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AN EHRHART THEORETIC APPROACH TO

GENERALIZED GOLOMB RULERS

TRISTRAM BOGART AND DANIEL FELIPE CUÉLLAR

Abstract. A Golomb ruler is a sequence of integers whose pairwise
differences, or equivalently pairwise sums, are all distinct. This defini-
tion has been generalized in various ways to allow for sums of h integers,
or to allow up to g repetitions of a given sum or difference. Beck, Bog-
art, and Pham applied the theory of inside-out polytopes of Beck and
Zaslavsky to prove structural results about the counting functions of
Golomb rulers. We extend their approach to the various types of gener-
alized Golomb rulers.

1. Introduction

A Golomb ruler of length t with m+1 markings is a sequence of integers
0 = x0 < x1 < · · · < xm−1 < xm = t such that the differences xj − xi are
all distinct. Golomb rulers were originally considered by Sidon [11] and are
also known as Sidon sets or B2-sets.

The main question that has been studied about such sets is their maxi-
mum density; that is, for a given t, what is the maximum possible m such
that there exists a Golomb ruler of length t with m + 1 markings? It has
long been known that as t tends to ∞, this maximum is asymptotic to

√
t.

The lower bound is due to Singer [12] and the asymptotically matching up-
per bound to Erdós and Turán [7]. For a range of more recent and related
results, we refer the reader to O’Bryant’s survey [10].

A different problem is to count Golomb rulers given the parameters m
and t. We denote by bm(t) the number of Golomb rulers of length t with
m+1 markings. For m fixed and t tending to infinity, almost every possible
sequence is a Golomb ruler, so

lim
t→∞

bm(t)(
t−1
m−1

) = 1.
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In order to obtain more algebraically precise results, Beck, Bogart, and
Pham [1] introduced the following framework. Since x0 = 0, the sequence
x = (x0, x1, . . . , xm) is equivalently specified by the sequence of successive
differences z = (z1, . . . , zm), where zi = xi − xi−1. The condition that
x0 < x1 < · · · < xm becomes the condition that the zi’s are all positive,
and the zi’s, like the xi’s, must all be integers. That is, each Golomb ruler
corresponds to a lattice point in the tth dilation of the standard (m − 1)-
simplex in Rm. Finally, the condition that differences are unique can be
written as a collection of linear inequations in the zi’s.

In more general terms, we have just observed that Golomb rulers are in
bijection with the lattice points in the interior of a certain polytope that
do not lie on any of the hyperplanes in a certain arrangement. Beck and
Zaslavsky [3] studied such sets of lattice points in general under the name of
inside-out polytopes. They extended Ehrhart’s theorem (both quasipolyno-
miality and reciprocity) to this context. Their theory could thus be brought
to bear on the counting function bm(t) (see Theorem 2.2 below.) It also
yielded a bijection between the combinatorial types of Golomb rulers and
the regions of the hyperplane arrangement that intersect the interior of the
polytope.

Golomb rulers have been generalized in several ways.

Definition 1.1. We define a ruler to be any sequence of integers 0 = x0 <
x1 < · · · < xm−1 < xm = t.

(1) The ruler is a B2[g]-set if each positive integer admits at most g
representations as a sum of two markings.

(2) The ruler is a g-Golomb ruler or B−
2 [g]-set if each positive integer

admits at most g representations as a difference of two markings.
(3) For h ≥ 2, the set is a Bh-set if each positive integer admits at most

one representation as a sum of h markings.
(4) Combining the first and third definitions, the ruler is a Bh[g]-set if

each positive integer admits at most g representations as a sum of h
markings.

Remark: A Golomb ruler (i.e., B−
2 [1] set) is the same as a B2-set, but for

g > 2, a B2[g]-set is not the same as a B−
2 [g]-set.

The asymptotic density question is still open in these cases. To our knowl-
edge, the best general upper and lower bounds for the density of Bh[g] sets
appear in a recent paper of Johnston, Tait, and Timmons [9]. They also
note that in many cases, their upper bound matches one of Green [8], and
their lower bound matches one of Caicedo, Gómez, Gómez, and Trujillo [4].
For Bh-sets, Dellamonica, Kohayakwawa, Lee, Rödl, and Samotij [6] give
good asymptotic results for the total number of Bh sets of length at most t.

Returning to the question of enumeration, given m and t, we denote by
bm[g](t), b−m[g](t), and bm,h(t) the number of rulers of length t with m + 1

markings that are respectively B2[g]-sets. B
−
2 [g]-sets, and Bh-sets. (We will

not consider Bh[g]-sets from now on, but it should be possible to extend
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our results on B2[g]-sets to this case.) In comparison with [6], our approach
deals with the simpler situation in which the number of markings m + 1 is
fixed, but it yields results that are more precise in an algebraic sense.

