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ASTRAL (n4) CONFIGURATIONS OF PSEUDOLINES

LEAH WRENN BERMAN

Abstract. An astral (n4) configuration of pseudolines is a collection in
the Euclidean plane of n points and n pseudolines (that is, topological
lines that have been modified in the Euclidean plane from straight lines
only in a finite part, which cross each other only once, or have parallel
infinite parts and are disjoint), where each point lies on four pseudo-
lines, each pseudoline contains four points, and the points and pseudo-
lines form two symmetry (transitivity) classes each. We describe how
to construct astral (n4) pseudoline configurations with dihedral symme-
try, and we discuss the existence of astral (n4) configurations with only
chiral symmetry.

1. Introduction and Definitions

An (n4) configuration of points and lines is a collection of points and
lines in the Euclidean plane so that every point lies on four lines and every
line passes through four points. (Such configurations are sometimes called
geometric configurations, as opposed to combinatorial configurations.) Such
a configuration is astral if there are precisely two symmetry (i.e., transitivity)
classes of the points and the lines with respect to rotations and reflections
of the plane mapping the configuration to itself. That is, an astral (n4)
configuration must have n = 2m points and lines for some integer m.

The notion of configurations of points and lines may be generalized by
replacing the straight lines by pseudolines to produce a pseudoline config-
uration, also known as a topological configuration. In the projective plane,
a pseudoline is a simple closed curve that is topologically equivalent to a
line (e.g., see [8, p. 40]). In the Euclidean plane, every pseudoline may be
represented by a straight line that has been modified in a piecewise-linear
fashion in a finite part so as to remain simple. A family of pseudolines has
the additional restriction imposed that given any two pseudolines, either the
infinite parts are parallel and the two pseudolines are disjoint, or the two
pseudolines cross each other at a single point; that is, even though they may
wiggle around somewhat, the pseudolines should “behave like lines”. As in
the linear case, we will say a pseudoline configuration is astral if there are
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two symmetry classes of pseudolines and two symmetry classes of points.
An example of an astral (n4) configuration of pseudolines is shown in Figure
1. A collection of pseudolines is said to be stretchable if it is isomorphic to a
collection of straight lines; it is well-known that there exist non-stretchable
arrangements of pseudolines [8].

Figure 1. An astral (224) pseudoline configuration.

With the restriction of considering only straight lines, (n4) configura-
tions have been studied fairly extensively (see, e.g., [1, 3, 9, 10]); in [1, 9]
it was established that linear astral (n4) configurations exist if n = 12m
and m > 1. Addressing certain existence questions, Bokowski and Schewe
[7] have investigated pseudoline (n4) configurations and showed that there
are no (n4) pseudoline configurations with n < 17; Bokowski, Grünbaum
and Schewe [6] showed that there exist (n4) pseudoline configurations for
every n ≥ 17. However, no systematic investigation has been done on sym-
metric (that is, configurations with non-trivial geometric symmetry) (n4)
pseudoline configurations, although a few isolated examples of symmetric
(in fact, astral) pseudoline (n4) configurations have appeared in [6, 13]. In
the remainder of the paper, we will discuss the existence and construction
of (n4) configurations that are astral, so that they have as much symmetry
as possible.

Following [2], we define an astral type 1 (n4) configuration to have each
symmetry class of points form the vertices of a regular m-gon, and a type
2 astral (n4) configuration to have each symmetry class of points form an
isogonal but not regular m-gon (that is, the points are spaced long-short
around a circle).
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2. How small can they be?

Suppose we want to construct a type 1 astral ((2m)4) configuration. By
definition, every point has four pseudolines passing through it, and every
pseudoline has four points lying on it, and the points may be partitioned into
two symmetry classes, each containing m points. Note that the symmetry
classes of points must form two concentric regular m-gons.

Label the points in the two symmetry classes as v0, v1, . . . , vm−1 and
w0, w1, . . . , wm−1, and collectively call the sets Zm(v) and Zm(v), respec-
tively. Without loss of generality, assume that the vi are the outer ring of
points and the wi are the inner ring of points. Let C be the circumcircle
of the regular m-gon formed by the points Zm(v). Define ((vi, vj)) to be
the number of vertices in Zm(v) between vi and vj , excluding vi, including
vj , and travelling counterclockwise around C; this is the spanning distance
between the two points. A line or line segment that connects two vertices
vi and vj where the spanning distance ((vi, vj)) = c (or similarly using el-
ements of Zm(w)) is said to be a line (segment) of span c. By convention,
the span of a line (segment) is restricted to be at most m/2. Ideas for the
proof of the following theorem were developed out of communications with
Jürgen Bokowski.

