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CONGRUENCE PROPERTIES OF 8- AND 9-COLORED

GENERALIZED FROBENIUS PARTITIONS MODULO 5

DAZHAO TANG

Abstract. In his 1984 AMS Memoir, Andrews introduced the family
of functions cϕk(n), which denotes the number of k-colored generalized
Frobenius partitions of n. In this paper, by employing some q-series
identities and elementary generating function manipulations, we prove
a characterization of cϕ8(5n+2) modulo 5. Moreover, we derive a char-
acterization of cϕ9(5n + 1) modulo 5. These two characterizations can
lead to the corresponding infinite sets of Ramanujan-type congruences
modulo 5 satisfied by cϕ8(n) and cϕ9(n).

1. Introduction

The purpose of this paper is to establish congruence properties for 8-
and 9-colored generalized Frobenius partitions modulo 5 by utilizing some
q-series manipulations. As an immediate consequence, we obtain some infi-
nite sets of Ramanujan-type congruences modulo 5 satisfied by cϕ8(n) and
cϕ9(n).

In his 1984 Memoir of the American Mathematical Society, Andrews [1]
introduced the notion of a generalized Frobenius partition of n, which is a
two-rowed array of nonnegative integers of the form:(

a1 a2 · · · ar
b1 b2 · · · br

)
,

wherein each row, which is of the same length, is arranged in weakly decreas-
ing order with n = r+

∑r
i=1(ai+bi). Further, Andrews investigated two gen-

eral classes of generalized Frobenius partitions. One of them is generalized
Frobenius partitions whose parts are taken from k copies of the nonnegative
integers, which is called k-colored generalized Frobenius partitions. For any
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positive integer k, let cϕk(n) denote the number of k-colored generalized
Frobenius partitions of n. Among many other things, Andrews [1, Corol-
lary 10.1] proved that for any n ≥ 0,

cϕ2(5n+ 3) ≡ 0 (mod 5) .(1.1)

In 1994, Sellers [31] conjectured that there is an infinite family of congruences
modulo any powers of 5 enjoyed by cϕ2(n), which contain (1.1) as the first
special case. Eichhorn and Sellers [16] proved several special cases of the
Sellers conjecture by modular forms and a computational method. This
conjecture was eventually proved by Paule and Radu [30] in 2011.

By employing the theory of modular forms, Ono [29], Lovejoy [27], and
Xiong [38] investigated congruence properties modulo small powers of 5 sat-
isfied by cϕ3(n). Wang [35] proved several infinite families of congruences
modulo powers of 3 for cϕ3(n). In 2011, Baruah and Sarmah [3] derived
another expression of the generating function of cϕ4(n) and thus established
several congruences modulo small powers of 4 satisfied by cϕ4(n). Sell-
ers [32], Xia [37], and Hirschhorn and Sellers [22] considered congruence
properties modulo 5 for cϕ4(n). Congruences modulo 7 for cϕ4(n) were con-
sidered by Lin [26], and Zhang and Wang [39]. Cui, Gu and Huang [13]
proved some infinite families modulo small powers of 2 enjoyed by cϕ4(n).
In 2015, Baruah and Sarmah [4] established another expression of the gener-
ating function of cϕ6(n) and proved congruences modulo 4 and 9 for cϕ6(n).
Congruence properties modulo powers of 3 for cϕ6(n) were successively con-
sidered by Xia [36], Hirschhorn [20], Gu, Wang and Xia [19], and the au-
thor [33]. Cui and Gu [12] established some infinite families of congruences
modulo 8 for cϕ6(n). There are other congruence properties for cϕk(n); see,
for example, [14, 15,23,24,28].

In 2017, Wang and Zhang [34] established the following characterization
of cϕ4(5n+ 1) modulo 5, which contains the results of Sellers [32], Xia [37],
and Hirschhorn and Sellers [22] as special cases.

Theorem 1.1 (Wang–Zhang). For any n ≥ 0,

cϕ4(5n+ 1) ≡

{
k + 1 (mod 5) if n = 6k2 + 2k, k ∈ Z,
0 (mod 5) otherwise.

(1.2)

In 2019, with the help of the theory of modular forms, Chan, Wang and
Yang [7] studied CΦk(q) systematically, where CΦk(q) denotes the gener-
ating function of cϕk(n). In particular, they [7, Theorem 5.3] obtained the
following general congruence relation for cϕk(n) by induction.

