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CONGRUENCE PROPERTIES OF 8 AND 9-COLORED
GENERALIZED FROBENIUS PARTITIONS MODULO 5

DAZHAO TANG

ABSTRACT. In his 1984 AMS Memoir, Andrews introduced the family
of functions c¢y(n), which denotes the number of k-colored generalized
Frobenius partitions of n. In this paper, by employing some g-series
identities and elementary generating function manipulations, we prove
a characterization of c¢s(5n + 2) modulo 5. Moreover, we derive a char-
acterization of cgg(5n + 1) modulo 5. These two characterizations can
lead to the corresponding infinite sets of Ramanujan-type congruences
modulo 5 satisfied by c@s(n) and cpg(n).

1. INTRODUCTION

The purpose of this paper is to establish congruence properties for 8-
and 9-colored generalized Frobenius partitions modulo 5 by utilizing some
g-series manipulations. As an immediate consequence, we obtain some infi-
nite sets of Ramanujan-type congruences modulo 5 satisfied by c¢g(n) and
cpg(n).

In his 1984 Memoir of the American Mathematical Society, Andrews [1]
introduced the notion of a generalized Frobenius partition of n, which is a
two-rowed array of nonnegative integers of the form:

aq a9 Qar
by by - b )’

wherein each row, which is of the same length, is arranged in weakly decreas-
ing order with n = 7+, (a;+b;). Further, Andrews investigated two gen-
eral classes of generalized Frobenius partitions. One of them is generalized
Frobenius partitions whose parts are taken from k copies of the nonnegative
integers, which is called k-colored generalized Frobenius partitions. For any
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positive integer k, let c¢r(n) denote the number of k-colored generalized
Frobenius partitions of n. Among many other things, Andrews [1, Corol-
lary 10.1] proved that for any n > 0,

(1.1) cp2(5n +3) =0 (mod 5).

In 1994, Sellers [31] conjectured that there is an infinite family of congruences
modulo any powers of 5 enjoyed by c¢2(n), which contain (1.1) as the first
special case. Eichhorn and Sellers [16] proved several special cases of the
Sellers conjecture by modular forms and a computational method. This
conjecture was eventually proved by Paule and Radu [30] in 2011.

By employing the theory of modular forms, Ono [29], Lovejoy [27], and
Xiong [38] investigated congruence properties modulo small powers of 5 sat-
isfied by c¢s(n). Wang [35] proved several infinite families of congruences
modulo powers of 3 for cgs(n). In 2011, Baruah and Sarmah [3] derived
another expression of the generating function of c¢¢4(n) and thus established
several congruences modulo small powers of 4 satisfied by cg4(n). Sell-
ers [32], Xia [37], and Hirschhorn and Sellers [22] considered congruence
properties modulo 5 for c¢4(n). Congruences modulo 7 for c¢y(n) were con-
sidered by Lin [26], and Zhang and Wang [39]. Cui, Gu and Huang [13]
proved some infinite families modulo small powers of 2 enjoyed by cg4(n).
In 2015, Baruah and Sarmah [4] established another expression of the gener-
ating function of c¢g(n) and proved congruences modulo 4 and 9 for c¢g(n).
Congruence properties modulo powers of 3 for cgg(n) were successively con-
sidered by Xia [36], Hirschhorn [20], Gu, Wang and Xia [19], and the au-
thor [33]. Cui and Gu [12] established some infinite families of congruences
modulo 8 for cgg(n). There are other congruence properties for cox(n); see,
for example, [14,15,23, 24, 28].

In 2017, Wang and Zhang [34] established the following characterization
of cp4(5n + 1) modulo 5, which contains the results of Sellers [32], Xia [37],
and Hirschhorn and Sellers [22] as special cases.

Theorem 1.1 (Wang—Zhang). For any n > 0,

E+1 (mod5) ifn==6Kk>+2k kcZ,

(1.2) cpa(5n + 1) = {0 (mod 5)  otherwise.

In 2019, with the help of the theory of modular forms, Chan, Wang and
Yang [7] studied C®y(q) systematically, where C®j(q) denotes the gener-
ating function of c¢g(n). In particular, they [7, Theorem 5.3] obtained the
following general congruence relation for c¢x(n) by induction.