Theorem 2.1. For an astral ((2m)4) configuration to exist, m > 10.

Proof. Suppose an astral ((2m)4) configuration exists. Consider point w0.
It lies on four pseudolines, two from each symmetry class. We will label
the pseudolines as la and l′a and lb and l′b, where l′a is the image of la under
rotation, and similarly with lb. Since there should be two pseudolines of
each symmetry class passing through each point, neither la nor lb (or their
images l′a and l′b) are diameters.

These pseudolines each must intersect the points Zm(v), say at points P1,
P2, P3, P4 and Q1, Q2, Q3, and Q4. Because the spans are distinct, we may
assume that the endpoints of the pseudolines are assigned in such a way that
in travelling counterclockwise around C, the labels are ordered consecutively
as P1, P2, P3, P4, Q1, Q2, Q3, Q4, so that la contains P1 and Q1, lb contains
P2 and Q2, l′b contains P3 and Q3, and l′a contains P4 and Q4 (see Figure
2). Note that since none of the pseudolines la, l′a, lb, l′b are diameters, the
distances ((Pi, Qi)) 6= ((Qi, Pi)) for i = 1, 2, 3, 4.

By symmetry, ((P1, Q1)) = ((Q4, P4)) and ((P2, Q2)) = ((Q3, P3)), since
la and l′a (respectively, lb and l′b) are in the same symmetry class (that
is, because l′a is the rotation of la, but under rotation the labels switch,
so that P1 → Q3 and Q1 → P3). Since la and lb are not in the same
symmetry class, ((P1, Q1)) 6= ((P2, Q2)). Moreover, ((P1, P2)) 6= ((Q1, Q2))
and ((P3, P4)) 6= ((Q3, Q4)). To see this, note that if ((P1, P2)) = ((Q1, Q2)),
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Figure 2. Illustration for the proof of Theorem 2.1.

then

((P1, Q1)) = ((P1, P2)) + ((P2, Q1))

= ((P2, Q1)) + ((Q1, Q2))

= ((P2, Q2)),

a contradiction, since la and lb are assumed to be of different spans.
Finally, ((P2, P3)) 6= ((Q2, Q3)). To see this, suppose not. Then

((P2, Q2)) = ((P2, P3)) + ((P3, P4)) + ((P4, Q1)) + ((Q1, Q2))

= ((Q2, Q3)) + ((P1, P2)) + ((Q4, P1)) + ((Q3, Q4)),

since ((P2, P3)) = ((Q2, Q3)) by supposition, and ((P4, Q1)) = ((Q4, P1))
and ((Q1, Q2)) = ((Q3, Q4)) by symmetry.

But by rearranging terms, we see that

((P2, Q2)) = ((Q2, Q3)) + ((P1, P2)) + ((Q4, P1)) + ((Q3, Q4))

= ((Q2, Q3)) + ((Q3, Q4)) + ((Q4, P1)) + ((P1, P2))

= ((Q2, P2))

so lb is a diameter, which is a contradiction.
Thus, for i = 1, 2, 3 we need at least one vertex between one of each of

the pairs Pi, Pi+1 or Qi, Qi+1, so the total number of vertices is at least
8 + 3 = 11 (eight vertices are counted using Pi and Qi, plus the three
additional vertices). �

An (n4) pseudoline configuration with 22 vertices (m = 11) is shown in
Figure 1.



ASTRAL (n4) CONFIGURATIONS OF PSEUDOLINES 13

In [1], it was shown that linear astral (n4) configurations exist if and only
if n = 12m and m > 1. The situation with pseudoline configurations is much
less restrictive. We can generalize the configuration shown in Figure 1 to
prove the following theorem; much more information about how to construct
astral (n4) pseudoline configurations will be given in the following sections.

Theorem 2.2. For every m > 10, there exist astral ((2m)4) pseudoline
configurations.