In Section 2 we state our main theorems about the counting functions
of generalized Golomb rulers after laying out the necessary definitions. In
Section 3, we extend the approach of Beck, Bogart, and Pham in order to
prove these theorems. In all cases, the underlying polytope is still a di-
lated standard simplex. For Bh-sets, we explicitly describe the hyperplane
arrangement that must be removed. For the other types of generalized
Golomb rulers, the conditions yield that not a hyperplane arrangement but
a subspace arrangement must be removed, and we explicitly describe these
arrangements. Some of the results of Beck and Zaslavsky extend to the
situation of subspace arrangements, so in particular we obtain quasipolyno-
miality results in all cases.

In addition, Beck, Bogart, and Pham gave a combinatorial interpretation
of the regions of the inside-out polytope in terms of orientations of a certain
mixed graph that satisfy a certain coherence property. Unfortunately, in
the course of this project we realized that this result is not correct. There
is indeed an explicit injection from regions to orientations but this function
is not surjective in general. We review the proof of injectivity and give an
explicit counterexample to surjectivity in Section 4. Finally, in Section 5 we
extend the construction and the injective map to the case of Bh-sets, using
a more elaborate mixed graph.

2. Background and Statements of Theorems

Let x = (x0, . . . , xm) denote a ruler withm+1 markings and again identify
the ruler with the sequence of successive differences z = (z1, . . . , zm) of x.
As we have seen, these differences form a sequence of positive integers that
sum to t, which can be identified with an integer point in the interior of the
t-th dilation of the standard (m− 1)-simplex. That is,

{rulers with m+ 1 markings and of length t} ⇔ t∆◦
m−1 ∩ Zm,

where ∆m−1 = {z : z1, . . . , zm ≥ 0,
∑m

i=1 zi = 1}.
Now by definition, a Golomb ruler is a ruler for which the differences

xj − xi between two markings are all distinct. In terms of the consecutive

differences, we have xj − xi =
∑j

k=i+1 zk. Thus a ruler is a Golomb ruler if
for every pair of consecutive subsets U, V of [m] we have∑

i∈U
zi ̸=

∑
i∈V

zi.

Definition 2.1. In the following, we specify rulers by their consecutive dif-
ferences.

(1) Two Golomb rulers z = (z1, . . . , zm) and w = (w1, . . . , wm) are
combinatorially equivalent if for all consecutive sets U, V ⊆ [m], we
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have

(2.1)
∑
i∈U

zi <
∑
i∈V

zi ⇐⇒
∑
i∈U

wi <
∑
i∈V

wi.

(2) Applying the same notion of equivalence to Golomb rulers with real
entries, the multiplicity of an (integral) ruler z is defined as the
number of combinatorial types of real Golomb rulers in a sufficiently
small neighborhood of z.

Note that if z is itself a Golomb ruler, then its multiplicity is one.

Theorem 2.2 ([1, Theorem 1]). The Golomb counting function bm(t), is
a quasipolynomial of degree in t of degree m − 1, with leading coefficient

1
(m−1)! . The evaluation (−1)m−1bm(−t) equals the number of rulers with

length t and m + 1 markings, counted with multiplicity, and the evaluation
(−1)m−1bm(0) equals the number of combinatorial types of Golomb rulers
with m+ 1 markings.

We extend parts of this result to generalized Golomb rulers as follows.

Theorem 2.3. For any m ≥ 1, and (where appropriate) h ≥ 2, g ≥ 2,
the functions bm[g](t), b−m[g](t) and bm,h(t) are all quasipolynomials in t of

degree m− 1 with leading coefficient 1
(m−1)! .

Our remaining results apply only to Bh-sets. The reason for this is that
(as we will see in Section 3), Bh-sets are defined by avoidance of certain
hyperplanes, while the other types of generalized Golomb rulers are defined
by avoidance of certain subspaces.

By definition, a Bh set with m+1 markings is a ruler x such that for each
pair of distinct sequences 0 ≤ r1 ≤ · · · ≤ rh ≤ m and 0 ≤ s1 ≤ · · · ≤ sh ≤ m
we have

(2.2) xr1 + · · ·+ xrh ̸= xs1 + · · ·+ xsh .

Definition 2.4.

(1) Two such rulers are combinatorially equivalent if for every such
pair 0 ≤ r1 ≤ · · · ≤ rh ≤ m and 0 ≤ s1 ≤ · · · ≤ sh ≤ m, either the
inequality xr1 + · · · + xrh < xs1 + · · · + xsh holds for both rulers or
the opposite inequality xr1 + · · ·+xrh > xs1 + · · ·+xsh holds for both
rulers.

(2) We can apply the same notion of equivalence for real Golomb rulers
0 = y0 < y1 < · · · < ym−1 < ym = t. Then the Bh-multiplicity of
an integral ruler 0 = x0 < x1, · · · < xm−1 < xm = t is the number
of combinatorial types of real Golomb ruler in an ϵ-neighborhood of
x for sufficiently small ϵ.