Theorem 1.2 (Chan–Wang–Yang). Let p be a prime and let N be a positive
integer such that gcd(p,N) = 1. For any α ≥ 1 and n ≥ 0,

cϕpαN (n) ≡ cϕpα−1N (n/p)
(
mod p2α

)
.(1.3)

The congruence relation (1.3) reveals that there is an inseparable relation
on congruence properties between cϕ2(n) and cϕ4(n) modulo powers of 2. A
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similar congruence relation holds between cϕ4(n) and cϕ8(n). Interestingly,
(1.1) and (1.2) reveal that the congruence properties modulo 5 of cϕ2(n)
and cϕ4(n) are still closely related. Therefore, a natural question is whether
there exists a similar result modulo 5 for cϕ8(n). By employing Ramanujan’s
theta functions and some q-series manipulations, we establish the following
characterization of cϕ8(5n+ 2) modulo 5.

Theorem 1.3. For any n ≥ 0,

cϕ8(5n+ 2) ≡


2k + 2 (mod 5) if n = 12k2 + 4k, k ∈ Z,
3− k (mod 5) if n = 12k2 + 8k + 1, k ∈ Z,
0 (mod 5) otherwise.

(1.4)

As an immediate consequence, we obtain the following corollary which
implies infinitely many Ramanujan-type congruences modulo 5 satisfied by
cϕ8(n).

Corollary 1.4. Let p ≥ 5 be a prime and let r be an integer, 1 ≤ r ≤ p− 1,
such that 3r + 1 is a quadratic nonresidue modulo p. Then for any n ≥ 0,

cϕ8(5pn+ 5r + 2) ≡ 0 (mod 5) .(1.5)

Utilizing the theory of modular forms, Ono [29, Main Theorem 2] obtained
a characterization of cϕ3(5n+2) modulo 5 (a typo in Ono’s original theorem
has been corrected).

Theorem 1.5 (Ono). For any n ≥ 0,

cϕ3(5n+ 2) ≡

{
(−1)k+1(k + 3) (mod 5) if n = 3k(k + 1), k ∈ N,
0 (mod 5) otherwise.

(1.6)

According to (1.3), one readily sees that there is a close relation on con-
gruence properties between cϕ3(n) and cϕ9(n). Motivated by (1.3) and (1.6),
it is natural to ask whether there exists a result similar to (1.6) for cϕ9(n).
With the help of an identity of Kolitsch (see (3.34) below) and the congru-
ence relation (1.6), we establish the following characterization of cϕ9(5n+1)
modulo 5.

Theorem 1.6. For any n ≥ 0,

cϕ9(5n+ 1) ≡



2k + 1 (mod 5) if n = 18k2 + 3k, k ∈ N,
k − 1 (mod 5) if n = 18k2 + 9k + 1, k ∈ N,
2k (mod 5) if n = 18k2 + 15k + 3, k ∈ N,
−(2k + 2) (mod 5) if n = 18k2 + 21k + 6, k ∈ N,
−(k + 2) (mod 5) if n = 18k2 + 27k + 10, k ∈ N,
−(2k + 1) (mod 5) if n = 18k2 + 33k + 15, k ∈ N,
0 (mod 5) otherwise.

(1.7)
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Similarly, we obtain the following corollary which implies infinitely many
congruences modulo 5 satisfied by cϕ9(n).

Corollary 1.7. Let p ≥ 3 be a prime and and let r be an integer, 1 ≤ r ≤
p − 1, such that 8r + 1 is a quadratic nonresidue modulo p. Then for any
n ≥ 0,

cϕ9(5pn+ 5r + 1) ≡ 0 (mod 5) .(1.8)

2. Preliminaries

In this section, we collect some necessary notation and lemmas which will
be utilized to prove Theorems 1.3 and 1.6.

Throughout the rest of this paper, we always assume that q is a complex
number such that |q| < 1 and adopt the following customary notation:

(a; q)∞ :=
∞∏
k=0

(1− aqk).

For notational convenience, we denote

E(q) := (q; q)∞.