Proof. We will describe how to construct a (2m4) pseudoline configuration
for any m > 10. Choose m > 10 and construct a regular m-gon; the vertices
of this m-gon will be one of the symmetry classes of points of the ((2m)4)
configuration. On this m-gon, draw all the lines of span 5 (these are the blue
lines in Figure 1). Then draw in span 4 pseudolines (shown in red in Figure
1) in such a way that these pseudolines pass through the intersections of the
span 5 lines that are closest to the m-gon (the inner ring of points in Figure
1); these inner intersections form the second symmetry class of points of
the configuration. By construction, the collection of span 5 lines, span 4
pseudolines and two classes of points forms an astral ((2m)4) configuration
of pseudolines. �

It will be sufficient to explicitly discuss only the construction of config-
urations whose symmetry classes of points form regular polygons (type 1
configurations); as in the linear case (see [1, Theorem 3]), if the points of an
astral (n4) pseudoline configuration form an isogonal but not regular m-gon
(where m is divisible by 2), then the symmetry constraints of having only
two classes of pseudolines force the connected component of a single vertex
to be a type 1 configuration. That is,

Theorem 2.3. If the vertices in each symmetry class of points in an astral
(n4) pseudoline configuration form concentric isogonal but non-regular poly-
gons, then the pseudoline configuration is disconnected and is formed from
two concentric copies of an (n4) type 1 pseudoline configuration, where one
copy is rotated through an arbitrary angle with respect to the other.

3. Astral (n4) configurations of pseudolines with dihedral
symmetry

3.1. Constructing configurations. For the remainder of the paper, we
will be discussing type 1 configurations, where the vertices in each symme-
try class of points form regular m-gons. To construct type 1 astral (n4)
configurations of pseudolines with dihedral symmetry, we must begin with
the vertices of a regular convex m-gon. Label these vertices vi. We assume
for convenience that

vi =
(

cos
(

2πi

m

)
, sin

(
2πi

m

))
.
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The second ring of vertices wi may be placed at an arbitrary radius. How-
ever, in order for the resulting configuration to have dihedral symmetry,
the angle θ = ∠v0Ow0, where O is the center of the circumcircle of the vi,
must be an integer multiple of π/m. In particular, we assume that θ = 0 or
θ = π/m.

In addition, type 1 astral (n4) configurations have two symmetry classes
of pseudolines, labelled (la)i and (lc)i. The configurations will be determined
by seven parameters, which are listed in Table 1, and they will be denoted
by m# {(a, b; d, c), r, θ} for appropriate values of the parameters.

Table 1. Parameters determining an astral (n4) configura-
tion of pseudolines

m the number of points in each symmetry class of points
a the span formed on the outer ring of points by the pseudolines la
b the span formed on the inner ring of points by the pseudolines la
c the span formed on the outer ring of points by the pseudolines lc
d the span formed on the inner ring of points by the pseudolines lc
r the radius of the points labelled wi

θ the angle ∠v0Ow0, the “offset”

We define the configuration as follows:
The points vi are defined as above, and O is the origin. The point w0 lies

on the ray forming angle θ, measured counterclockwise, with the line 〈O, v0〉
(that is, with the horizontal), at a distance of r from O.

Pseudoline (la)0 has an outer span of length a, so points v0 and va lie on
pseudoline (la)0. It has an inner span of length b, so we need wk and wk+b

to lie on (la)0, for some choice of k.
To have a configuration with dihedral symmetry, we need each pseudoline

to be in the shape of a “symmetric plateau”: that is, the inner span segment
wkwk+b of the pseudoline must be parallel to the segment v0va. To achieve
this, we need to count in from the bounding rays Ov0 and Ova by some
fixed amount q (see Figure 3).

That is, the points wi that form the endpoints of the inner span segment
are wq and wa−q if θ = 0 and wq and wa−1−q if θ = π/m; by our choice of
parameters, the span between them should be b. That is,

b =

{
(a− q)− q = a− 2q if θ = 0,

(a− 1− q)− q = a− 2q − 1 if θ = π
m .

Since k (where wk and wk+b are the desired points on la) must be an integer,
we let

k =
⌊

a− b

2

⌋
.
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Figure 3. Determining indices for construction of the inner
span. Here, the inner ring of points is the case where θ = π/m
and the middle ring of points is the case where θ = 0.

There are certain constraints on the parameters that are necessary for
the resulting configuration to exist and have dihedral symmetry. For the
remainder of the section, we will be developing these constraints.

