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COEFFICIENTS OF CHROMATIC POLYNOMIALS AND
TENSION POLYNOMIALS

MARTIN KOCHOL AND NADA KRIVONAKOVA

ABSTRACT. We evaluate coefficients of the chromatic polynomial of a
graph G as sums of zero values of tension polynomials of certain “max-
imal” subgraphs of G.

The chromatic polynomial yg(k) of a graph G evaluates the number of
k-colorings of G. It is known that

(1) xa (k) = k49 - Ta(k),

where T (k) is the tension polynomial of G and ¢(G) is the number of
components of G. For more details about the interpretation of T¢(k), we
refer to [1, 3, 5, 7]. Coefficients of chromatic polynomials are studied in
[2, 6, 7]. In this paper we evaluate these coefficients using zero values of
some tension polynomials.

If G is a graph, then V(G) and E(G) denote the vertex and edge sets of
G, respectively. If e € F(G), then G—e and G/e denote the graphs obtained
from G after deleting and contracting e (i.e., deleting e and identifying its
ends into a new vertex), respectively.

It is well known that (see, e.g., [5])

2) Te(k) = 0 if G has a loop,

3)  Tglk)=1if B(G) =2,

4) Ta(k) = (k—1) - Tg_.(k) if e is a bridge (1-edge cut) of G,
5) Tg(k) = Ta—e(k) — Tg e (k) if e is not a bridge of G.

If G is a disjoint union of Hy, Hy, and G’ is obtained from G after identifying
a vertex from H; with a vertex from Hj, then (see [5])

~ ~ —~

(6) Tg(k) = Tar(k) = Thy (k) - Thy (k).
By (3)—(5) and induction on |E(G)| we can check that,
(7) Te:(0) is a nonzero integer with sign (—1)IV(@)I=¢(@)
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for each graph G without loops. Items (1) and (7) indicate that T (k) is a
nontrivial divisor of xg (k).

If X C V(G), then G[X] denotes the subgraph of G induced by X (i.e.,
V(G[X]) = X and E(G[X]) consists of the edges of G with both ends from
X). If P={Xy,...,X,} is a partition of V(G), then denote by G[P] the
disjoint union of G[X;], i = 1,...,r. Note that |P| = r. Denote by P¢ the
set of partitions of V' (G) such that ¢(G[P]) = |P|, (i.e., P={X1,..., X;} €
Pq if and only if G[X;] is connected for every i =1,...,7).

Theorem 1. For every graph G,

xa(k) =Y Tgp(0) - kP,

PePg

Proof. We use induction on |E(G)|. By (1)—(3), the statement holds true if
E(G) = @ or G has a loop. Consider e € E(G) having two different ends u
and v. It is well known (see [1, 7]) that
(8) xa(k) = xa—e(k) — xaye(k).
P (Pg—e) is the disjoint union of Py, P2, Ps (P, P}), where

Py ={P € Pg : e € E(G[P]) is not a bridge of G[P]},

Py ={P € Pg : e is a bridge of G[P]},

P3s ={P e Pq:e¢ E(GP])},

Py ={P € Pg_¢ : u,v are in one component of G[P]},

Py ={P € Pg_. : u,v are in two components of G[P]}.

Let w be the vertex of G/e arising from u and v after contracting e. If
H is a subgraph of G/e containing w, then denote by p(H) the subgraph of
G — e with vertex set (V(H)\w)U{u,v} and edge set E(H) (supposing the
ends of edges are the same as in G — e). Define

Py ={P € Pg/e : u,v are in one component of p(G[P])},
)}

Py ={P € Pg/e : u,v are in two components of p(G[P]

Pg/e is the disjoint union of Py, Py.
P € Py if and only if P € P{, and if and only if the partition arising from
P after identifying v and v into w belongs to Py’. Thus by (5),

> Tap O = 3" Tk = " Tigew (0.
PePy PeP] Pepy

P € Ps if and only if the partition arising from P after identifying » and
v into w belongs to Py (note that Py = PJ = & if e has a parallel edge).
Thus by (4) and (6),

Y Tap (R = = 37 Tgomp (0.
PcPy Pepy
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P € Ps if and only if P € P}, whence

3> LK = 3 Ti-oin 0"

PePs PeP)
Therefore
P P
Y Tap Ok = 3" Tig k™ = 37 Tigem (0K,
PePg PePg_. PePg/e

|E(G —e)|,|E(G/e)| < |E(G)|, whence by the induction hypothesis,

Z TG k‘PI = XG—e(k) - XG/e(k)'
PePg

and by (8),

> Tap 0k = xa (k).
PePg

Denote by P = {P € Pg;|P| =7}, 1 <r < [V(G)].

Theorem 2. If G is a graph with n vertices and xg(k) = Y .y -k", then
Z TG[P] ) for r=0,.

PePg,

Proof. This follows immediately from Theorem 1 and the definition of Pg .
O

Notice that o, = 0 and Pg, = @ for each 0 < r < ¢(G). Thus o, = 0 for
each 0 < r < ¢(G), and the statement of Theorem 2 is nontrivial only for
r=c(G),...,n.

If G has no loops, then by (7), Tg(p(0) has sign (=1)"7" for each P €
Pa,r. Thus Theorem 2 gives a formula expressing «, as a sum of numbers
with the same sign. Hence «, is a nonzero integer with sign (—1)""" (see,
e.g., [4, 7).

Let us call a subgraph H of G edge-mazimal if V(H) = V(G) and each
edge e € E(G) \ E(H) joins two components of H. Clearly, the set of
graphs G[P], P € Pg, equals the set of edge-maximal subgraphs of G. Thus
by Theorem 2, o, = Y Tr(0) where the sum is considered over the set of
edge-maximal subgraphs H of G with r components.
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