Theorem 2.5. Let h ≥ 2 and m ≥ 1.

(1) For each t > 0, the evaluation (−1)m−1bm,h(−t) equals the total
number of rulers with length t and m + 1 markings, counted with
Bh-multiplicities.
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(2) The evaluation (−1)m−1bm,h(0) is the number of combinatorial types
of Bh-sets.

3. Inside-out polytopes and proofs of Theorems 2.3 and 2.5

Our results are proved via the theory of inside-out polytopes, developed
by Beck and Zaslavsky [3]. Their main ideas, which we now review, extend
Ehrhart theory to the situation of a polytope with a hyperplane arrangement
or a subspace arrangement removed.

An inside-out polytope in Rd is a pair (P,H) where P is a rational poly-
tope and H is a rational hyperplane arrangement. A region of (P,H) is
a connected component of P \

⋃
H∈HH and a closed region (respectively

open region) is simply the relative closure (respectively relative interior) of
a region. For x ∈ Rd, the multiplicity mP.H of x with respect to (P,H) is
defined to be the number of closed regions that contain x. In particular, if
x does not belong to P then mP,H(x) = 0 and if x is contained in an open
region of (P,H) then mP,H(x) = 1.

By analogy with standard Ehrhart theory (see for example [2]), the closed
Ehrhart function and the open Ehrhart function of the inside-out polytope
(P,H) are respectively defined to be

EP,H(t) :=
∑

x∈t−1Zd

mP,H(x), and

E◦
P,H(t) := #(t−1Zd ∩ [P\ ∪H∈H H])

Theorem 3.1 ([3, Theorem 4.1]). If (P,H) is an inside-out polytope in
Rd such that H does not contain the degenerate hyperplane Rd, then both
EP,H(t) and E◦

P ◦,H(t) are quasipolynomials in t of degree d, with leading
coefficients equal to the volume of P and periods dividing the least common
multiple of the denominators in the coordinates of the vertices of the closed
regions of (P,H). The value EP,H(0) is equal to the number of closed regions
of (P,H). Furthermore, the Ehrhart reciprocity formula

E◦
P ◦,H(t) = (−1)dEP,H(−t)

continues to hold in this case.

Note that the Ehrhart reciprocity law involves not the open Ehrhart func-
tion E◦

P,H itself, but the function E◦
P ◦,H for which we remove not only the

hyperplanes of H, but also the boundary of P . If the facet-defining hyper-
planes of P belong to H, then these two functions coincide.

More generally, if A is a rational affine subspace arrangement in Rd and
P is a rational d-polytope, then the closed Ehrhart function EP,A and open
Ehrhart function E◦

P,A can be defined just as above. However, A no longer
divides P into regions and so multiplicity must be defined differently. The
multiplicity of x ∈ P is defined to be

mP,A(x) =
∑

u∈L(A):x∈u

µ(0̂, u)(−1)codim(u)
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where L(A) is the intersection semilattice of flats of A. If x /∈ P then
we simply define its multiplicity to be zero. If A is in fact a hyperplane
arrangement then this algebraic definition of multiplicity coincides with the
geometric one given above [3, Lemma 3.4].

Theorem 3.2 ([3, Theorem 8.2]). Let P be a rational polytope of dimension
in Rd and A a rational subspace arrangement. Then, EP,A(t) and E◦

P ◦,A(t)

are quasipolynomials in t of degree dim(P ), with leading coefficients equal to
the volume of P , periods dividing the least common multiple of the denomi-
nators in the coordinates of the vertices of (P,H) (which are the vertices of
P and its regions), and the flats of dimension 0 in L(A). Furthermore, we
have the reciprocity law

E◦
P ◦,A(t) = (−1)dEP,A(−t).

Theorems 2.3 and 2.5 will thus follow by interpreting the various types
of generalized Golomb rulers as lattice points in inside-out polytopes. From
their definitions via linear inequations it is not surprising that this will be
possible, but we give explicit combinatorial descriptions of the hyperplanes
and subspaces in order to be able to calculate examples.

3.1. Bh-sets.

Proposition 3.3. Bh-sets with m+1 markings and length t are in bijection
with lattice points in the interior of t∆m−1 that are not contained in any
nondegenerate hyperplane of the form

(3.1)
ℓ∑

k=1

∑
j∈Uk

zj

 =
h′∑
ℓ+1

∑
j∈Uk

zj

 ,

where h′ ≤ h and U1, . . . , Uh′ are proper consecutive subsets of [m].