Theorem 3.1. Suppose m# {(a, b; d, c), r, θ} is an astral (n4) configuration
of pseudolines with dihedral symmetry. If θ = 0, then a and b (and c and d)
must be of the same parity. If θ = π/m, then a and b (and c and d) must
be of opposite parity.

There are some useful ways to rephrase this theorem. If m# {(a, b; d, c), r, θ}
is an astral (n4) configuration of pseudolines with dihedral symmetry, then
θ = [(a−b) mod 2]·(π/m). Also, if m# {(a, b; d, c), r, θ} is an astral (n4) con-
figuration of pseudolines with dihedral symmetry, then a−b ≡ c−d (mod 2).

Proof. It suffices to prove this result for la and the points wk and wk+b. If
θ = 0, then the points w0 and wa actually lie on the rays

−−→
Ov0 and

−−→
Ova,

respectively, and are not available to be chosen as points on the inner span
of pseudoline la. Therefore, the total angular distance from ray to ray is
aπ/m, so that a = b + 2q, and hence a − b = 2q, so a and b have the same
parity.

On the other hand, if θ = π/m, then all the points from w0 to wa are
actually interior to the segment bounded by the rays

−−→
Ov0 and

−−→
Ova, so that

the total angular distance measured from each of the rays to the endpoint
of the inner segment is actually (q + 1

2) π
m . Therefore, a − 1 = b + 2q, so

a− b = 2q + 1 and a and b are of opposite parity. �

Lemma 3.2. In a dihedrally symmetric astral (n4) configuration of pseudo-
lines with symbol m# {(a, b; d, c), r, θ}, neither a nor c may equal m/2.

Proof. Suppose that a = m/2. Then the portion of the pseudoline (la)q

that is outside the circumcircle of the vi coincides with the portion of the
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pseudoline (la)q+a that is also outside the circumcircle, but they contain
different inner points wi, so the potential pseudolines la do not behave like
pseudolines. �

By convention, we assume the parameters a, b, c, d are less than m/2.
(The previous lemma and Theorem 3.4 show that they cannot be equal to
m/2.)

“Traditional” pseudoline configurations have b < a and d < c, and 0 <
r < 1. These are analogous to the linear astral (n4) configurations, in that
if m is a multiple of 6 and a, b, d, c are chosen appropriately, so that

cos
(

aπ
m

)
cos

(
bπ
m

) =
cos

(
cπ
m

)
cos

(
dπ
m

) and r =
cos

(
aπ
m

)
cos

(
bπ
m

) ,

then the resulting configuration is linear. Such configurations have been
completely characterized; see Grünbaum [9] and Berman [1], with a discus-
sion of the characterization (and a listing in the currently accepted notation)
in [12]. An example of a linear configuration and the same configuration with
a different radius is shown in Figure 4. Note that the notation we use here for
astral (n4) configurations of pseudolines corresponds to the notation used in
[3], which was a slight modification of the notation introduced by Grünbaum
in [12] (which itself was a modification of notation introduced by Boben and
Pisanski in [5]) for a certain class of polycyclic (n4) configurations which
were named celestial configurations in [3]; linear astral configurations are a
special class of these celestial configurations.

Explicitly, if m,a, b, d, c are valid parameters for a linear astral (n4) con-
figuration (say, as listed in [12]), then the configuration

m#

{
(a, b; d, c),

cos
(

aπ
m

)
cos

(
bπ
m

) , [(a + b) mod 2]
π

m

}
is equivalent to the configuration m#(a, b; d, c) in the notation of [3] and
m#(a, b, d, c) in the notation of [12], which in turn is equivalent to the
configuration m#ab cd in the notation of [1, 2, 9]. Of course, since for linear
astral (n4) configurations to exist, n = 12m, not every set of parameters
that produce a valid astral (n4) pseudoline configuration corresponds to a
linear configuration. In other words:

Theorem 3.3. There exist infinitely many dihedrally symmetric astral (n4)
pseudoline configurations that are not stretchable.

Proof. Since in [1] it was shown that every linear astral (n4) configuration
has n = 12m and m > 1, every dihedrally symmetric astral (n4) configu-
ration of pseudolines m# {(a, b; d, c), r, θ} with n not divisible by 12 is not
stretchable. �

In particular, all the configurations constructed in Theorem 2.2 have di-
hedral symmetry, and those with m not divisible by 6 are not stretchable.
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(a) (b)

Figure 4. A stretchable astral (n4) pseudoline config-
uration. (a) The configuration 12#{(4, 1; 4, 5), 0.7, π

12};
(b) The configuration 12#{(4, 1; 4, 5), r, π

12} with r =
cos

(
4π
12

)
/ cos

(
π
12

)
=

√
2

1+
√

3
≈ 0.517638, which is the linear

configuration 12#(4, 1; 4, 5) in the notation of [3].