First, Ramanujan’s theta functions φ(q) and ψ(q) are defined by

φ(q) :=

∞∑
n=−∞

qn
2

and ψ(q) :=
∞∑
n=0

qn(n+1)/2.(2.1)

According to the Jacobi triple product identity [21, Eq. (1.1.1)], one readily
obtains the following well-known product representations of φ(q) and ψ(q):

φ(q) =
E(q2)5

E(q)2E(q4)2
,(2.2)

ψ(q) =
E(q2)2

E(q)
,(2.3)

Replacing q by −q in (2.3) gives

ψ(−q) = E(q)E(q4)

E(q2)
.(2.4)

Next, we need the following identities.

Lemma 2.1.

1

E(q)4
=

E(q4)14

E(q2)14E(q8)4
+ 4q

E(q4)2E(q8)4

E(q2)10
,(2.5)

1

E(q)4
=

E(q10)2

E(q2)2E(q5)4
+ 4q

E(q10)5

E(q)3E(q2)E(q5)5
.(2.6)

Proof. The identity (2.5) follows from [21, Eq. (1.10.1)] and (2.2) and (2.3).
The identity (2.6) follows from [10, Eq. (2.4)]; see also [2, Eq. (2.6)]. □
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Lemma 2.2.

E(q2)5

E(q4)2
=

∞∑
n=−∞

(6n+ 1)q3n
2+n,(2.7)

E(q)2E(q4)2

E(q2)
=

∞∑
n=−∞

(3n+ 1)q3n
2+2n.(2.8)

The identities (2.7) and (2.8) come from [21, Eqs. (10.7.3) and (10.7.6)];
see also [11, Eqs. (0.47) and (0.48)], which can be derived easily by using
the quintuple product identity [21, Eq. (10.1.2)].

Lemma 2.3 ( [11, Eq. (0.49)]).

E(q)3 =
∞∑
n=0

(−1)n(2n+ 1)qn(n+1)/2.(2.9)

Moreover, we also require the following 5-dissection for the Euler product
E(q).

Lemma 2.4 ( [21, Eq. (8.1.1)]). We have

E(q) = E(q25)

(
1

R(q5)
− q − q2R(q5)

)
,(2.10)

where

R(q) =
(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

.

Finally, we will frequently make use of the following congruence, which
can be derived immediately from the binomial theorem.

E(qn)5 ≡ E(q5n) (mod 5) , n ∈ N+.

3. Proofs of the main results

The proof of Theorem 1.3 relies on the following two lemmas.

Lemma 3.1. We have
∞∑
n=0

cϕ8(2n)q
n(3.1)

=
1

E(q)20

(
E(q4)55

E(q2)14E(q8)22
+ 892q

E(q4)43

E(q2)10E(q8)14

+ 21408q2
E(q4)31

E(q2)6E(q8)6
+ 115584q3

E(q4)19E(q8)2

E(q2)2

+ 177408q4E(q2)2E(q4)7E(q8)10 + 35840q5
E(q2)6E(q8)18

E(q4)5

)
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and
∞∑
n=0

cϕ8(2n+ 1)qn(3.2)

=
1

E(q)20

(
64

E(q4)49

E(q2)12E(q8)18
+ 5632q

E(q4)37

E(q2)8E(q8)10

+ 57344q2
E(q4)25

E(q2)4E(q8)2
+ 172032q3E(q4)13E(q8)6

+ 114688q4E(q2)4E(q4)E(q8)14
)
.

Proof. According to [7, Theorem 6.3],
∞∑
n=0

cϕ8(n)q
n =

1

E(q)8

(
E(q8)35

E(q4)14E(q16)14
+ 56q

E(q8)29

E(q4)12E(q16)10
(3.3)

+ 420q2
E(q8)23

E(q4)10E(q16)6
+ 896q3

E(q8)17

E(q4)8E(q16)2

+ 2352q4
E(q8)11E(q16)2

E(q4)6
+ 2688q5

E(q8)5E(q16)6

E(q4)4

+ 2240q6
E(q16)10

E(q4)2E(q8)

)
.

