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ON A GENERALIZATION OF THE BLASCHKE-LEBESGUE
THEOREM FOR DISK-POLYGONS

MÁTÉ BEZDEK

Abstract. In this paper we prove an extension of the Blaschke-Lebesgue
theorem for a family of convex domains called disk-polygons. Also, this
provides yet another new proof of the Blaschke-Lebesgue theorem.

1. Introduction

A convex domain of the Euclidean plane E2 is a compact convex set with
non-empty interior. Let C ⊂ E2 be a convex domain, and let l ⊂ E2 be a
line. Then the distance between the two supporting lines of C parallel to
l is called the width of C in direction l. Moreover, the smallest width of
C is called the minimal width of C, labelled by w(C). In other words, the
minimal width of a convex domain is equal to the smallest distance between
parallel supporting lines of the given convex domain. Also, recall that the
convex domain C ⊂ E2 is called a convex domain of constant width w if
the width of C in any direction of E2 is equal to w. The simplest example
of a convex domain of constant width w is the circular disk of diameter w.
However, the family of convex domains of constant width w is a large and
rather complex family. For example, a Reuleaux polygon of width w is a
convex domain of constant width w whose boundary is a union of finitely
many circular arcs all of radii w. For a detailed account on a number of
elementary properties of convex domains of constant width see for example
[4]; surveys on this subject are [6], [8], and [13].

The simpliest example of a Reuleaux polygon is the Reuleaux triangle. To
construct a Reuleaux triangle of width w, start with an equilateral triangle
of side length w; then the intersection of the three circular disks of radii w,
centered at the vertices of the equilateral triangle, is the Reuleaux triangle
of width w. In fact, the family of Reuleaux polygons of width w is a dense
subset of the family of convex domains of constant width w. For more details
on this see [4]. On the other hand, there are convex domains of constant
width whose boundaries include no circular arcs. For a very flexible way of
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constructing convex domains of constant width see [14]; a recent constructive
approach, where Reuleaux triangles play a basic role, is given in [12].

On the one hand, the classical isoperimetric inequality combined with
Barbier’s theorem (stating that the perimeter of any convex domain of con-
stant width w is equal to πw) implies that the largest area of convex domains
of constant width w is obtained by the circular disk of diameter w, having
the area of π4w

2 (for more details see again [4]). On the other hand, the well-
known Blaschke-Lebesgue theorem states that among all convex domains of
constant width w, the Reuleaux triangle of width w has the smallest area,
namely 1

2(π −
√

3)w2. W. Blaschke [3] and H. Lebesgue [11] were the first
to show this and the succeeding decades have seen other works published
on different proofs of that theorem. For a most recent new proof, and for a
survey on the state of the art of different proofs of the Blaschke-Lebesgue
theorem, see the elegant paper of E. M. Harrell [7]. For a unified approach
to the Blaschke-Lebesgue theorem and to the Firey-Sallee theorem (saying
that the regular Reuleaux n-gon of width 1 with n at least 3, has maximal
area among all Reuleaux n-gons) we refer to [9].

The main goal of this paper is to provide yet another new proof of the
Blaschke-Lebesgue theorem and, perhaps more importantly, to prove a new
more general version of it with the hope of extending it to higher dimen-
sions. The 3-dimensional analogue of the Blaschke-Lebesgue theorem is the
famous conjecture that the so-called Meissner bodies of constant width 1
have minimal volume among all bodies of constant width 1. This conjecture
was first stated as a “plausible assumption” in the book [5]. More precisely,
it can be found as an assumption in p. 136 there, and it is repeated as such
one in p. 81 of [4]. In the remaining part of the introduction we summarize
our new results starting with the necessary definitions.

Our first definition has been introduced in [2], and it specifies the type of
sets studied in this paper.

Definition 1.1. The intersection of finitely many (closed) circular disks of
unit radii with non-empty interior in E2 is called a disk-polygon. We will
assume that whenever we take a disk-polygon, then the disks generating it,
simply called generating disks, are all needed; that is, each of them con-
tributes to the boundary of the disk-polygon through a circular arc called a
side, with the consecutive pairs of sides meeting in the vertices of the given
disk-polygon, where a vertex of a disk-polygon is a point that lies on the
boundaries of at least two generating disks of it.