3.2. Constraints on the parameters caused by interactions within
a single symmetry class. Are there other ways to construct astral (n4)
pseudoline configurations with dihedral symmetry? Some constraints on
the parameters in an astral (n4) configuration of psuedolines are caused
by needing pseudolines in a single class to intersect appropriately; that is,
pseudolines in a single class may intersect other pseudolines of that class at
most once.

Theorem 3.4. Parameters for a dihedrally symmetric astral (n4) pseudoline
configuration with symbol m# {(a, b; d, c), r, θ} satisfy b < a and d < c.

Proof. It suffices to show that b < a. Suppose not. That is, suppose that
b ≥ a. We will show that two pseudolines in the potential pseudoline class
la intersect each other at least twice (see Figure 5).

By construction, (la)j contains the points vj , wk+j , wk+b+j and va+j .
Therefore, pseudoline (la)0 contains points v0, wk, wk+b and va, and pseu-
doline (la)−a (with indices understood modulo m) contains points v−a, wk−a,
wk+b−a and v0.

Since b ≥ a,

k =
⌊

a− b

2

⌋
≤ 0

and

k + b− a =
⌊

a− b

2

⌋
+ b− a ≥ 0.
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(a) (b) (c)

Figure 5. If b ≥ a, the pseudolines la intersect too many
times; in each case, pseudoline (la)0 is shown in thick red
and (la)−a is shown in thick blue. (a) m = 13, a = 3, b = 4,
θ = π

13 ; (b) m = 13, a = 2, b = 4, θ = 0; (c) m = 13, a = 2,
b = 2, θ = 0.

If b = a (and therefore θ = 0), then the two potential pseudolines (la)0
and (la)−a share points v0 and w0 and hence the entire segment v0w0 and
therefore clearly do not qualify as pseudolines.

If b > a, then travelling along pseudoline (la)0, beginning at v0 and only
considering angle, you travel clockwise, crossing the ray

−−→
Ov0, to reach wk and

then counterclockwise, recrossing the ray to reach wk+b. However, travelling
along pseudoline (la)−a, requires travelling counterclockwise from wk−a to
wk+b−a, crossing the ray

−−→
Ov0, and then clockwise, again crossing the ray,

to reach v0. By continuity, these two pseudolines must therefore cross each
other at least once between wk−a and v0 for pseudoline (la)−a and between
v0 and wk for pseudoline (la)0, and the two pseudolines also touch at v0.
Therefore, the pseudolines (la)−a and (la)0, which are both members of
class la, intersect each other twice and thus do not qualify as pseudolines.

�

Proposition 3.5. In an astral (n4) configuration of pseudolines with symbol
m# {(a, b; d, c), r, θ}, there are constraints on r depending on the values of
a, b, c, d.

The precise dependence of r on the other parameters seems to be hard
to determine explicitly. However, clearly, if r is too large (say, significantly
larger than 1; see Figure 6(c)), then the potential pseudolines intersect each
other more than once. An example of the potential problems is shown in
Figure 6. We propose the following:
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Conjecture. In a configuration m# {(a, b; d, c), r, θ} with θ = [a + b mod
2] π

m ,

0 < r <
cos

(
(a−b−1)π

m

)
cos

(
π
m

) .

(a) (b) (c)

Figure 6. Constraints on the radius are needed. Figures
(a) and (b) consist of pseudolines la with m = 11, a = 4,
b = 1, and θ = π/11, with two pseudolines in the sym-
metry class (which intersect badly in the left-hand image)
shown thick, one in blue and one in cyan. (a) r = 0.7; (b)
r = cos

(
(4−1−1)π

11

) /
cos

(
π
11

)
≈ 0.876769. (c) As r gets big,

pseudolines intersect badly. This has two symmetry classes of
pseudolines (the configuration shown in Figure 1, only with
r = 2), with symbol 11#

{
(4, 1; 4, 5), 2, π

11

}
, and very bad

intersections.