Theorem 1.2 (Chan-Wang—Yang). Let p be a prime and let N be a positive
integer such that ged(p, N) = 1. For any o > 1 and n > 0,

(1.3) ¢ (n) = cbpa iy (n/p) (mod p2*) |

The congruence relation (1.3) reveals that there is an inseparable relation
on congruence properties between cgy(n) and c¢4(n) modulo powers of 2. A
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similar congruence relation holds between c¢4(n) and cpg(n). Interestingly,
(1.1) and (1.2) reveal that the congruence properties modulo 5 of cga(n)
and co4(n) are still closely related. Therefore, a natural question is whether
there exists a similar result modulo 5 for c¢g(n). By employing Ramanujan’s
theta functions and some g-series manipulations, we establish the following
characterization of c¢g(5n + 2) modulo 5.

Theorem 1.3. For any n > 0,
2k +2 (mod 5) ifn=12k*+4k, k € Z,
(14) cgs(bn+2)=<3—k (mod5) ifn=12k>+8k+1, k€ Z,
0 (mod 5)  otherwise.

As an immediate consequence, we obtain the following corollary which
implies infinitely many Ramanujan-type congruences modulo 5 satisfied by

cos(n).

Corollary 1.4. Let p > 5 be a prime and let r be an integer, 1 <r < p—1,
such that 3r + 1 is a quadratic nonresidue modulo p. Then for any n > 0,

(1.5) cpg(bpn +5r+2) =0 (mod 5).

Utilizing the theory of modular forms, Ono [29, Main Theorem 2] obtained
a characterization of cg3(5n+2) modulo 5 (a typo in Ono’s original theorem
has been corrected).
Theorem 1.5 (Ono). For any n > 0,
(1.6)
—1)"1(k+3 d5) if n=3k(k+1), keN
ot 2y = { (FVFERD) (mod 5)if = 3k(k 1), kN
0 (mod 5)  otherwise.

According to (1.3), one readily sees that there is a close relation on con-
gruence properties between cgs(n) and cpg(n). Motivated by (1.3) and (1.6),
it is natural to ask whether there exists a result similar to (1.6) for cgg(n).
With the help of an identity of Kolitsch (see (3.34) below) and the congru-
ence relation (1.6), we establish the following characterization of c¢g(5n+1)
modulo 5.

Theorem 1.6. For any n > 0,
(1.7)

2k+1

k—1

( ) if n=18k?>+ 3k, k € N,

( ) ifn=18k>+9k+ 1, k € N,

( ) ifn=18k?>+ 15k +3, k € N,
cho(dbn+1) =< —(2k+2) (mod 5) ifn=18k*+21k+6, k € N,

( ) ifn =18k + 27k + 10, k € N,

( ) ifn=18k?>+ 33k + 15, k € N,

( )

otherwise.
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Similarly, we obtain the following corollary which implies infinitely many
congruences modulo 5 satisfied by cgg(n).

Corollary 1.7. Let p > 3 be a prime and and let r be an integer, 1 < r <
p — 1, such that 8r + 1 is a quadratic nonresidue modulo p. Then for any
n >0,

(1.8) cpo(bpn +5r+1) =0 (mod 5).

2. PRELIMINARIES

In this section, we collect some necessary notation and lemmas which will
be utilized to prove Theorems 1.3 and 1.6.

Throughout the rest of this paper, we always assume that ¢ is a complex
number such that |¢| < 1 and adopt the following customary notation:

o0

(@;9)00 := H(l —agb).

k=0
For notational convenience, we denote
E(9) = (4 @)oo
First, Ramanujan’s theta functions ¢(g) and 1 (q) are defined by

(2.1) gp(q) = Z qn2 and 1/}(Q) — an(nJrl)/Q.
n=0

n=—oo

According to the Jacobi triple product identity [21, Eq. (1.1.1)], one readily
obtains the following well-known product representations of ¢(¢q) and 1(q):

(2.2) p(q) = m,
(23) ol = 2L
Replacing ¢ by —q in (2.3) gives

(2.4) vog = ZUE0)

Next, we need the following identities.

Lemma 2.1.

1 E(ghM E(q")*E(¢®)"
(2.5) E(Q)F  E(@MHE()? +4q E(g)0
1 B E(q10)2 E(q10)5

Proof. The identity (2.5) follows from [21, Eq. (1.10.1)] and (2.2) and (2.3).
The identity (2.6) follows from [10, Eq. (2.4)]; see also [2, Eq. (2.6)]. O
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Lemma 2.2.

2\5 > 5
(2.7) 5234;2 = Y (6n+1)g
E(Q?E(¢")? < 2

The identities (2.7) and (2.8) come from [21, Egs. (10.7.3) and (10.7.6)];
see also [11, Egs. (0.47) and (0.48)], which can be derived easily by using
the quintuple product identity [21, Eq. (10.1.2)].