Proof. Consider one of the constraints on Bh-sets given in (2.2); that is,

xr1 + · · ·+ xrh ̸= xs1 + · · ·+ xsh

with 0 ≤ r1 ≤ · · · ≤ rh ≤ m and 0 ≤ s1 ≤ · · · ≤ sh ≤ m. Rewrite the
constraint as

∑h
j=1 xrj − xsj ̸= 0. In terms of the consecutive differences

zi = xi − xi−1, this becomes

∑
j:rj>sj

 rj∑
i=sj+1

zi

 ̸= ∑
j:rj<sj

 sj∑
i=rj+1

zi


which is an inequation of the desired form with ℓ = |{j : rj > sj}| and
h′ = |{j : rj ≤ sj}|. Conversely, each inequation in z given by avoiding a
hyperplane of the form (3.1) gives a valid inequation on x by reversing these
steps. □
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z1 = z2 2z1 = z2 z1 = 2z2
z1 = z3 2z1 = z3 z1 = 2z3
z2 = z3 2z2 = z3 z2 = 2z3

z1 = z2 + z3 2z1 = z2 + z3 z1 = 2z2 + z3
z1 = z2 + 2z3 z1 = 2z2 + 2z3 z1 + z2 = z3
2z1 + z2 = z3 z1 + 2z2 = z3 2z1 + 2z2 = z3
z1 + z2 = 2z3 z1 + z3 = z2

Example 3.4. The B3-sets with 4 markings and length t are in bijection
with lattice points of t∆◦

3 that avoid the 20 hyperplanes
as shown in Figure 1. There are 37 intersection points in the interior of the
simplex, 12 points of intersection in the boundary of the polytope and the
hyperplanes divide the polytope into 80 closed regions. From Theorem 2.3,
we conclude that the Ehrhart quasipolynomial b4,3(t) has period 2520, so it
is not practical to describe it completely. However, we calculate1 that if t is
a multiple of 2520, the number of B3-sets with 4 markings and length t is

b4,3(t) =
1

2
t2 − 55

6
t+ 80.

Remark: The correspondence given in the proof of Proposition 3.3 is not
a bijection: several collections of consecutive subsets may correspond to
the same constraint. For example, again take B3-sets with 4 markings and
consider the equation x2 + x3 + x3 = x0 + x1 + x4 that must be avoided.
Following the proof of Proposition 3.3, we rewrite this equation as (x2−x0)+
(x3 − x1) = x4 − x3. In terms of z, this becomes (z1 + z2) + (z2 + z3) = z4.
However, we can also write the original equation as (x2 − x1) + (x3 − x0) =
x4 − x3, which yields z2 + (z1 + z2 + z3) = z4.

Proof of Theorem 2.3 for Bh-sets and Theorem 2.5. LetHm,h be the hyper-
plane arrangement described in Proposition 3.3. By this proposition, we
have that bm,h(t) = E◦

∆◦
m,Hm,h

(t). It is immediate from Theorem 3.1 that

the function bm,h is a quasipolynomial. The same theorem yields that bm,h(0)
is the number of closed regions of the inside-out polytope (∆m,Hm,h), which
is the number of possible combinatorial types of a Bh-set. (For sufficiently
large t, there will exist a lattice point in each open region, so all of these
types are actually realized. This holds because ∆m is unimodularly equiv-
alent to a full-dimensional polytope in Rm−1 via projection on any m − 1
coordinates.) Finally, reciprocity yields that for t > 0,

bm,h(−t) = (−1)m−1E∆m,Hm,h
(t)

which is the number of rulers counted with their Hm,h-multiplicities. □

1https://github.com/Quillar/ExtensionsGolomb/tree/a97554c
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Figure 1. The inside-out-polytope for B3-sets with 4 mark-
ings.

3.2. B2[g]-sets.

By Definition 1.1, a ruler 0 = x0 < x1 < · · · < xm−1 < xm = t is a
B2[g]-set if it does not satisfy any chain of equations of the form

(3.2) xℓ0 + xr0 = xℓ1 + xr1 = · · · = xℓg−1 + xrg−1 = xℓg + xrg .

As we did for Bh-sets, we can obtain an inside-out polytope by expressing
these equations in terms of the successive differences z1, . . . , zm.

Proposition 3.6. B2[g]-sets with m+1 markings and length t are in bijec-
tion with lattice points in the interior of t∆m that are not contained in any
subspace of the form

(3.3)

r0∑
rg

zi =

ℓ1∑
ℓ0

zi +

r1∑
rg

zi = · · · =
ℓk∑
ℓ0

zi +

rk∑
rg

zi = · · · =
ℓg∑
ℓ0

zi

where the indices satisfy

(3.4) 0 ≤ ℓ0 < ℓ1 < · · · < ℓg ≤ rg < rg−1 < · · · < r0 ≤ m.

Proof. Given indices i < j ≤ k < ℓ, and any ruler x, we have xi + xj <
xi + xk < xj + xℓ ≤< xk + xℓ by the order of the markings, so it can never
be the case that xi+xk = xj +xℓ nor that xi+xj = xk +xℓ. So in order to
see whether x is a Bg-set, the only equation on these four indices that must
be considered is xi + xℓ = xj + xk.