Figure 6(b) shows an example of the intersections between pseudolines
in a single symmetry class that result when r is chosen to equal the upper
bound given in the conjecture; Figure 6(a) shows the same symmetry class
of pseudolines when r is in the range allowed by the conjecture.

3.3. Constraints on parameters caused by interactions between the
two symmetry classes of pseudolines. Some constraints on the param-
eters for an astral (n4) configuration of pseudolines are caused by the in-
teraction between the two symmetry classes of pseudolines; that is, certain
choices of parameters cause (proposed) pseudolines in the two classes to
intersect inappropriately.

Lemma 3.6. In a dihedrally symmetric astral (n4) pseudoline configuration
m# {(a, b; d, c), r, θ}, b 6= d.

Proof. This follows straightforwardly from the assignment of points to lie
on pseudolines of class la and lc. If b = d, then pseudolines of class la and lc
will both contain inner spans b (that is, they will contain points of the form
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wj and wj+b for some value of j, which will be different for pseudolines in
each class) and so will coincide on the inner spans. �

Lemma 3.7. In a dihedrally symmetric astral (n4) pseudoline configuration
m# {(a, b; d, c), r, θ}, a− b 6= c− d.

Proof. This follows immediately from the definition of k for each of the
pseudolines la and lc. If a − b = c − d = x, then pseudoline (la)0 con-
tains points v0 and wbx/2c and pseudoline (lc)0 also contains points v0 and
wbx/2c. Therefore, the two potential pseudolines do not actually qualify as
pseudolines. �

In fact, we can prove an even stronger result.

Theorem 3.8. Suppose that m# {(a, b; d, c), r, θ} is a dihedrally symmetric
astral pseudoline (n4) configuration and a < c; then a− b > c− d.

Proof. Suppose not; that is, suppose a− b ≤ c− d. By Lemma 3.7, in fact,
a − b < c − d. By construction, both pseudolines (la)0 and (lc)0 intersect
at v0. The pseudoline (la)0 contains point va and (lc)0 contains vc, and
by hypothesis, a < c, so the angle ∠v0Ova < ∠v0Ovc. That is, on the
circumcircle of Zm(v), travelling counterclockwise, va comes before vc.

If by our supposition a − b < c − d, then k ≤ j, where j = b c−d
2 c and

k = ba−b
2 c. In fact, since by Theorem 3.1, a−b ≡ c−d mod 2, if a−b < c−d

then k < j.
It is convenient to consider a few cases relating the positions of the points

in Zm(w) on the pseudolines (la)0 and (lc)0: (1) wk+b is between wj and
wj+c, shown in Figure 7(a); (2) wj and wj+c are both between wk and wk+b;
(3) wj occurs after wk+b, shown in Figure 7(b).

Case 1: j ≤ k + b:
In this case, in counterclockwise order around the circumcircle of Zm(w),
we have wk, wj , wk+b where the first and last points lie on (la)0 and the
middle on (lc)0. In this case, the line segment wkwk+b crosses the line
segment wjwj+c, so the potential pseudolines (la)0 and (lc)0 intersect
twice.

Case 2: j < j + c < k + b:
If this were possible, then the order of the points in Zm(w) on pseudolines
(la)0 and (lc)0 would be wk, wj , wj+c, wk+b. However, by Theorem 3.4
we have that b < a and by hypothesis a < c and k < j, so

k + b < j + b < j + c

contradicting our case assumption that j + c < k + b. Thus this case is
impossible.

Case 3: j > k + b:
Here, the counterclockwise order of the points in Zm(w) on pseudolines
(la)0 and (lc)0 is wk, wk+b, wj , wj+c; in this case, because a < c and
hence va is before vc, the segment v0wj crosses the segment wk+bva,
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contradicting our assumption that (la)0 and (lc)0 intersect only once, at
v0.

�

Figure 7. Illustrations of the cases in Theorem 3.8. (a)
j ≤ k + b (symbol 26#

{
(7, 3; 6, 12), 1

2 , 0
}
); (b) j > k + b

(symbol 40#
{
(7, 3; 7, 19), 1

2 , 0
}
)

In conclusion, the only possible astral (n4) configurations with dihedral
symmetry with symbols m# {(a, b; d, c), r, θ} are the “traditional” configu-
rations which have b < a, d < c, θ equal to 0 or π/m, and small enough r;
moreover, if we assume that a < c, we must have that a−b > c−d. Of course,
a > c is possible; this corresponds to switching the role of the two symmetry
classes of pseudolines. (That is, the configurations m# {(a, b; d, c), r, θ} and
m# {(c, d; b, a), r, θ} are isomorphic, but the red and blue pseudolines will
be switched.)

