Contributions to Discrete Mathematics

Volume 6, Number 1, Pages 48-51
ISSN 1715-0868

COEFFICIENTS OF CHROMATIC POLYNOMIALS AND TENSION POLYNOMIALS

MARTIN KOCHOL AND NAD'A KRIVOŇÁKOVÁ

Abstract

We evaluate coefficients of the chromatic polynomial of a graph G as sums of zero values of tension polynomials of certain "maximal" subgraphs of G.

The chromatic polynomial $\chi_{G}(k)$ of a graph G evaluates the number of k-colorings of G. It is known that

$$
\begin{equation*}
\chi_{G}(k)=k^{c(G)} \cdot T_{G}(k), \tag{1}
\end{equation*}
$$

where $T_{G}(k)$ is the tension polynomial of G and $c(G)$ is the number of components of G. For more details about the interpretation of $T_{G}(k)$, we refer to $[1,3,5,7]$. Coefficients of chromatic polynomials are studied in $[2,6,7]$. In this paper we evaluate these coefficients using zero values of some tension polynomials.

If G is a graph, then $V(G)$ and $E(G)$ denote the vertex and edge sets of G, respectively. If $e \in E(G)$, then $G-e$ and G / e denote the graphs obtained from G after deleting and contracting e (i.e., deleting e and identifying its ends into a new vertex), respectively.

It is well known that (see, e.g., [5])

$$
\begin{align*}
& T_{G}(k)=0 \text { if } G \text { has a loop, } \tag{2}\\
& T_{G}(k)=1 \text { if } E(G)=\varnothing, \tag{3}\\
& T_{G}(k)=(k-1) \cdot T_{G-e}(k) \text { if } e \text { is a bridge (1-edge cut) of } G, \tag{4}\\
& T_{G}(k)=T_{G-e}(k)-T_{G / e}(k) \text { if } e \text { is not a bridge of } G . \tag{5}
\end{align*}
$$

If G is a disjoint union of H_{1}, H_{2}, and G^{\prime} is obtained from G after identifying a vertex from H_{1} with a vertex from H_{2}, then (see [5])

$$
\begin{equation*}
T_{G}(k)=T_{G^{\prime}}(k)=T_{H_{1}}(k) \cdot T_{H_{2}}(k) . \tag{6}
\end{equation*}
$$

By (3)-(5) and induction on $|E(G)|$ we can check that,

$$
\begin{equation*}
T_{G}(0) \text { is a nonzero integer with sign }(-1)^{|V(G)|-c(G)} \tag{7}
\end{equation*}
$$

[^0]for each graph G without loops. Items (1) and (7) indicate that $T_{G}(k)$ is a nontrivial divisor of $\chi_{G}(k)$.

If $X \subseteq V(G)$, then $G[X]$ denotes the subgraph of G induced by X (i.e., $V(G[X])=X$ and $E(G[X])$ consists of the edges of G with both ends from $X)$. If $P=\left\{X_{1}, \ldots, X_{r}\right\}$ is a partition of $V(G)$, then denote by $G[P]$ the disjoint union of $G\left[X_{i}\right], i=1, \ldots, r$. Note that $|P|=r$. Denote by \mathcal{P}_{G} the set of partitions of $V(G)$ such that $c(G[P])=|P|$, (i.e., $P=\left\{X_{1}, \ldots, X_{r}\right\} \in$ \mathcal{P}_{G} if and only if $G\left[X_{i}\right]$ is connected for every $\left.i=1, \ldots, r\right)$.
Theorem 1. For every graph G,

$$
\chi_{G}(k)=\sum_{P \in \mathcal{P}_{G}} T_{G[P]}(0) \cdot k^{|P|} .
$$

Proof. We use induction on $|E(G)|$. By (1)-(3), the statement holds true if $E(G)=\varnothing$ or G has a loop. Consider $e \in E(G)$ having two different ends u and v. It is well known (see $[1,7]$) that

$$
\begin{equation*}
\chi_{G}(k)=\chi_{G-e}(k)-\chi_{G / e}(k) . \tag{8}
\end{equation*}
$$