Remark: Our notion “are all needed” above is equivalent to the notion of
“tightness” in the recent paper [10], in which basic topological and geomet-
ric properties of disk-polygons and their higher dimensional analogues are
clarified.

The parameter introduced in the next definition turns out to be a crucial
one for our investigations.
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Definition 1.3. The disk-polygon D is called a disk-polygon with center
parameter d, 0 < d <

√
3 = 1.732 . . . , if the distance between any two

centers of the generating disks of D is at most d. Let F(d) denote the
family of all disk-polygons with center parameter d.

The following special disk-polygon is going to play a central role in our
investigations.

Definition 1.4. Let ∆(d) denote the regular disk-triangle whose three gen-
erating (unit) disks are centered at the vertices of a regular triangle of side
length d, 1 ≤ d <

√
3 = 1.732 . . . .

Recall, that the inradius r(C) of a convex domain C in E2 is the radius
of the largest circular disk lying in C, and that this disk is simply called the
incircle of C.
Remark: The following formulas give the inradius r(∆(d)), the minimal
width w(∆(d)), the area a(∆(d)) and the perimeter p(∆(d)) of ∆(d) for
all 1 ≤ d <

√
3:

r(∆(d)) = 1−
√

3
3
d;

w(∆(d)) = 1− 1
2

√
4 + 2d2 − 2

√
3d
√

4− d2;

a(∆(d)) = 3 arccos
d

2
+
√

3
4
d2 − 3

4
d
√

4− d2 − π

2
;

p(∆(d)) = 2π − 6 arcsin
d

2
.

Now we are ready to state our first theorem.

Theorem 1.6. Let D ∈ F(d) be an arbitrary disk-polygon with center pa-
rameter d, 1 ≤ d <

√
3. Then the area of D is at least as large as the area

of ∆(d), i.e.,
a(D) ≥ a(∆(d))

with equality if and only if D = ∆(d).

Remark: For d = 1 the above area inequality and the well-known fact (see for
example [4]) that the family of Reuleaux polygons of width 1 is a dense subset
of the family of convex domains of constant width 1, imply the Blaschke-
Lebesgue theorem in a straighforward way.

As the following two statements belong to the core part of our proof of
Theorem 1.6 and might be of independent interest, we mention them here.

Lemma 1.8. Let D ∈ F(d) be an arbitrary disk-polygon with center pa-
rameter d, 1 ≤ d <

√
3. Then the inradius of D is at least as large as the

inradius of ∆(d), i.e.,
r(D) ≥ r(∆(d)).
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Lemma 1.9. Let D ∈ F(d) be an arbitrary disk-polygon with center param-
eter d, 1 ≤ d <

√
3. Then the minimal width of D is at least as large as the

minimal width of ∆(d), i.e.,

w(D) ≥ w(∆(d)).

Definition 1.10. Let C ⊂ E2 be a convex domain and let ρ > 0 be given.
Then, the outer parallel domain Cρ of radius ρ of C is the union of all
(closed) circular disks of radii ρ, whose centers belong to C. Recall that
a(Cρ) = a(C) + p(C)ρ + πρ2. For 0 < d < 1 let ∆◦(d) denote the outer
parallel domain of radius 1− d of a Reuleaux triangle of width d.

Remark: Note that ∆◦(d) is a convex domain of constant width 2−d, and so
Barbier’s theorem (see [4]) implies that its perimeter is equal to p(∆◦(d)) =
π(2−d). Moreover, it is not hard to check that its area is equal to a(∆◦(d)) =
1
2(π −

√
3)d2 − πd+ π.

Now we are ready to state our second theorem.

Theorem 1.12. Let D ∈ F(d) be an arbitrary disk-polygon with center
parameter d, 0 < d < 1. Then the area of D is strictly larger than the area
of ∆◦(d), i.e.,

a(D) > a(∆◦(d)).

Remark: Note that our proof of Theorem 1.12 implies that the above lower
bound is best possible.

2. Proof of Lemma 1.8

The following definition introduces the notion of dual disk-polygon that
turns out to play a central role in our investigations.