From (2.5), one sees that

1

E(q)8
=

E(q4)28

E(q2)28E(q8)8
+ 8q

E(q4)16

E(q2)24
+ 16q2

E(q4)4E(q8)8

E(q2)20
.(3.4)

Substituting (3.4) into (3.3), we obtain that
∞∑
n=0

cϕ8(2n)q
n(3.5)

=
1

E(q)20

(
E(q2)14E(q4)27

E(q)8E(q8)14
+ 16q

E(q4)43

E(q2)10E(q8)14

+ 448q
E(q2)4E(q4)29

E(q)4E(q8)10
+ 420q

E(q2)18E(q4)15

E(q)8E(q8)6

+ 6720q2
E(q4)31

E(q2)6E(q8)6
+ 7168q2

E(q2)8E(q4)17

E(q)4E(q8)2

+ 2352q2
E(q2)22E(q4)3E(q8)2

E(q)8
+ 37632q3

E(q4)19E(q8)2

E(q2)2

+ 21504q3
E(q2)12E(q4)5E(q8)6

E(q)4
+ 2240q3

E(q2)26E(q8)10

E(q)8E(q4)9

+ 35840q4E(q2)2E(q4)7E(q8)10
)
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and
∞∑
n=0

cϕ8(2n+ 1)qn(3.6)

=
1

E(q)20

(
8
E(q2)2E(q4)35

E(q)4E(q8)14
+ 56

E(q2)16E(q4)21

E(q)8E(q8)10

+ 896q
E(q4)37

E(q2)8E(q8)10
+ 3360q

E(q2)6E(q4)23

E(q)4E(q8)6

+ 896q
E(q2)20E(q4)9

E(q)8E(q8)2
+ 14336q2

E(q4)25

E(q2)4E(q8)2

+ 18816q2
E(q2)10E(q4)11E(q8)2

E(q)4
+ 2688q2

E(q2)24E(q8)6

E(q)8E(q4)3

+ 43008q3E(q4)13E(q8)6 + 17920q3
E(q2)14E(q8)10

E(q)4E(q4)

)
.

Substituting (2.5) and (3.4) into the parentheses portion of (3.5) and (3.6),
after simplification, we obtain (3.1) and (3.2). □

Next, we also need to establish the following auxiliary identities. Before
stating them, we first introduce the Atkin Um-operator, defined by

Um

( ∞∑
n=n0

a(n)qn

)
=

∞∑
n=⌈n0/m⌉

a(mn)qn.

Lemma 3.2.

U5

(
q−1E(q2)E(q8)3

)
= −5q5E(q10)E(q40)3,

(3.7)

U5

(
E(q4)3E(q8)

)
=
E(q4)7

E(q8)3
+ 5q4

E(q4)4E(q40)3

E(q8)2E(q20)
+ 20q8

E(q4)E(q40)6

E(q8)E(q20)2
,

(3.8)

U5

(
q

E(q4)

E(q2)E(q8)

)
= q

E(q4)2E(q10)E(q40)

E(q2)2E(q8)2E(q20)
+ 5q3

E(q4)4E(q10)3E(q40)3

E(q2)4E(q8)4E(q20)3

(3.9)

+ 5q5
E(q4)6E(q10)5E(q40)5

E(q2)6E(q8)6E(q20)5
,

U5

(
q2
E(q2)3E(q8)2

E(q4)

)
= 5q4

E(q10)3E(q40)2

E(q20)
,

(3.10)

U5

(
q3E(q2)2E(q4)2

)
= −2q

E(q2)7E(q20)

E(q4)3E(q10)
− 15q3

E(q2)4E(q20)4

E(q4)2E(q10)2

(3.11)
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− 20q5
E(q2)E(q20)7

E(q4)E(q10)3
.

Proof. We prove (3.7)–(3.11) one by one.
Proof of (3.7). By (2.10), we find that

U5

(
q−1E(q2)E(q8)3

)
= U5

(
q−1E(q50)E(q200)3

(
1

R(q10)
− q2 − q4R(q10)

)

×
(

1

R(q40)
− q8 − q16R(q40)

)3
)

= E(q10)E(q40)3U5

(
−5q25

)
= −5q5E(q10)E(q40)3.

Proof of (3.8). It follows from (2.10) that

U5

(
E(q4)3E(q8)

)
= U5

(
E(q100)3E(q200)

(
1

R(q20)
− q4 − q8R(q20)

)3

×
(

1

R(q40)
− q8 − q16R(q40)

))

= E(q20)3E(q40)

((
1

R(q4)3R(q8)
+ q8R(q4)3R(q8)

)

− 5q4 + 3q4
(
R(q8)

R(q4)2
− R(q4)2

R(q8)

))
.