Now consider a chain of equations as in (3.2). Without loss of generality
ℓi ≤ ri for each i and ℓ0 < ℓ1 < . . . ℓg. Then by the previous paragraph,
we may also assume that r0 > r1 > . . . rg. That is, the indices satisfy (3.4).
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Since xj =
∑j

i=1 zi (using the usual convention that the empty sum equals
zero to correctly obtain x0 = 0), (3.2) is equivalent to

ℓ0∑
i=1

zi +

r0∑
i=1

zi = · · · =
ℓk∑
i=1

zi +

rk∑
i=1

zi = · · · =
ℓg∑
i=1

zi +

rg∑
i=1

zi.

Now cancel the common terms
∑ℓ0

i=1 zi and
∑rg

i=1 zi to obtain (3.3).
By reversing this process, a chain of equations of the form (3.3) also yields

one of the form (3.2). □

Example 3.7. For B2[2]-sets with five markings (that is, g = 2 and m = 4),
the only chain of equations we must consider is

x0 + x4 = x1 + x3 = x2 + x2.

In terms of the successive differences, this becomes

z1 + z2 + z3 + z4 = 2z1 + z2 + z3 = 2z1 + 2z2,

or after cancelling common terms,

z3 + z4 = z1 + z3 = z1 + z2.

This forbidden subspace is a line which passes through the interior of the
tetrahedron ∆3.

Proof of Theorem 2.3 for B2[g]-sets: This follows immediately from The-
orem 3.2 and Proposition 3.6.

3.3. B−
2 [g]-sets. The defining inequations for B−

2 [g]-sets are similar to those
for B2[g]-sets, but with differences instead of sums. That is, we must avoid
chains of equations

(3.5) xr0 − xℓ0 = xr1 − xℓ1 = · · · = xrg−1 − xℓg−1 = xrg − xℓg .

Again we obtain an inside-out polytope by expressing these chains in
terms of the successive differences.

Proposition 3.8. B2[g]-sets with m + 1 markings and length t are in bi-
jection with lattice points in the interior of t∆m−1 that are not contained in
any subspace of the form

(3.6)
∑
i∈U0

zi =
∑
i∈U1

zi = · · · =
∑
i∈Ug

zi

where U0, . . . , Ug are consecutive subsets of [m], none of which is contained
in another.

Proof. As in the proof of Proposition 3.3, we must rewrite each constraint
given by (3.5) in terms of the vector z of successive differences. Now for any
ℓ < r we have xr − xℓ = zℓ+1 + zℓ+2 + · · ·+ zr, so we obtain a constraint of
the form (3.6) by taking Uj = {ℓj+1, ℓj+2, . . . , rj} for j = 0, 1, . . . , g. If Uj

is contained in Uk, then the condition is redundant because each succesive
difference is positive, so it can never be the case that

∑
i∈Uj

zi =
∑

i∈Uk
zi.



490 BOGART AND CUELLAR

By reversing this process, we can also transform any constraint of the form
(3.6) into one of the form (3.5). □

Remark: Unlike the original case of Golomb rulers (i.e., B−
2 [1]-sets), we can-

not restrict to conditions given by disjoint consecutive sets U0, . . . , Ug. For
example, let g = 2 and m = 5 and consider the chain of equations

x3 − x0 = x4 − x1 = x5 − x2.

In terms of the zi’s, this becomes

z1 + z2 + z3 = z2 + z3 + z4 = z3 + z4 + z5

so that the consecutive subsets are U0 = {1, 2, 3}, U1 = {2, 3, 4} and U2 =
{3, 4, 5} which are not disjoint. On the other hand, we could obtain an
equivalent chain of equations with disjoint sets by cancelling the common
term z3, but then one of these sets would be U1 \ {3} = {2, 4}, which is no
longer consecutive.

Proof of Theorem 2.3 for B−
2 [g]-sets: This follows immediately from The-

orem 3.2 and Proposition 3.8.

4. Combinatorial Types and Orientations of Mixed Graphs

Returning to the original case of Golomb rulers, the combinatorial types
are related to acyclic orientations of a certain mixed graph. We have already
seen that combinatorial types are in bijection with open regions of an inside-
out polytope (∆m−1,Gm), where Gm is the hyperplane arrangement given
by the hyperplanes (2.1) for each pair of consecutive subsets of [m], so we
will work directly with these regions.

Definition 4.1.

(1) The Golomb graph Γm is a mixed graph whose vertices are the proper
consecutive subsets of [m]. The graph is complete and an edge is
directed from U to V if U ⊆ V . All other edges are undirected.

(2) An orientation of Γm is called coherent if:
(a) it is consistent with the directed edges, and
(b) if U, V,W are disjoint consecutive sets and A = U ∪ W and

B = C ∪W are also consecutive, then A → B if and only if
U → V .