Lemma 2.3 ( [11, Eq. (0.49)]).
29) Bl = Y (1) (2n 4 gD

n=0

Moreover, we also require the following 5-dissection for the Euler product
E(q).

Lemma 2.4 ( [21, Eq. (8.1.1)]). We have

(2.10) B@) = B6*) (g~ - PRAO))
where

(¢54°) o0 (4% ¢°) oo
(0% %) oo (2%¢°) o

Finally, we will frequently make use of the following congruence, which
can be derived immediately from the binomial theorem.

E(¢")° = E(¢°") (mod 5), n€N,.

R(q) =

3. PROOFS OF THE MAIN RESULTS
The proof of Theorem 1.3 relies on the following two lemmas.

Lemma 3.1. We have

o0

(3.1) Zcqﬁ8(2n)q”
n=0
B 1 E(q4)55 E(q4)43
- E(q)20 <E(q2)14E(q8)22 + 892qE(q2)10E(q8)14
E 4\31 E 4 19E 8\2
+ 21408q2]%2§gE)(qS)6 + 1155s4q3@];(q2)§”

E(a2\SE(48)18
+ 177408 E(¢?)2E(¢*) E(¢®)™° + 3584047 (qbz(g) >
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and
(32) > cos(2n+1)g"
n=0
1 E(q*)49 E(a*)37
- 64—\ a2 D)
E(q)® " E(¢®)2E(¢®)'8 E(q*)*E(g®)"°
2 E(q4)25 3 413 816
+ 57344q 5 +172032¢°E(¢") " E(q°)

E(¢*)*E(q®)
+ 114688q4E(q2)4E(q4)E(q8)14) .

Proof. According to [7, Theorem 6.3],

> 1 E 8135 8129
(3:3) ) obalma" = E(q)® <E(<14)1(‘?E)(f116)14 i 56qE(q4)1<2QJ5)(<1””)1°

n=0
E 8123 E 8\17
+ 42042 ) 4 8064 — L)
E(q")E(q'%)° E(q*)*E(q"°)?
ESllE 16\2 E85E 16\6
1 23524 (¢°) 4(6q ) 1 2688¢° (¢°) 4(11 )
E(q%) E(q*)
E(q16)10 >
+2240¢° ———2— ).
E(¢*)?E(¢®)
From (2.5), one sees that
1 Eq428 Eq416 Eq44Eq88
(3.4) g = 2(28) s T8¢ (2)24+16q2 ( )2go>
E(q)® E(¢*)®E(¢®) E(q?) E(q?)

Substituting (3.4) into (3.3), we obtain that

[e.e]

(3.5) Z cos(2n)q"

n=0
1 E(q2)14E(q4)27 E(q4)43
20 ( q2 10E(q8)14
E E(¢*)'*E(¢")"
E(q)%E(g®)°

E(q")YE(¢%)?
E(q?)?
E(q*)*E(¢*)"
E(q)8E(q*)°

45E 8\6
Eqi (@) | 99404

+ 35840q4E(q2)2E(q4)7E(q8)10)
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and

o0

(3.6) Z cos(2n + 1)g"

=
= F <8E’E(f;>)42§<(qq84>)115 ’ 56EE(?q§6EE<;q>)
S0 e + S e o
R e
+ 18816422 )1012(5)111,5((18)2 + 268842 Eﬁg?;)zzE(éij

3E(q2)14E(q8)10>.
E(q)*E(q*)
Substituting (2.5) and (3.4) into the parentheses portion of (3.5) and (3.6),
after simplification, we obtain (3.1) and (3.2). O

+ 4300843 E(¢H) B E(¢®)% + 17920¢

Next, we also need to establish the following auxiliary identities. Before
stating them, we first introduce the Atkin U,,-operator, defined by

Um(Z a(n)q”) = Z a(mn)q"”.

n=mng n=[no/m|

(3.7)
Us(¢ "E(¢*)E(¢®)*) = =5¢°E(q"°) E(¢™)*,
(3.8)
4AN\T E44E 40\3 4E 40\6
(3.9)

E(q") ) E(¢")E(q°)E(¢") | . 3E(¢") E(¢"°)*E(¢")’
E(@PE@)PEG®) " E@) B E(q®)

T BB BT
(3.10)
B E()? (g0 E(¢")?
U5<q2 E(d") ) e T
(3.11)

Us(’E(¢*)’E(q")?) = —2¢
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o8 BB
E(q*)E(q'%)3

Proof. We prove (3.7)—(3.11) one by one.
Proof of (3.7). By (2.10), we find that

Us(a™ B E(d")*) = Us <q—1E<q5°>E<q2°0>3 (e~ — 'Rl

3
% (}%(;40) _ q8 _ qIGR(q4O)> )

= E(q")E(¢")°Us (~5¢*")
= —5¢E(q") E(¢")*.