Thanks to [2, Eqs. (1.20) and (1.21)] (or [8, Theorem 1.1]),

R(q2)

R(q)2
− R(q)2

R(q2)
= 4q

E(q)E(q10)5

E(q2)E(q5)5
,(3.12)

1

R(q)3R(q2)
+ q2R(q)3R(q2) =

E(q2)E(q5)5

E(q)E(q10)5
+ 2q + 4q2

E(q)E(q10)5

E(q2)E(q5)5
.

(3.13)

By means of (3.12) and (3.13),

U5

(
E(q4)3E(q8)

)
= E(q20)3E(q40)

(3.14)

×
(
E(q8)E(q20)5

E(q4)E(q40)5
− 3q4 + 16q8

E(q4)E(q40)5

E(q8)E(q20)5

)
= E(q20)3E(q40)

(
E(q8)E(q4)7E(q20)5

E(q40)5
·
(

1

E(q4)4

)2
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− 3q4E(q4)4 · 1

E(q4)4
+ 16q8

E(q4)E(q40)5

E(q8)E(q20)5

)
.

Replacing q by q4 in (2.6) and plugging it into (3.14), we obtain that

U5

(
E(q4)3E(q8)

)
=
E(q4)7

E(q8)3
+ 5q4

E(q4)4E(q40)3

E(q8)2E(q20)
+ 20q8

E(q4)E(q40)6

E(q8)E(q20)2
.

Proof of (3.9). Fang, Xue and Yao [17, Eq. (1.3)] proved that

U5

(
q−2 1

ψ(−q)

)
=
E(q2)2E(q5)E(q20)

E(q)2E(q4)2E(q10)
+ 5q

E(q2)4E(q5)3E(q20)3

E(q)4E(q4)4E(q10)3
(3.15)

+ 5q2
E(q2)6E(q5)5E(q20)5

E(q)6E(q4)6E(q10)5
.

The identity (3.9) follows from (2.4) and (3.15) immediately.
Proof of (3.10). From Corollary (ii) on page 49 in [5],

ψ(q) = A(q5) + qB(q5) + q3ψ(q25),(3.16)

where

A(q) = (−q2,−q3, q5; q5)∞ and B(q) = (−q,−q4, q5; q5)∞.

Combining (2.10) and (3.16), we deduce that

U5

(
q2
E(q2)3E(q8)2

E(q4)

)
= U5

(
q2E(q50)3

(
1

R(q10)
− q2 − q4R(q10)

)3

×
(
A(q20) + q4B(q20) + q12ψ(q100)

))

= 5q4
E(q10)3E(q40)2

E(q20)
.

Proof of (3.11). By virtue of (2.10),

U5

(
q3E(q2)2E(q4)2

)
= U5

(
q3E(q50)2E(q100)2

(
1

R(q10)
− q2 − q4R(q10)

)2

×
(

1

R(q20)
− q4 − q8R(q20)

)2
)

= E(q10)2E(q20)2

(
−2q

(
1

R(q2)R(q4)2
− q4R(q2)R(q4)2

)

+ q3 + 2q3
(
R(q4)

R(q2)2
− R(q2)2

R(q4)

))
.
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Baruah and Begum [2, Eq. (1.19)] derived that

1

R(q)R(q2)2
− q2R(q)R(q2)2 =

E(q2)E(q5)5

E(q)E(q10)5
.(3.17)

With the help of (3.12) and (3.17), we further have

U5

(
q3E(q2)2E(q4)2

)
(3.18)

= E(q10)2E(q20)2

×
(
−2q

E(q4)E(q10)5

E(q2)E(q20)5
+ q3 + 8q5

E(q2)E(q20)5

E(q4)E(q10)5

)
= E(q10)2E(q20)2

(
−2q

E(q2)7E(q4)E(q10)5

E(q20)5
·
(

1

E(q2)4

)2

+ q3E(q2)4 · 1

E(q2)4
+ 8q5

E(q2)E(q20)5

E(q4)E(q10)5

)
.

Replacing q by q2 in (2.6) and substituting it into (3.18), after simplification,
we obtain the desired identity. □

Now, it is time to prove Theorem 1.3.
In what follows, all congruences are modulo 5 unless otherwise specified.