Definition 2.1. Let D be an arbitrary disk-polygon in E2. Then the in-
tersection of the circular disks of unit radii centered at the vertices of D is
called the dual disk-polygon D∗ associated with D.

Remark: It is easy to see that (D∗)∗ = D for any disk-polygon D ⊂ E2.

Definition 2.3. Let X be an arbitrary set contained in a unit circular disk
of E2. Then the spindle convex hull of X is the intersection of all the unit
circular disks that contain X. Moreover, we say that X is spindle convex if
for any two points of X their spindle convex hull is contained in X.

For more details on spindle convexity we refer the interested reader to [2]
as well as [10].
Remark: If D is an arbitrary disk-polygon in E2, then its dual disk-polygon
D∗ is the spindle convex hull of the centers of the generating disks of D.
Moreover, D is spindle convex. These statements are proved in paragraph 3
of [10]. In Lemma 3.1 there, related results of Sallee [14] are simplified, and
from this lemma it follows that any disk-polygon is spindle convex.
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Recall that the circumradius R(C) of a convex domain C in E2 is the
radius of the smallest circular disk containing C (simply called the circum-
circle of C).

Sublemma 2.5. If D is an arbitrary disk-polygon in E2, then the incircle
of D and the circumcircle of D∗ are concentric circular disks. Moreover,

r(D) +R(D∗) = 1.

Proof. Let the incircle of D be centered at C having radius r(D). Note that
Remark 2.2 implies that the centers of the circular disks generating the sides
of D are identical to the vertices of D∗, and, vica versa, the circular disk of
unit radius centered at a vertex of D∗ generates a side for D. As a result
the circular disk of radius 1 − r(D) centered at C contains all the vertices
of D∗, and so it contains D∗, proving that R(D∗) ≤ 1− r(D). In the same
way one can show that, starting with the circumcircle of D∗ centered say,
at C∗ having radius R(D∗), the circular disk centered at C∗ having radius
1−R(D∗) is contained in D and therefore 1−R(D∗) ≤ r(D), finishing the
proof of Sublemma 2.5. �

Remark: If D is a Reuleaux polygon, then D = D∗. Hence Sublemma 2.5
generalizes the well-known fact that r(D) + R(D) = 1 for any Reuleaux
polygon D of width 1. In fact, r(C) + R(C) = 1 holds for any curve C of
constant width 1 as follows easily from the circular intersection property of
these curves. This appears, e.g., in p. 127 of [5].

Clearly, Sublemma 2.5 implies in a straighforward way that the inequality
of Lemma 1.8 is equivalent to the following one:

R(D∗) ≤ R(∆(d)∗) =
d√
3
< 1.

Now recall that according to Jung’s theorem (see for example [4]) the
circumradius of a finite point set of diameter d in E2 is at most d/

√
3 (which

is, in fact, the circumradius of a regular triangle of side length d). Also, note
that the smallest circular disk containing D∗ is identical to the smallest
circular disk containing the vertices of D∗. Thus, as D ∈ F(d), i.e. the
pairwise distances between the vertices of D∗ are at most d, therefore Jung’s
theorem implies in a straighforward way that R(D∗) ≤ d/

√
3, finishing the

proof Lemma 1.8.

3. Proof of Lemma 1.9

First, recall the following statement from [1].

Sublemma 3.1. If D is an arbitrary disk-polygon in E2, then the vector
sum of D and its dual D∗ is a convex domain of constant width 2.

Second, recall that the diameter of a set X ⊂ E2, denoted by diam(X),
is the largest distance between two points in X. Sublemma 3.1 implies the
following statement in a straighforward way.
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Corollary 3.2. If D is an arbitrary disk-polygon in E2, then

w(D) + diam(D∗) = w(D∗) + diam(D) = 2.

Now, we are ready to give a proof of Lemma 1.9.