Proof of (3.8). It follows from (2.10) that

1
R(¢®)

(g ~ ' - "R 40))
= E(q 20)3E( )( (R()gR() + QSR(Q4)3R(QS)>

R 8 R 4\2
~sa'+30' (g~ g >> |

U5 (E(q4)3E(q8)) _ U5 (E(q100>3E( 200)(

Thanks to [2, Egs. (1.20) and (1.21)] (or [8, Theorem 1.1]),

2 2 10\5
(342 Rt~ R~ UE BT
o BB Bl B
R RO R = s 2 s
By means of (3.12) and (3.13),
(3.14)

Us(E(¢")’E(¢%)) = E(¢*)*E(¢")
E(¢®)E(¢*)° E(¢")E(¢")
<E<q4>E<q40>5 ~ 34+ 160 >

— E(q20)3E(q40)(E(QS)E(Q4)7E(QQO)5 . < 14)4>2

E(q40)5
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E<q4>E<q4°>5>

~ 3B BB

8
7E(q4)4 + 16¢q

Replacing ¢ by ¢* in (2.6) and plugging it into (3.14), we obtain that

E47 E44E 40\3 E4E 40\6

(qs)3 FEWEAC 8) - (g 20) 42048 (q8) (q20)2_
E(¢®) E(¢®)*E(¢*) E(q*)E(¢*)
Proof of (3.9). Fang, Xue and Yao [17, Eq. (1.3)] proved that

Us(E(¢")*E(¢%)) =

345

+ 5¢q

)
(3.15) Us (q o E(q)2E(¢")2E(¢"0) E(q)*E(q*)*E(q'0)3

E(¢®)SE(¢°)°E(¢%°)
50 BB ()

The identity (3.9) follows from (2.4) and (3.15) immediately.
Proof of (3.10). From Corollary (ii) on page 49 in [5],

(3.16) ¥(q) = A(Q°) + ¢B(q°) + ¢*¥ (™),

where
Ag) = (=¢*, =" % ") e and  B(g) = (=4, —¢",¢";¢")-
Combining (2.10) and (3.16), we deduce that

2\3 8\2 3
Us <q2ﬁw> =Us <q2E(q50)3< L q4R(q10)>

—q)

(q R(q')

x (A(¢®) + ¢*B(¢®) + ql2¢(q100))>

LE(q")PE(g")?
E(q*°)

Proof of (3.11). By virtue of (2.10),
Us(¢’E(¢*)*E(q")?)
_ 3 502 100y2 1 2 4 10 ?
v, (q B (g~ ¢ - ¢ R))

2
< (i =o'~ ")
= B(q"")’E(¢™)’ <—2q<Rq

R(q* R(¢?
w020 i iy >> |

1 ) _ E@)E@)E@G”) | . E(¢*)'E()’E(¢®)’
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Baruah and Begum [2, Eq. (1.19)] derived that

1 2 22 E(¢*)E(¢°)°
RgRep TR = g gy
With the help of (3.12) and (3.17), we further have
(3.18)  Us(¢®E(¢*)E(¢")?)

(3.17)

Replacing ¢ by ¢? in (2.6) and substituting it into (3.18), after simplification,
we obtain the desired identity. O

Now, it is time to prove Theorem 1.3.
In what follows, all congruences are modulo 5 unless otherwise specified.

Proof of Theorem 1.3. According to (3.1) and (3.7)—(3.11), we deduce that

(3.19) > cgs(10n + 2)¢"

n=0

E(q)*E(q?) E(q*
4 8\2
B 2E(<]JE()££Q ) Us (P E(?)2E(gY)?)
_ 2E(q*)® E(q*)"
~ E(9)*E(®)?E(¢®)® E(¢)?
. 2B(¢")S E(¢")*E(¢"")E(¢")
EW@'E(@)E@®) TE(@)?E(E)E(g®)
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_ 2B(¢")E(¢*)? (_2 E(q2)7E(q2°)>