Proof of Theorem 1.3. According to (3.1) and (3.7)–(3.11), we deduce that

∞∑
n=0

cϕ8(10n+ 2)qn(3.19)

= U5

( ∞∑
n=0

cϕ8(2n)q
n−1

)

≡ E(q4)11

E(q)4E(q2)3E(q8)5
U5

(
q−1E(q2)E(q8)3

)
+

2E(q4)8

E(q)4E(q2)2E(q8)3
U5

(
E(q4)3E(q8)

)
− 2E(q4)6

E(q)4E(q2)E(q8)
U5

(
q

E(q4)

E(q2)E(q8)

)
− E(q4)4

E(q)4E(q2)
U5

(
q2
E(q2)3E(q8)2

E(q4)

)
− 2E(q4)E(q8)2

E(q)4
U5

(
q3E(q2)2E(q4)2

)
≡ 2E(q4)8

E(q)4E(q2)2E(q8)3
· E(q4)7

E(q8)3

− 2E(q4)6

E(q)4E(q2)E(q8)
· qE(q4)2E(q10)E(q40)

E(q2)2E(q8)2E(q20)
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− 2E(q4)E(q8)2

E(q)4

(
−2q

E(q2)7E(q20)

E(q4)3E(q10)

)
=

2E(q2)12E(q4)

E(q)4E(q8)2

(
E(q4)14

E(q2)14E(q8)4
+ q

E(q4)2E(q8)4

E(q2)10

)
≡ 2E(q2)12E(q4)

E(q)4E(q8)2

(
E(q4)14

E(q2)14E(q8)4
− 4q

E(q4)2E(q8)4

E(q2)10

)
.

Replacing q by −q in (2.5) yields

E(q4)14

E(q2)14E(q8)4
− 4q

E(q4)2E(q8)4

E(q2)10
=
E(q)4E(q4)4

E(q2)12
.(3.20)

Combining (3.19) and (3.20),

∞∑
n=0

cϕ8(10n+ 2)qn ≡ 2E(q4)5

E(q8)2
.(3.21)

Thanks to (2.7), we find that

∞∑
n=0

cϕ8(10n+ 2)qn ≡ 2

∞∑
m=−∞

(6m+ 1)q6m
2+2m,

from which we obtain that

cϕ8(10n+ 2) ≡

{
2k + 2 if n = 2k(3k + 1) for some integer k,

0 otherwise.
(3.22)

Moreover, it follows from (3.2) that

∞∑
n=0

cϕ8(10n+ 7)qn(3.23)

= U5

( ∞∑
n=0

cϕ8(2n+ 1)qn−3

)

≡ − E(q4)10

E(q)4E(q2)3E(q8)4
U5

(
q−3E(q2)3E(q8)2

E(q4)

)
+

2E(q4)7

E(q)4E(q2)2E(q8)2
U5

(
q−2E(q2)2E(q4)2

)
− E(q4)5

E(q)4E(q2)E(q8)
U5

(
q−1E(q2)E(q8)3

)
+

2E(q4)2E(q8)

E(q)4
U5

(
E(q4)3E(q8)

)
− 2E(q2)E(q8)3

E(q)4
U5

(
q

E(q4)

E(q2)E(q8)

)
.
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From Lemma 3.2, we find that

U5

(
q−3E(q2)3E(q8)2

E(q4)

)
= q−1 · U5

(
q2
E(q2)3E(q8)2

E(q4)

)
≡ 0,(3.24)

U5

(
q−2E(q2)2E(q4)2

)
= q−1 · U5

(
q3E(q2)2E(q4)2

)
(3.25)

≡ −2
E(q2)7E(q20)

E(q4)3E(q10)
,

U5

(
q−1E(q2)E(q8)3

)
≡ 0,(3.26)

U5

(
E(q4)3E(q8)

)
≡ E(q4)7

E(q8)3
,(3.27)

U5

(
q

E(q4)

E(q2)E(q8)

)
≡ q

E(q4)2E(q10)E(q40)

E(q2)2E(q8)2E(q20)
.(3.28)

Substituting (3.24)–(3.28) into (3.23), one sees that
∞∑
n=0

cϕ8(10n+ 7)qn(3.29)

≡ −2E(q2)14E(q8)2

E(q)4E(q4)5

(
E(q4)14

E(q2)14E(q8)4
+ q

E(q4)2E(q8)4

E(q2)10

)
≡ −2E(q2)14E(q8)2

E(q)4E(q4)5

(
E(q4)14

E(q2)14E(q8)4
− 4q

E(q4)2E(q8)4

E(q2)10

)
.