Proof. Let D ∈ F(d) be an arbitrary disk-polygon with center parameter
d, 1 ≤ d <

√
3. Then, our goal is to show that the minimal width of D is

at least as large as the minimal width of ∆(d), i.e. w(D) ≥ w(∆(d)). By
Corollary 3.2 it is sufficient to prove that

diam(D∗) ≤ diam(∆(d)∗) = 1 +
1
2

√
4 + 2d2 − 2

√
3d
√

4− d2,

where ∆(d)∗ is the spindle convex hull of a regular triangle of side length d
with 1 ≤ d <

√
3. Let the line segment AB represent the diameter of D∗ and

let a and b be the lines passing through A and B and being perpendicular
to AB. Clearly, a and b are supporting lines of D∗. Using Sublemma 3.1
one can assume, without loss of generality, that either A and B are both
vertices of D∗ (Case (i)) or there is a side (circular arc) sa of D∗ that is
tangent to a at A moreover, B is a vertex of D∗ (Case (ii)).

Case (i):
As A and B are the centers of two generating disks of D and D ∈ F(d),
therefore

diam(D∗) ≤ d < 1 +
1
2

√
4 + 2d2 − 2

√
3d
√

4− d2

for all 1 ≤ d <
√

3, finishing the proof of Lemma 1.9 in Case (i).

Case (ii):
Let C and D denote the vertices of D∗ that are the endpoints of the
side sa of D∗. Clearly, as D ∈ F(d), therefore the line segments BC,CD
and DB have length at most d. Under this condition (for given d) let us
maximize the length of AB. (Here a must be tangent to sa at A and b
must go through B such that a and b are parallel with the triangle BCD
lying between them.) It is easy to see that the maximum must belong to
the geometric configuration with BC and BD both having their length
equal to d and with A being the midpoint of the circular arc sa. Now,
it is not yet clear what the length of CD should be. At this point we
know only that its length is at most d or, equivalently, the angle 2α at
the vertex B of the triangle BCD is at most π

3 . However, with a bit of
computation one can actually show that in order to maximize the length
of AB one has to have the length of CD equal to d as well. The details
are as follows: first a simple computation yields that the length of AB
is equal to f(α) := d cosα−

√
1− d2 sin2 α+ 1 with 0 ≤ α ≤ π

6 ; second,
using for example MAPLE, one can actually check that the maximum
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value of f(α) under the condition that 0 ≤ α ≤ π
6 is always

f
(π

6

)
= 1 +

√
3

2
d−

√
1− 1

4
d2

= 1 +
1
2

√
4 + 2d2 − 2

√
3d
√

4− d2 = diam(∆(d)∗)

for all 1 ≤ d <
√

3 (in fact, it turns out that f(α) is an increasing
function of 0 ≤ α ≤ π/6 for all 1 ≤ d <

√
3). This finishes our proof in

the second case,and the proof of Lemma 1.9 is complete. �

4. Proof of Theorem 1.6

Let C(O, x) denote the incircle of D centered at the point O having radius
x. Either there are two diametrically opposite points of C(O, x), say A and
B, at which C(O, x) touches the boundary of D (Case (i)) or there are
three points on the boundary of C(O, x), say A,B, and C, at which C(O, x)
touches the boundary of D such that O belongs to the interior of the triangle
ABC (Case (ii)). In both cases we show that the area of D is at least as
large as the area of ∆(d). The details are as follows.

Case (i):
Let a (resp., b) be the line passing through A (resp., B) that is perpen-
dicular to the line segment AB. Clearly, a and b are parallel supporting
lines of D, and therefore Lemma 1.9 implies that the distance 2x between
them is at least w(∆(d)). Now, on the one hand, the area of C(O, x) is
at least as large as the area of a circular disk of diameter 2x that is at
least as large as

farea(d) :=
π

4
w2(∆(d)) =

π

4

[
1− 1

2

√
4 + 2d2 − 2

√
3d
√

4− d2

]2

.

On the other hand, recall that the area of ∆(d) is equal to

garea(d) := a(∆(d)) = 3 arccos
d

2
+
√

3
4
d2 − 3

4
d
√

4− d2 − π

2
.

By drawing the graphs of farea(d) and garea(d) as functions of d it is
convenient to check with MAPLE that farea(d) > garea(d) for all 1 ≤ d <√

3, finishing the proof of the area inequality in this case.