$\mathcal{P}_{G}\left(\mathcal{P}_{G-e}\right)$ is the disjoint union of $\mathcal{P}_{1}, \mathcal{P}_{2}, \mathcal{P}_{3}\left(\mathcal{P}_{1}^{\prime}, \mathcal{P}_{2}^{\prime}\right)$, where

$$
\begin{aligned}
& \mathcal{P}_{1}=\left\{P \in \mathcal{P}_{G}: e \in E(G[P]) \text { is not a bridge of } G[P]\right\}, \\
& \mathcal{P}_{2}=\left\{P \in \mathcal{P}_{G}: e \text { is a bridge of } G[P]\right\}, \\
& \mathcal{P}_{3}=\left\{P \in \mathcal{P}_{G}: e \notin E(G[P])\right\}, \\
& \mathcal{P}_{1}^{\prime}=\left\{P \in \mathcal{P}_{G-e}: u, v \text { are in one component of } G[P]\right\}, \\
& \mathcal{P}_{2}^{\prime}=\left\{P \in \mathcal{P}_{G-e}: u, v \text { are in two components of } G[P]\right\} .
\end{aligned}
$$

Let w be the vertex of G / e arising from u and v after contracting e. If H is a subgraph of G / e containing w, then denote by $\rho(H)$ the subgraph of $G-e$ with vertex set $(V(H) \backslash w) \cup\{u, v\}$ and edge set $E(H)$ (supposing the ends of edges are the same as in $G-e$). Define

$$
\begin{aligned}
& \mathcal{P}_{1}^{\prime \prime}=\left\{P \in \mathcal{P}_{G / e}: u, v \text { are in one component of } \rho(G[P])\right\}, \\
& \mathcal{P}_{2}^{\prime \prime}=\left\{P \in \mathcal{P}_{G / e}: u, v \text { are in two components of } \rho(G[P])\right\} .
\end{aligned}
$$

$\mathcal{P}_{G / e}$ is the disjoint union of $\mathcal{P}_{1}^{\prime \prime}, \mathcal{P}_{2}^{\prime \prime}$.
$P \in \mathcal{P}_{1}$ if and only if $P \in \mathcal{P}_{1}^{\prime}$, and if and only if the partition arising from P after identifying u and v into w belongs to $\mathcal{P}_{1}^{\prime \prime}$. Thus by (5),

$$
\sum_{P \in \mathcal{P}_{1}} T_{G[P]}(0) k^{|P|}=\sum_{P \in \mathcal{P}_{1}^{\prime}} T_{(G-e)[P]}(0) k^{|P|}-\sum_{P \in \mathcal{P}_{1}^{\prime \prime}} T_{(G / e)[P]}(0) k^{|P|} .
$$

$P \in \mathcal{P}_{2}$ if and only if the partition arising from P after identifying u and v into w belongs to $\mathcal{P}_{2}^{\prime \prime}$ (note that $\mathcal{P}_{2}=\mathcal{P}_{2}^{\prime \prime}=\varnothing$ if e has a parallel edge). Thus by (4) and (6),

$$
\sum_{P \in \mathcal{P}_{2}} T_{G[P]}(0) k^{|P|}=-\sum_{P \in \mathcal{P}_{2}^{\prime \prime}} T_{(G / e)[P]}(0) k^{|P|}
$$

$P \in \mathcal{P}_{3}$ if and only if $P \in \mathcal{P}_{2}^{\prime}$, whence

$$
\sum_{P \in \mathcal{P}_{3}} T_{G[P]}(0) k^{|P|}=\sum_{P \in \mathcal{P}_{2}^{\prime}} T_{(G-e)[P]}(0) k^{|P|}
$$