We first review the construction in [1] of an injective map ϕ from regions
of the Golomb inside-out polytope (∆m−1,Gm) to acyclic orientations of the
Golomb (mixed) graph Γm. To do this, let R be a region of the inside-out
polytope. Then R is the intersection of half-spaces given by inequalities of
the form ∑

j∈U
zj <

∑
j∈V

zj

where U and V range over all pairs of consecutive subsets of [m]. We may
assume that both sets are proper, since otherwise the inequality would hold
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over the entire positive orthant (in particular, over all of ∆m.) Furthermore,
we may restrict to disjoint sets because if A and B are consecutive subsets
that are not disjoint, then U := A \B, V := B \A, and W := A∩B are all
consecutive sets, and ∑

j∈A
zj −

∑
j∈B

zj =
∑
j∈U

zj −
∑
j∈V

zj .

For a pair of disjoint proper consecutive sets (dpcs) (U, V ), orient the
edge UV of Γm by U → V . If W is disjoint from both U and V and if
A = U ∪W and B = V ∪W are consecutive sets, then orient the edge AB
by A→ B. Thus the orientation is coherent. It is total because (again) any
pair of consecutive sets A,B can be decomposed in this way. Finally, it is
acyclic because if there were a cycle then we could take the multiset union
M of the sets along the whole cycle and conclude that

∑
j∈M zj <

∑
j∈M zj ,

which is impossible.

Proposition 4.2. The injection ϕ is not surjective when m = 5. In partic-
ular, there is no bijection between the orientations of Γ5 and the regions of
(∆4,G5).

Remark: It would not be difficult to extend the counterexample to any m ≥
5.

Proof. Consider the following linear order on proper consecutive subsets of
[5]:

3→ 5→ 1→ 4→ 2→ 34→ 23→ 12→ 45

→ 123→ 345→ 234→ 2345→ 1234.

Its transitive closure is an acyclic orientation O on the Golomb graph Γ5

consistent with the directed edges given by set containment. To verify that
O is coherent, note that the linear order always places smaller subsets before
larger ones, so it suffices to consider pairs (A,B) of sets of the same size. So
we check all such pairs, and indeed:

34→ 23 and 4→ 2 34→ 45 and 3→ 5

23→ 12 and 3→ 1 123→ 345 and 12→ 45

123→ 234 and 1→ 4 345→ 234 and 5→ 2

2345→ 1234 and 5→ 1.

However, suppose there exists a region R of the inside-out polytope such
that ϕ(R) = O. Let z = (z1, z2, z3, z4, z5) be a vector in the relative interior
of R. Then from the edges 34→ 23, 12→ 45, and 5→ 1, we obtain that

z3 + z4 < z2 + z3, z1 + z2 < z4 + z5, z5 < z1

and these three inequalities sum to

z1 + z2 + z3 + z4 + z5 < z1 + z2 + z3 + z4 + z5

which is a contradiction. □
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5. Reciprocity and the Bh-graph

In this section we generalize the injection described in Section 4 to the
case of Bh-sets.

For Golomb graphs, the vertices are consecutive subsets of [m]. Here
we would need to consider collections of such sets, but in light of the non-
uniqueness illustrated in Remark 3.5, it is better to consider unions with
repetition of such sets, which are multisets. We represent a multiset A =
{1a1 , 2a2 , . . . ,mam} by the vector a = (a1, a2, . . . , am) ∈ Nm. In this way,
multiset union corresponds to addition of vectors, and multiset containment
A ⊆ B corresponds to a ≤ b with respect to the standard partial order on
Nm. A single consecutive set U = {j, j+1, . . . k} corresponds to a consecutive
vector e[j,k] := ej + ej+1 + · · ·+ ek.

Next, we need to know which pairs of vectors correspond to inequations
defining Bh-sets. In particular, given a vector ya, we need to know the mini-
mum number of consective vectors whose sum is a. The following definition
and pair of lemmas will help us do this.

Definition 5.1. The climb of a vector a = (a1, . . . , am) is climb(a) =∑m
j=1 climbj(a), where climbj(a) =

{
aj − aj−1 if aj−1 < aj ,

0 otherwise,

with a0 taken to be 0.

Lemma 5.2. Let a ∈ Nm. The minimum number r of consecutive vectors
whose sum is a equals the climb of a.

Proof. Induct on r. If r = 1 then a is a consecutive vector and the result is
clear. Otherwise, we can write a = e[j,k]+b for some nonzero vector b ∈ Nm.
Then climbj(a) equals either climbj(b) (if bj−1 > bj) or climbj(b) + 1 (if
bj−1 ≤ bj). Similarly, climbk+1(a) equals either climbk+1(b) − 1 (if bk <
bk+1) or climbk(b) (if bk ≥ bk+1). For all other values of ℓ, we always have
climbℓ(a) = climbℓ(b). In particular, climb(a) ≤ climb(b)+ 1. It follows by
induction that the number of consecutive vectors in any decomposition of a
is at least the climb of a.