4. Astral (n4) configurations with chiral symmetry

Unlike in the linear case, there are lots of astral configurations of pseu-
dolines with chiral (that is, only rotational) symmetry! A small example is
shown in Figure 8.

Theorem 4.1. If m# {(a, b; c, d), r, θ} is a valid configuration symbol for a
dihedrally symmetric configuration, then using the same values of m,a, b, d, c, r
where θ 6= [(a− b) mod 2] · π

m but is sufficiently close to it results in a con-
figuration with chiral symmetry.

Figure 8 shows the configuration 11# {(4, 1; 4, 5), 0.4, 0}, which is isotopic
to the dihedrally symmetric configuration 11#

{
(4, 1; 4, 5), 0.4, π

11

}
shown in

Figure 1.
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Figure 8. A chirally symmetric astral (224) configuration of pseudolines.

Proof. These are just the dihedrally symmetric configurations, with the an-
gle between v0 and w0 rotated slightly. If θ is too far away from [(a −
b) mod 2] · π

m , then pseudolines in the classes la and lc may touch or cross
themselves or each other because of too much twisting. �

The theorem may be rephrased as follows.

Corollary 4.2. There exist continuous families of chirally symmetric as-
tral (n4) configurations of pseudolines which are all isotopic to a dihedrally
symmetric configuration.

It is unclear what the precise constraints on θ should be so that the pseu-
dolines have no undesirable intersections; an example of a chiral pseudoline
configuration that has been twisted too far is shown in Figure 9, along with
a chiral pseudoline configuration and the corresponding dihedral configura-
tion.

There is more to the story, however: there are many other chirally sym-
metric astral (n4) configurations of pseudolines which are not isomorphic to
any dihedral configuration.

As an easy example, suppose that we wished to construct a configuration
where m = 20, which had pseudolines la containing points vj , wj+2, wj+4, vj+6

and pseudolines lc containing points vj , wj , wj+8, vj+9. If we construct this
configuration with θ = 0, shown in Figure 10(a), the pseudolines inter-
sect appropriately and the configuration is an astral (n4) configuration of
pseudolines with chiral symmetry. We can observe that the outer spanning
distance of the pseudolines la is 6, the inner spanning distance (on the wi)
of the pseudolines la is 2, the outer spanning distance on the pseudolines lc
is 9 and the inner spanning distance on the pseudolines lc is 8. (That is, the
lines la have a = 6 and b = 2, and the lines lc have c = 9 and d = 8.)
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(a) θ = 0 (b) θ = π
11 (c) θ = 4π

11

Figure 9. Collections of points and pseudolines correspond-
ing to the symbol 11# {(4, 1; 4, 5), 0.4, θ}. The two leftmost
pictures are astral pseudoline configurations; (a) has chiral
symmetry and (b) has dihedral symmetry. However, in (c),
where θ = 4π/11, the potential pseudolines intersect inap-
propriately; for example, the thick red pseudoline intersects
the thick blue pseudoline twice.
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Figure 10. A chiral configuration which is not equivalent
to any dihedral configuration. (a) The chiral configuration
with θ = 0; the lines la have dihedral symmetry, but the lines
lc do not. (b) The chiral configuration with θ = π/m; the
lines lc have dihedral symmetry, and the lines la do not.

By the same reasoning used to prove Theorem 3.1, since the outer and
inner spanning distances of lines la are of the same parity, the lines la will
have dihedral symmetry when θ = 0. However, since the outer and inner
spanning distances of lines lc are of the opposite parity, these lines will have
dihedral symmetry when θ = π/m, shown in Figure 10(b). In either case,
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the other set of lines will not have dihedral symmetry. Therefore, the entire
configuration will have only chiral symmetry for any choice of θ.

Because of the symmetry constraints, all dihedrally symmetric astral (n4)
pseudoline configurations may be represented as discussed above, where each
pseudoline consists of three line segments and two rays.
Question. Does there exist a chirally symmetric astral (n4) pseudoline con-
figuration that can not be represented using pseudolines formed from three
line segments and two rays?
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