Therefore

$$
\sum_{P \in \mathcal{P}_{G}} T_{G[P]}(0) k^{|P|}=\sum_{P \in \mathcal{P}_{G-e}} T_{(G-e)[P]}(0) k^{|P|}-\sum_{P \in \mathcal{P}_{G / e}} T_{(G / e)[P]}(0) k^{|P|} .
$$

$|E(G-e)|,|E(G / e)|<|E(G)|$, whence by the induction hypothesis,

$$
\sum_{P \in \mathcal{P}_{G}} T_{G[P]}(0) k^{|P|}=\chi_{G-e}(k)-\chi_{G / e}(k) .
$$

and by (8),

$$
\sum_{P \in \mathcal{P}_{G}} T_{G[P]}(0) k^{|P|}=\chi_{G}(k)
$$

Denote by $\mathcal{P}_{G, r}=\left\{P \in \mathcal{P}_{G} ;|P|=r\right\}, 1 \leq r \leq|V(G)|$.
Theorem 2. If G is a graph with n vertices and $\chi_{G}(k)=\sum_{r=0}^{n} \alpha_{r} \cdot k^{r}$, then

$$
\alpha_{r}=\sum_{P \in \mathcal{P}_{G, r}} T_{G[P]}(0) \text { for } r=0, \ldots, n
$$

Proof. This follows immediately from Theorem 1 and the definition of $\mathcal{P}_{G, r}$.

Notice that $\alpha_{r}=0$ and $\mathcal{P}_{G, r}=\varnothing$ for each $0 \leq r<c(G)$. Thus $\alpha_{r}=0$ for each $0 \leq r<c(G)$, and the statement of Theorem 2 is nontrivial only for $r=c(G), \ldots, n$.

If G has no loops, then by $(7), T_{G[P]}(0)$ has $\operatorname{sign}(-1)^{n-r}$ for each $P \in$ $\mathcal{P}_{G, r}$. Thus Theorem 2 gives a formula expressing α_{r} as a sum of numbers with the same sign. Hence α_{r} is a nonzero integer with sign $(-1)^{n-r}$ (see, e.g., $[4,7]$).

Let us call a subgraph H of G edge-maximal if $V(H)=V(G)$ and each edge $e \in E(G) \backslash E(H)$ joins two components of H. Clearly, the set of graphs $G[P], P \in \mathcal{P}_{G}$, equals the set of edge-maximal subgraphs of G. Thus by Theorem 2, $\alpha_{r}=\sum T_{H}(0)$ where the sum is considered over the set of edge-maximal subgraphs H of G with r components.

References

1. M. Aigner, Combinatorial theory, Springer, Berlin, 1979.
2. F. Brenti, Expansions of chromatic polynomials and log-concavity, Trans. Amer. Math. Soc. 332 (1992), 729-756.
3. T. Brylawski and J. Oxley, The Tutte polynomial and its applications, Matroid Applications (Cambridge) (N. White, ed.), Encyclopedia Math. Appl., vol. 40, Cambridge Univ. Press, 1992, pp. 123-225.
4. T. R. Jensen and B. Toft, Graph coloring problems, Wiley, New York, 1995.
5. M. Kochol, Tension polynomials of graphs, J. Graph Theory 40 (2002), 137-146.
6. G. H. J. Meredith, Coefficients of chromatic polynomials, J. Combin Theory Ser. B 13 (1972), 14-17.
7. R. C. Read, An introduction to chromatic polynomials, J. Combin Theory 4 (1968), 52-71.

MÚ SAV,

Štefánikova 49, 81473 Bratislava, Slovakia
E-mail address: martin.kochol@mat.savba.sk
FPV ŽU,
Univerzitná 8215/1, 01026 Žilina, Slovakia
E-mail address: nada.krivonakova@fpv.uniza.sk

[^0]: Received by the editors January 27, 2010, and in revised form December 21, 2010.
 2000 Mathematics Subject Classification. 05C15.
 Key words and phrases. Chromatic polynomial, tension polynomial, partition, girth of a graph, induced subgraph.

 This work was supported by grant VEGA 2/0118/10.