For the other direction, we first observe that if the support of a is dis-
connected (that is, if there exist j1 < j2 < j3 such that aj1 , aj3 > 0 and
aj2 = 0), then the climb of a is the sum of the climbs of the connected
components. Also, any decomposition of a into consecutive vectors respects
the connected components of a. So it is enough to consider vectors with
connected support.

Let a be such a vector, so its support is an interval [j, k], and again let
r := climb(a). Now we can subtract the consecutive vector e[j,k], and the
remaining vector (0, . . . , aj −1, aj+1−1, . . . , ak−1, . . . , 0) has climb exactly
r − 1 because the climb at the first step is one less than that of a, and the
climb at all other steps equals that of a. By induction, we conclude that
there exists a decomposition of ya into r consecutive vectors. □
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The climb is not monotonic in the sense that climb(a+c) may be strictly
less then climb(a). For example, the climb of (1, 0, 1) is two and the climb of
(1, 1, 1) is only one. However, we have the following monotonicity property
for the climbs of pairs of vectors.

Lemma 5.3. Let a,b, c ∈ Nm be vectors such that a and b have disjoint
supports. Then

climb(a+ c) + climb(b+ c) ≥ climb(a) + climb(b).

Proof. We can write c as a sum of consecutive vectors, so by induction it
is sufficient to prove the statement in the case that c is itself a consecutive
vector. Furthermore, if climb(a+c) ≥ climb(a) and climb(b+c) ≥ climb(b)
then the conclusion immediately follows.

So without loss of generality, let c = e[j,k] and assume that climb(a+c) <
climb(a). From the proof of Lemma 5.2, this can happen only if aj−1 > aj
and ak < ak+1, and in this case climb(a+e[j,k]) = climb(a)−1. In particular,
this means that both j − 1 and k + 1 belong to the support of a. Since a
and b have disjoint supports, neither j − 1 nor k + 1 belong to the support
of b. So bj−1 ≤ bj and bk ≥ bk+1, and again by the proof of Lemma 5.2,
climb(b+ e[j,k]) = climb(b) + 1. We conclude that in this case,

climb(a+ e[j,k]) + climb(b+ e[j,k]) = climb(a) + climb(b).

□

With these properties in hand, we now define a graph that represents the
constraints on Bh-sets and a suitable notion of valid orientation.

Definition 5.4. Let Mh be the set of vectors in Nm of climb at most h.

(1) Let Γm,h be the undirected graph on the vertex set Mh where uv is an
edge if, when we write u = a+c, v = b+c with supp(a)∩supp(b) =
∅, we have climb(a) + climb(b) ≤ h.

(2) An orientation of the edges of Γm,h is called coherent if:
• Every edge 0u is oriented from 0 to u, and
• for every a, b with climb(a) + climb(b) ≤ h and every c such
that u = a+ c and v = b+ c belong to Mh, the orientation of
uv agrees with the orientation of ab.

Note that Γm,h is a finite graph because no coordinate of any vector in
Mh can be greater than h. Before stating our theorem about these graphs,
we give two examples to justify the complexity of the definition.

Example 5.5. Consider B3-sets with four markings as in Example 3.4.
(That is, m = 4 − 1 = 3 and h = 3.) Two of the hyperplanes in the
arrangement H3,3 are given by 2z1 = z2 and z1 = 2z2 + z3. That is, the B3-
graph must include vertices given by each of the vectors 2e1, e2, e1, 2e2 + e3
with undirected edges between 2e1 and e2 and between 2e1 and 2e2 + e3.
However, the hyperplane 2z1 = 2z2 + z3 does not belong to H3,3 because it
does not correspond to an equation built from only three consecutive sets.
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(1) (3)

(2)

(1)(1) (1)(3)

(a) A partial B3-graph

(1) (3)

(2)

(1)(1) (1)(3)

(b) An invalid acyclic orientation

Figure 2

Therefore the B3-graph must not include an edge between 2e1 and 2e2 + e3.
In particular, Bh-graphs, unlike Golomb graphs, cannot be complete in the
sense of having either a directed or an undirected edge between each pair of
vertices.

Example 5.6. Again consider B3-sets with four markings. The hyperplanes
listed in Example 3.4 require our graph to contain vertices labelled by the
vectors e1, 2e1, e2, e3, and e1 + e3 with certain undirected edges between
them. We also will need directed edges from e1 to e1e3, from e1 to 2e1, and
from e3 to e1 + e3 to represent the fact that z1 and z3 are always positive.
The resulting mixed subgraph on these five vertices is shown in Figure 2(A).