Case (ii):
Lemma 1.8 implies that x = r(D) ≥ r(∆(d)) = 1− 1

3

√
3d. Hence, using

the area estimate as in Case (i), we can assume that

(4.1) 1− 1
3

√
3d ≤ x ≤ 1

2
w(∆(d)) =

1
2
− 1

4

√
4 + 2d2 − 2

√
3d
√

4− d2.

Let a, b and c be the uniquely determined supporting lines of D passing
through the points A,B and C. Moreover, let a′ be the line parallel
to a at distance w(∆(d)) from a and lying on the same side of a as D.
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Let the lines b′ and c′ be defined in a similar way using the lines b and
c. Clearly, Lemma 1.9 implies that there are points A′, B′ and C ′ with
A′ ∈ D∩ a′, B′ ∈ D∩ b′ and C ′ ∈ D∩ c′. As a next step take the spindle
convex hull of A′ and C(O, x), subtract from it the incircle C(O, x) and
denote the set obtained by HA′ (which, in fact, will look like a “cap”
attached to C(O, x)). In the same way, we construct the sets HB′ and
HC′ . Clearly, the sets C(O, x), HA′ ,HB′ and HC′ are pairwise non-
overlapping. Moreover, since D is spindle convex, they all lie in D, and
thus

(4.2) a(D) ≥ a(C(O, x)) + a(HA′) + a(HB′) + a(HC′).

Finally, let D′ be a point exactly at distance w(∆(d))−x from O. Then
take the spindle convex hull ofD′ and C(O, x), remove from it the incircle
C(O, x) and denote the set obtained by HD′ . As the lengths of the
line segments A′O,B′O and C ′O are all at least w(∆(d))− x, therefore
introducing the notation F (d, x) := a(C(O, x)) + 3a(HD′) we get that

(4.3) a(C(O, x)) + a(HA′) + a(HB′) + a(HC′) ≥ F (d, x).

Standard geometric calculations yield the following formula for F (d, x):

F (d, x) = πx2 + 3 arccos
[

1 + 2(1− x)y(d)− y2(d)
2(1− x)

]
− 3x2 arccos

[
1− (1− x)2 − (1− x− y(d))2

2(1− x)(1− x− y(d))

]
− 3

2

√
(3− 2x− y(d))(1− 2x− y(d))(1− y2(d)),

where y(d) = 1 − w(∆(d)) = 1
2

√
4 + 2d2 − 2

√
3d
√

4− d2. By applying
the necessary tools of MAPLE, it turns out that for each 1 ≤ d <

√
3 the

function F (d, x) is an increasing function of x over the interval defined
by (4.1). Thus,

(4.4) F (d, x) ≥ F
(
d, 1− 1

3

√
3d
)

= a(∆(d)).

Hence, (4.2), (4.3), and (4.4) finish the proof of Case (ii), and so the
proof of Theorem 1.6 is now complete.

5. Proof of Theorem 1.12

Let D ∈ F(d) be an arbitrary disk-polygon with center parameter d, 0 <
d < 1. Let the diameter of D∗ be denoted by d∗. Applying the method of
Case (ii) of the proof of Lemma 1.9, it turns out that d∗ ≤ d. Thus, according
to a well-known theorem (see for example [4]) there exists a convex domain
D of constant width d with D∗ ⊂ D. As a result we get that

(5.1) D = (D∗)∗ ⊃ D1−d,
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where D1−d stands for the outer parallel domain of radius 1− d of D. Note
that since D is of constant width d, D1−d is of constant width 2−d. Also, it
is clear that in (5.1) equality cannot occur (simply for the reason that D1−d
is not a disk-polygon). Thus, (5.1) implies in a straighforward way that

(5.2) a(D) > a(D1−d) = a(D) + p(D)(1− d) + π(1− d)2.

On the one hand, Barbier’s theorem (see [4]) implies that p(D) = πd and,
on the other hand, the Blaschke-Lebesgue theorem, or better Theorem 1.6,
yields that a(D) ≥ 1

2(π −
√

3)d2. Thus, these facts together with (5.2)
imply that a(D) > 1

2(π−
√

3)d2 − πd+ π = a(∆◦(d)), finishing the proof of
Theorem 1.12.
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