E(q)? YE("PE(q)
_ 2E(¢*)"E(¢") < E(¢)" E(q4)2E(q8)4>
E(q) E(¢®)? \E@E@)?" " B
_ 2B(¢*)"E(¢q") < B, E(q4)2E(q8)4>
E(@)'E(@)? \E@E@" " E@"
Replacing ¢ by —¢ in (2.5) yields
E 4\14 E 4 2E 8\4 E 4E 4\4
O iy R
Combining (3.19) and (3.20),
e 4\5
(3.21) 3" eps(10n + 2)g" = 25(((1‘18))2
n=0
Thanks to (2.7), we find that
i cpg(10n + 2)¢" =2 i (6m + 1)q6m2+2m,
n=0 m=—00

from which we obtain that

2k +2 if n=2k(3k + 1) for some integer k,
0 otherwise.

(3.22)  cos(10n +2) = {

Moreover, it follows from (3.2) that

o0

(3.23) > cgs(10n + 7)q"

n=0
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From Lemma 3.2, we find that

(3.24)  Us (q_3W> — U <q2E(q2)3m]8)2) o,

E(q*) E(q%)
(3.25) Us(¢°E(¢®)*E(¢")?) = ¢ Us(¢*E(¢*)*E(¢")?)
_ S E(@®)E(G)
- _2E(q4)3E(q10)’
(3.26) Us(¢ ' E(®)E(¢)?) =0,
AN\T
(3.27) Us(E(¢*)?E(¢%)) = 588;3
E(q) \ _ E@")E(")E(¢")
(3:28) (o) =BRGP
Substituting (3.24)—(3.28) into (3.23), one sees that
(3:29) ) egs(10n +7)g"
n=0
_ —2BE(¢*)"E(¢%)? E(q*)™ E(¢*")?E(¢®)*
= B0 B <E<q2>14E<q8>4 TR >
_ —2BE(¢*)"E(¢%)? E(q*)* 1 B E(g)!
= E(q)*E(¢*)5 (E(q2)14E(q8)4 - E(q2)10 )
Combining (3.20) and (3.29) yields
e _9E 2 2E 8\2
(3.30) %cqbg(lOn +7) = (2()(14) (a°)
Thanks to (2.8),
iC(bS(lon + 7)(]” =_9 io: (Bm + 1)q6m2+4m’
n=0 m=—00

from which we obtain
3—k ifn=2k3k+2) f int k
(331)  cou(10n+7) = if n : (3k + 2) for some integer k,
0 otherwise.
The congruence (1.4) follows by combining (3.22) and (3.31). O
With the help of Theorem 1.3, we can prove Corollary 1.4 easily.

Proof of Corollary 1.4. Let p and r be chosen as in the statement of the
corollary. With Theorem 1.3 in mind, we would ask whether there exist
integers k1 and ko such that

pn + 1 = 12k3 + 4k or pn 41 = 12k3 + 8ky + 1.
Notice that
3(pn+7)+1=(6k +1)* or 3(pn+r)+1=(6ky+2)%
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This implies that 3r+1 = (6k;+1)? (mod p) or 3r+1 = (6k2+2)? (mod p).
Therefore, if 3r + 1 cannot be congruent to a square modulo p, then pn + r
can be represented as neither 12k? + 4k nor 12k? + 8k + 1 for any integer k.
Now, (1.5) follows from (1.4) immediately. O

Clearly, for any prime p > 5, the congruence (1.5) gives (p—1)/2 different
congruences modulo 5 satisfied by c¢pg(n). Therefore, one actually obtains
infinitely many congruences modulo 5 for cgg(n).

Remark: Two remarks on Theorem 1.3 are in order. First, it follows imme-
diately from (3.21) and (3.30) that

(3.32) chs(20n +12) =0,
(3.33) chs(20n + 17) = 0.

Of course, (3.32) and (3.33) can be derived by (1.4) immediately. Second,
there is a congruence modulo 5 for c¢g(n) beyond the congruences (1.5), i.e.,
cPg(25m +17) =0,

which can be derived by (1.4) along with a little calculation.

The main ingredients in the proof of Theorem 1.6 are Ono’s result (1.6)
and the following identity due to Kolitsch [25, Theorem 2]:

(3.34) cgg(n) = 3cgy(3n — 1),

where n > 1 and

(3.35) D)= D wld)edma(5):
d| ged(m,n)

and where p(z) is the Mobius function. It is worthwhile to mention that
Kolitsch proved (3.34) by utilizing some combinatorial arguments. Recently,
Wang [35, pp. 3378-3379] provided a different proof by employing some g-
series techniques. With the help of (3.35), (3.34) is equivalent to

(3.36) > cdo(n)d" =3 chs(3n—1)q" + Y cos <%)qn’
n=0 n=0 n=0

where we agree that cgz(—1) = 0.
Now, we are in a position to prove Theorem 1.6.