Now the climbs of the vectors 2e1 and e1e3 are both equal to two, so the
sum of the two climbs is greater than h = 3. But if we do not add an edge
between these two vertices, then the graph can be acyclically oriented as in
Figure 2(B). In this orientation, the edge (1) → (3) would be associated
with the inequality z1 < z3 and the edges (1)(3)→ (2) and (2)→ (1)(1), by
transitivity, would be associated with the inequality z3 < z1. For this reason,
the condition for having an edge between u and v in Definition 5.4 involves
the climbs of a and b rather than the climbs of u and v.

Theorem 5.7. Let ϕ be the function from the inside-out polytope Q :=
∆m−1 \

⋃
H∈Hm,h

H to the set of orientations of Γm,h as follows. Given an

integer vector z = (z1, . . . , zm) ∈ Q and an edge uv of Γm,h, choose the
orientation

u→ v if
m∑
i=1

uizi <
m∑
i=1

vizi.

Then ϕ induces an injection from the open regions of the inside-out polytope
Q to the coherent acyclic orientations of the graph Γm,h.

Proof. Let z ∈ Q. We first note that since u ∈ Nn, every edge of the form
0u is oriented 0 → u. For each edge uv of the graph, write u = a + c,
v = b + c where supp(a) ∩ supp(b) = ∅. Since uv is an edge, we have
climb(u) + climb(v) ≤ h. Then by Lemma 5.3, climb(a) + climb(b) ≤ h
as well. Since z cannot belong to the hyperplane

∑m
i=1 aizi =

∑m
i=1 bizi

in Γm,h, the edge ab is assigned an orientation by ϕ(z), say a → b. By
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adding
∑m

i=1 civi to both sides of the inequality
∑m

i=1 aizi <
∑m

i=1 bizi we
see that the edge uv is also oriented as u→ v. That is, for any z ∈ Q, the
orientation ϕ(z) is total and coherent.

Furthemore, if the orientation ϕ(z) contained a cycle

u(1) → u(2) → · · · → u(r) → u(1)

then by the definition of ϕ we would have

m∑
i=1

u
(1)
i zi <

m∑
i=1

u
(2)
i zi < · · ·

m∑
i=1

u
(r)
i zi <

m∑
i=1

u
(1)
i zi

which is a contradiction. Thus ϕ(z) is acyclic.
It remains to show that ϕ is invariant within each region and that it takes

different values on different regions. That is:

Claim: Given z,w ∈ Q, we have ϕ(w) = ϕ(z) if and only if z and w lie in
the same region of the inside-out polytope.

To prove this claim, first suppose that ϕ(z) = ϕ(w). Then for all edges
uv in Γm,h, we have

m∑
i=1

uizi <
m∑
i=1

vizi ⇔
m∑
i=1

uiwi <
m∑
i=1

viwi.

Since edges of Γm,h correspond to hyperplanes in Gm,h, z and w lie on the
same side of each of the hyperplanes in the arrangement.

On the other hand, suppose ϕ(z) ̸= ϕ(w). Then there exists an edge
uv such that when we again write u = a + c, v = b + c where supp(a) ∩
supp(b) = ∅, the orientation ϕ(z) has a→ b and ϕ(w) has a← b. That is,

m∑
i=1

uizi <
m∑
i=1

vizi,
m∑
i=1

uiwi >
m∑
i=1

viwi.

This implies that w and z lie on opposite sides of the hyperplane in Gm

determined by the pair ab. □
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7. P. Erdős and P. Turán, On a problem of sidon in additive number theory, and on some
related problems, J. London Math. Soc 16 (1941), no. 4, 212–215.

8. B. Green, The number of squares and B h[g] sets, Acta Arithmetica 100
(2001), 365–390, available at http://people.maths.ox.ac.uk/greenbj/papers/

number-of-squares-and-Bh[g].pdf.
9. G. Johnston, M. Tait, and C. Timmons, Upper and lower bounds on the size of B k[g]

sets, Australasian Journal of Combinatorics 83 (2022), no. 1, 129–140.
10. K. O’Bryant, A complete annotated bibliography of work related to sidon sequences,

The Electronic Journal of Combinatorics 1000 (2004), DS11–Jul, https://www.

combinatorics.org/ojs/index.php/eljc/article/view/DS11.
11. S. Sidon, Ein Satz über trigonometrische Polynome und seine Anwendung in der

Theorie der Fourier-Reihen, Mathematische Annalen 106 (1932), no. 1, 536–539,
https://link.springer.com/article/10.1007/BF01455900.

12. J. Singer, A theorem in finite projective geometry and some applications
to number theory, Transactions of the American Mathematical Society 43
(1938), no. 3, 377–385, https://www.ams.org/journals/tran/1938-043-03/

S0002-9947-1938-1501951-4/S0002-9947-1938-1501951-4.pdf.

Departamento de Matemáticas
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