}_2 = \{ P \in \mathcal{P}_G : e \text{ is a bridge of } G[P] \},$ $\mathcal{P}_3 = \{ P \in \mathcal{P}_G : e \notin E(G[P]) \},$ $\mathcal{P}'_1 = \{ P \in \mathcal{P}_{G-e} : u, v \text{ are in one component of } G[P] \},$ $\mathcal{P}'_2 = \{ P \in \mathcal{P}_{G-e} : u, v \text{ are in two components of } G[P] \}.$

Let w be the vertex of G/e arising from u and v after contracting e. If H is a subgraph of G/e containing w, then denote by $\rho(H)$ the subgraph of G-e with vertex set $(V(H) \setminus w) \cup \{u, v\}$ and edge set E(H) (supposing the ends of edges are the same as in G-e). Define

 $\mathcal{P}_1'' = \{ P \in \mathcal{P}_{G/e} : u, v \text{ are in one component of } \rho(G[P]) \},$ $\mathcal{P}_2'' = \{ P \in \mathcal{P}_{G/e} : u, v \text{ are in two components of } \rho(G[P]) \}.$

 $\mathcal{P}_{G/e}$ is the disjoint union of $\mathcal{P}_1'', \mathcal{P}_2''$.

 $P \in \mathcal{P}_1$ if and only if $P \in \mathcal{P}'_1$, and if and only if the partition arising from P after identifying u and v into w belongs to \mathcal{P}''_1 . Thus by (5),

$$\sum_{P \in \mathcal{P}_1} T_{G[P]}(0) k^{|P|} = \sum_{P \in \mathcal{P}'_1} T_{(G-e)[P]}(0) k^{|P|} - \sum_{P \in \mathcal{P}''_1} T_{(G/e)[P]}(0) k^{|P|}.$$

 $P \in \mathcal{P}_2$ if and only if the partition arising from P after identifying u and v into w belongs to \mathcal{P}''_2 (note that $\mathcal{P}_2 = \mathcal{P}''_2 = \emptyset$ if e has a parallel edge). Thus by (4) and (6),

$$\sum_{P \in \mathcal{P}_2} T_{G[P]}(0) k^{|P|} = -\sum_{P \in \mathcal{P}_2''} T_{(G/e)[P]}(0) k^{|P|}.$$

 $P \in \mathcal{P}_3$ if and only if $P \in \mathcal{P}'_2$, whence

$$\sum_{P \in \mathcal{P}_3} T_{G[P]}(0) k^{|P|} = \sum_{P \in \mathcal{P}'_2} T_{(G-e)[P]}(0) k^{|P|}.$$

Therefore

$$\sum_{P \in \mathcal{P}_G} T_{G[P]}(0) k^{|P|} = \sum_{P \in \mathcal{P}_{G-e}} T_{(G-e)[P]}(0) k^{|P|} - \sum_{P \in \mathcal{P}_{G/e}} T_{(G/e)[P]}(0) k^{|P|}.$$

|E(G-e)|, |E(G/e)| < |E(G)|, whence by the induction hypothesis,

$$\sum_{P \in \mathcal{P}_G} T_{G[P]}(0) k^{|P|} = \chi_{G-e}(k) - \chi_{G/e}(k).$$

and by (8),

$$\sum_{P \in \mathcal{P}_G} T_{G[P]}(0) k^{|P|} = \chi_G(k).$$

_		
г		
_		

Denote by $\mathcal{P}_{G,r} = \{P \in \mathcal{P}_G; |P| = r\}, 1 \le r \le |V(G)|.$

Theorem 2. If G is a graph with n vertices and $\chi_G(k) = \sum_{r=0}^n \alpha_r \cdot k^r$, then

$$\alpha_r = \sum_{P \in \mathcal{P}_{G,r}} T_{G[P]}(0) \text{ for } r = 0, \dots, n.$$

Proof. This follows immediately from Theorem 1 and the definition of $\mathcal{P}_{G,r}$.

Notice that $\alpha_r = 0$ and $\mathcal{P}_{G,r} = \emptyset$ for each $0 \leq r < c(G)$. Thus $\alpha_r = 0$ for each $0 \leq r < c(G)$, and the statement of Theorem 2 is nontrivial only for $r = c(G), \ldots, n$.

If G has no loops, then by (7), $T_{G[P]}(0)$ has sign $(-1)^{n-r}$ for each $P \in \mathcal{P}_{G,r}$. Thus Theorem 2 gives a formula expressing α_r as a sum of numbers with the same sign. Hence α_r is a nonzero integer with sign $(-1)^{n-r}$ (see, e.g., [4, 7]).

Let us call a subgraph H of G edge-maximal if V(H) = V(G) and each edge $e \in E(G) \setminus E(H)$ joins two components of H. Clearly, the set of graphs $G[P], P \in \mathcal{P}_G$, equals the set of edge-maximal subgraphs of G. Thus by Theorem 2, $\alpha_r = \sum T_H(0)$ where the sum is considered over the set of edge-maximal subgraphs H of G with r components.

References

- 1. M. Aigner, Combinatorial theory, Springer, Berlin, 1979.
- F. Brenti, Expansions of chromatic polynomials and log-concavity, Trans. Amer. Math. Soc. 332 (1992), 729–756.

- T. Brylawski and J. Oxley, *The Tutte polynomial and its applications*, Matroid Applications (Cambridge) (N. White, ed.), Encyclopedia Math. Appl., vol. 40, Cambridge Univ. Press, 1992, pp. 123–225.
- 4. T. R. Jensen and B. Toft, Graph coloring problems, Wiley, New York, 1995.
- 5. M. Kochol, Tension polynomials of graphs, J. Graph Theory 40 (2002), 137-146.
- G. H. J. Meredith, Coefficients of chromatic polynomials, J. Combin Theory Ser. B 13 (1972), 14–17.
- R. C. Read, An introduction to chromatic polynomials, J. Combin Theory 4 (1968), 52–71.

MÚ SAV,

ŠTEFÁNIKOVA 49, 814 73 BRATISLAVA, SLOVAKIA E-mail address: martin.kochol@mat.savba.sk

FPV ŽU,

UNIVERZITNÁ 8215/1, 010 26 ŽILINA, SLOVAKIA E-mail address: nada.krivonakova@fpv.uniza.sk