Proof of Theorem 1.6. According to (3.36), one sees that

(3.37) > co(5n+1)q"

n=0

e e hn+1
=3 15 Nag" n
> con(ion +2) +nzoc¢3( . )q

oo oo
=3 ch3(15n+2)q" + Y _ cds(5n + 2)¢*"*,
n=0 n=0
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where the last step in (3.37) follows by the fact that cgsz(m) = 0 if m is not
a positive integer. Thanks to (1.6) and (2.9), we find that

(3.38) i cp3(5n + 2)q" = 2B(¢%)3.
n=0
Combining (3.37) and (3.38), we conclude that
i cpg(5n + 1)q"
n=0
= E(q)’ + 2¢E(¢°)°
= i( 1)"(2n + 1)g"" /2 4 22 "(2n + 1)gBr D Ent2)/2
nzo .
=33 (=1 (12n 4 2j + 1)qr DG/
j=0n=0
+2 i<4” +1)gBnFEntD) _ 9 i(4” + 3)gBrT)(6nt5)
n=0 n=0
from which we obtain (1.7). O

The proof of Corollary 1.7 is similar to that of Corollary 1.4, thus we omit
the details here.

Remark: Two remarks are necessary. First, there are also two congruences
modulo 5 for c¢g(n) outside of the congruences (1.8), namely,

cpg(15n 4+ 11) = 0,

cP9(25n 4 16) = 0,
which can be derived by (1.7) together with some calculations. Moreover,
(3.36) reveals that there is an inseparable relation on congruence properties

modulo powers of 5 between cgg(n) and cg3(n). For example, one can obtain
that for any n > 0,

cpg(15n + 8) =0 (mod 625),
cpg(15n + 14) =0 (mod 625),

which follows immediately from (1.7) and the following two congruences due
to Xiong [38, Theorem 1.1]:

cp3(45n +23) =0 (mod 625),
cp3(45n +41) =0 (mod 625).

4. FINAL REMARKS

We conclude this paper with several remarks to motivate further investi-
gation.
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First, there are some additional congruences modulo small powers of 5
for cgg(n) and cog(n). The numerical evidence suggests the following con-
gruences:

(4.1) cps(20n +8) =0 (mod 5),
(4.2) cpg(20n +16) =0 (mod 5),
(4.3) cdg(75n +41) =0 (mod 25).

Following a similar strategy to that developed in [6], (4.1)-(4.3) could be
proved by constructing appropriate modular forms and using Sturm’s the-
orem. It would be of interest to find an elementary proof of (1.6) and
(4.1)-(4.3).

Second, the congruences (1.2), (1.4), (1.6) and (1.7) imply that

(4.4) iy O <7 < X: cy(5n+2) =0 (mod 5)}

=1.

where k € {3,4,8,9}. Notice that
(4.5)  cp1(bn+4) =0 (mod 5) and cpa(bn+3) =0 (mod 5).

Moreover, Garvan and Sellers [18] proved that if p is prime and 1 < r < p—1,
then

(4.6)  cop(pn+7)=0 (mod p) = cdpntr(pn+1r) =0 (mod p),

where N is a positive integer. Based on (1.3), (4.4) and (4.5), a natural
question is whether the following identity holds:

wr  gim HOSn<X:chpe(Snt1) =0 (mod 5))

=1,

where p € {2,3}, p® is congruent to 3 or 4 modulo 5, p® +¢t =0 (mod 5)
and ¢t € {1,2}. However, preliminary numerical evidence suggests that no
results analogous to (1.4) and (1.7) exist for c¢13(n) and cpr4(n).

Finally, Choi [9, p. 497] derived that for all but finitely many primes p
and any j, r > 1,

#{0<n < X:cpp(n)=r (mod p’)} > VX /log X.
It follows immediately from (1.3) that

i 7O Sn < X:edsn(n) =0 (mod 5)}
X—o00 X

4
> —.
-5
Based on (4.4)—(4.6), it is natural to ask whether the following inequality
holds:
< X: = 1
(4.8) lim #{0<n< cor(n) =0 (mod 5)} L
X—=o00 X )

where k is congruent to 3 or 4 modulo 5.
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