Combining (3.20) and (3.29) yields
∞∑
n=0

cϕ8(10n+ 7) ≡ −2E(q2)2E(q8)2

E(q4)
.(3.30)

Thanks to (2.8),
∞∑
n=0

cϕ8(10n+ 7)qn ≡ −2
∞∑

m=−∞
(3m+ 1)q6m

2+4m,

from which we obtain

cϕ8(10n+ 7) ≡

{
3− k if n = 2k(3k + 2) for some integer k,

0 otherwise.
(3.31)

The congruence (1.4) follows by combining (3.22) and (3.31). □

With the help of Theorem 1.3, we can prove Corollary 1.4 easily.

Proof of Corollary 1.4. Let p and r be chosen as in the statement of the
corollary. With Theorem 1.3 in mind, we would ask whether there exist
integers k1 and k2 such that

pn+ r = 12k21 + 4k1 or pn+ r = 12k22 + 8k2 + 1.

Notice that

3(pn+ r) + 1 = (6k1 + 1)2 or 3(pn+ r) + 1 = (6k2 + 2)2.
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This implies that 3r+1 ≡ (6k1+1)2 (mod p) or 3r+1 ≡ (6k2+2)2 (mod p).
Therefore, if 3r + 1 cannot be congruent to a square modulo p, then pn+ r
can be represented as neither 12k2 +4k nor 12k2 +8k+1 for any integer k.
Now, (1.5) follows from (1.4) immediately. □

Clearly, for any prime p ≥ 5, the congruence (1.5) gives (p−1)/2 different
congruences modulo 5 satisfied by cϕ8(n). Therefore, one actually obtains
infinitely many congruences modulo 5 for cϕ8(n).

Remark: Two remarks on Theorem 1.3 are in order. First, it follows imme-
diately from (3.21) and (3.30) that

cϕ8(20n+ 12) ≡ 0,(3.32)

cϕ8(20n+ 17) ≡ 0.(3.33)

Of course, (3.32) and (3.33) can be derived by (1.4) immediately. Second,
there is a congruence modulo 5 for cϕ8(n) beyond the congruences (1.5), i.e.,

cϕ8(25n+ 17) ≡ 0,

which can be derived by (1.4) along with a little calculation.

The main ingredients in the proof of Theorem 1.6 are Ono’s result (1.6)
and the following identity due to Kolitsch [25, Theorem 2]:

cϕ9(n) = 3cϕ3(3n− 1),(3.34)

where n ≥ 1 and

cϕm(n) =
∑

d| gcd(m,n)

µ(d)cϕm/d

(n
d

)
,(3.35)

and where µ(x) is the Möbius function. It is worthwhile to mention that
Kolitsch proved (3.34) by utilizing some combinatorial arguments. Recently,
Wang [35, pp. 3378–3379] provided a different proof by employing some q-
series techniques. With the help of (3.35), (3.34) is equivalent to

∞∑
n=0

cϕ9(n)q
n = 3

∞∑
n=0

cϕ3(3n− 1)qn +

∞∑
n=0

cϕ3

(n
3

)
qn,(3.36)

where we agree that cϕ3(−1) = 0.
Now, we are in a position to prove Theorem 1.6.

Proof of Theorem 1.6. According to (3.36), one sees that
∞∑
n=0

cϕ9(5n+ 1)qn(3.37)

= 3

∞∑
n=0

cϕ3(15n+ 2)qn +

∞∑
n=0

cϕ3

(
5n+ 1

3

)
qn

= 3

∞∑
n=0

cϕ3(15n+ 2)qn +
∞∑
n=0

cϕ3(5n+ 2)q3n+1,
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where the last step in (3.37) follows by the fact that cϕ3(m) = 0 if m is not
a positive integer. Thanks to (1.6) and (2.9), we find that

∞∑
n=0

cϕ3(5n+ 2)qn ≡ 2E(q3)3.(3.38)

Combining (3.37) and (3.38), we conclude that

∞∑
n=0

cϕ9(5n+ 1)qn

≡ E(q)3 + 2qE(q9)3

=
∞∑
n=0

(−1)n(2n+ 1)qn(n+1)/2 + 2
∞∑
n=0

(−1)n(2n+ 1)q(3n+1)(3n+2)/2

=
5∑

j=0

∞∑
n=0

(−1)6n+j(12n+ 2j + 1)q(6n+j)(6n+j+1)/2

+ 2
∞∑
n=0

(4n+ 1)q(3n+1)(6n+1) − 2
∞∑
n=0

(4n+ 3)q(3n+2)(6n+5),

from which we obtain (1.7). □

The proof of Corollary 1.7 is similar to that of Corollary 1.4, thus we omit
the details here.

Remark: Two remarks are necessary. First, there are also two congruences
modulo 5 for cϕ9(n) outside of the congruences (1.8), namely,

cϕ9(15n+ 11) ≡ 0,

cϕ9(25n+ 16) ≡ 0,

which can be derived by (1.7) together with some calculations. Moreover,
(3.36) reveals that there is an inseparable relation on congruence properties
modulo powers of 5 between cϕ9(n) and cϕ3(n). For example, one can obtain
that for any n ≥ 0,

cϕ9(15n+ 8) ≡ 0 (mod 625) ,

cϕ9(15n+ 14) ≡ 0 (mod 625) ,

which follows immediately from (1.7) and the following two congruences due
to Xiong [38, Theorem 1.1]:

cϕ3(45n+ 23) ≡ 0 (mod 625) ,

cϕ3(45n+ 41) ≡ 0 (mod 625) .

4. Final remarks

We conclude this paper with several remarks to motivate further investi-
gation.
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First, there are some additional congruences modulo small powers of 5
for cϕ8(n) and cϕ9(n). The numerical evidence suggests the following con-
gruences:

cϕ8(20n+ 8) ≡ 0 (mod 5) ,(4.1)

cϕ8(20n+ 16) ≡ 0 (mod 5) ,(4.2)

cϕ9(75n+ 41) ≡ 0 (mod 25) .(4.3)

Following a similar strategy to that developed in [6], (4.1)–(4.3) could be
proved by constructing appropriate modular forms and using Sturm’s the-
orem. It would be of interest to find an elementary proof of (1.6) and
(4.1)–(4.3).

Second, the congruences (1.2), (1.4), (1.6) and (1.7) imply that

lim
X→∞

#{0 ≤ n < X : cϕk(5n+ 2) ≡ 0 (mod 5)}
X

= 1.(4.4)

where k ∈ {3, 4, 8, 9}. Notice that

cϕ1(5n+ 4) ≡ 0 (mod 5) and cϕ2(5n+ 3) ≡ 0 (mod 5) .(4.5)

Moreover, Garvan and Sellers [18] proved that if p is prime and 1 ≤ r ≤ p−1,
then

cϕk(pn+ r) ≡ 0 (mod p) =⇒ cϕpN+k(pn+ r) ≡ 0 (mod p) ,(4.6)

where N is a positive integer. Based on (1.3), (4.4) and (4.5), a natural
question is whether the following identity holds:

lim
X→∞

#{0 ≤ n < X : cϕpα(5n+ t) ≡ 0 (mod 5)}
X

= 1,(4.7)

where p ∈ {2, 3}, pα is congruent to 3 or 4 modulo 5, pα + t ≡ 0 (mod 5)
and t ∈ {1, 2}. However, preliminary numerical evidence suggests that no
results analogous to (1.4) and (1.7) exist for cϕ13(n) and cϕ14(n).

Finally, Choi [9, p. 497] derived that for all but finitely many primes p
and any j, r ≥ 1,

#
{
0 ≤ n < X : cϕk(n) ≡ r

(
mod pj

)}
≫

√
X/ logX.

It follows immediately from (1.3) that

lim
X→∞

#{0 ≤ n < X : cϕ5N (n) ≡ 0 (mod 5)}
X

≥ 4

5
.

Based on (4.4)–(4.6), it is natural to ask whether the following inequality
holds:

lim
X→∞

#{0 ≤ n < X : cϕk(n) ≡ 0 (mod 5)}
X

≥ 1

5
,(4.8)

where k is congruent to 3 or 4 modulo 5.
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