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CONGRUENCE PROPERTIES MODULO POWERS OF 2

FOR PARTITION PAIRS INTO DISTINCT PARTS

DAZHAO TANG

Abstract. Let Q(n) denote the number of partitions of n into distinct
parts. In 1997, Gordon and Ono proved that almost all values of Q(n)
are divisible by 2m with any fixed positive integer m. Let Q2(n) denote
the number of partition pairs of n into distinct parts. A result derived
by Ray and Barman reveals that almost all values of Q2(n) are also
divisible by 2m with any fixed positive integer m. Quite recently, the
author derived several internal congruences and congruences modulo
powers of 2 satisfied by Q(n). In this paper, we prove some internal
congruences and congruences modulo powers of 2 for Q2(n). Moreover,
we prove an infinite family of congruence relations modulo 4 and dozens
of congruence relations modulo powers of 2 enjoyed by Q2(n). Finally,
we pose two conjectures on congruence properties modulo powers of 2
for Q2(n).

1. Introduction

The purpose of this paper is to establish some internal congruences and
congruences modulo powers of 2 for Q2(n) by utilizing some q-series iden-
tities and iterative computations, where Q2(n) denotes the number of par-
tition pairs of n into distinct parts. Moreover, we also derive dozens of
congruence relations modulo powers of 2 enjoyed by Q2(n) by using the
theory of modular forms. These results reveal that there is an inseparable
relation between arithmetic density property on powers of 2 and congruence
properties modulo powers of 2 for Q2(n).

A partition π of a positive integer n is a finite weakly decreasing sequence
of positive integers π1 ≥ π2 ≥ · · · ≥ πr such that

∑r
i=1 πi = n. The numbers
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πi are called the parts of the partition π. Let p(n) denote the number of
partitions of n with the convention that p(0) = 1. The generating function
of p(n) is given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
,

where here and throughout the paper, we always assume that q is a complex
number such that |q| < 1 and adopt the following standard notation:

(a; q)∞ :=

∞∏
j=0

(1− aqj).

In 1919, Ramanujan [19] discovered, and later confirmed, the following three
remarkable congruences

p(5n+ 4) ≡ 0 (mod 5) ,(1.1)

p(7n+ 5) ≡ 0 (mod 7) ,(1.2)

p(11n+ 6) ≡ 0 (mod 11) .(1.3)

In the theory of partitions, the most famous partition theorem is Euler’s
partition theorem, which states that there are as many partitions of n into
distinct parts as into odd parts. This partition theorem can be written via
the generating function, namely,

∞∑
n=0

Q(n)qn = (−q; q)∞ =
1

(q; q2)∞
=

(q2; q2)∞
(q; q)∞

,

where Q(n) denotes the number of partitions of n into distinct parts. Ra-
manujan’s congruences (1.1)–(1.3) have been a continuing source of inspira-
tion and have motivated a tremendous amount of research for over a century.
Therefore, congruence properties ofQ(n) were also considered by some schol-
ars; see, for example, [4,5,13,14,21]. In 1997, Gordon and Ono [11] derived
the following arithmetic density property on powers of 2 for Q(n):

Theorem 1.1 (Gordon–Ono). Let m be a positive integer. Then Q(n) is
almost always divisible by 2m, namely,

lim
X→∞

#{0 ≤ n < X : Q(n) ≡ 0 (mod 2m)}
X

= 1.(1.4)

In 2018, Andrews [1] investigated the partition function EO(n) which
denotes the number of partitions of n where every even part is less than
each odd part. Uncu [25] further considered a certain subset of the partitions
enumerated by EO(n). We denote by EOu(n) the partition function defined
by Uncu, and its generating function is given by

∞∑
n=0

EOu(n)q
n =

1

(q2; q4)2∞
=

(q4; q4)2∞
(q2; q2)2∞

.(1.5)
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Let Q2(n) denote the number of partition pairs of n into distinct parts, and
the generating function of Q2(n) is given by

∞∑
n=0

Q2(n)q
n = (−q; q)2∞ =

1

(q; q2)2∞
=

(q2; q2)2∞
(q; q)2∞

.(1.6)

In 2019, Andrews and Newman [3] defined the minimal excludant of an in-
teger partition π as the least positive integer missing from the partition,
denoted by mex(π). For instance, there are five partitions of 4: 4 with
mex(π) = 1; 3 + 1 with mex(π) = 2; 2 + 2 with mex(π) = 1; 2 + 1 + 1 with
mex(π) = 3; 1+1+1+1 with mex(π) = 2. Andrews and Newman [3, Theo-
rem 1.1] derived an elegant identity for the generating function of σmex(n),
which denotes the sum of minimal excludants over all the partitions of n.
More precisely, they proved that

∞∑
n=0

σmex(n)qn = (−q; q)2∞ =

∞∑
n=0

Q2(n)q
n.(1.7)

It follows immediately from (1.5)–(1.7) that EOu(2n) = Q2(n) = σmex(n)
holds for any n ≥ 0. In 2020, Ray and Barman [20] proved the following
arithmetic density property on powers of 2 for Q2(n):

Theorem 1.2 (Ray–Barman). Let m be a positive integer. Then Q2(n) is
almost always divisible by 2m, namely,

lim
X→∞

#{0 ≤ n < X : Q2(n) ≡ 0 (mod 2m)}
X

= 1.(1.8)

Although (1.4) is a powerful result for Q(n), the theory of modular forms
used to derive the arithmetic density property is not constructive and it
does not give an explicit congruence satisfied by Q(n). Therefore, it is still
desirable to derive explicit congruence modulo powers of 2 for Q(n). In a
recent paper, Merca [15] established some congruences modulo 4 and 8 for
Q(n) by utilizing Smoot’s Mathematica implementation of Radu’s algorithm
(see [22]) for proving partition congruences. Motivated by this work, the
author [24] further derived several internal congruences and congruences
modulo powers of 2 enjoyed by Q(n). For instance, he proved that for any
n ≥ 0 and 1 ≤ i ≤ 4,

Q

(
5256n+

5256 − 1

24

)
≡ 257Q(n) (mod 512)(1.9)

and

Q

(
5256n+

(24i+ 5)× 5255 − 1

24

)
≡ 0 (mod 512) .(1.10)

The identities (1.4) and (1.8) reveal that the two partition functions Q(n)
and Q2(n) have the same arithmetic density property on powers of 2. There-
fore, for (1.9) and (1.10), a natural question is whether there exist some
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similar internal congruences and congruences modulo powers of 2 for Q2(n).
The following theorem says that the answer is positive.

Theorem 1.3. For any n ≥ 0,

Q2(25n+ 2) ≡ 3Q2(n) (mod 16) ,(1.11)

and for any n ≥ 0 and 2 ≤ α ≤ 8,

Q2

(
52

α
n+

52
α − 1

12

)
≡
(
3× 2α+1 + 1

)
Q2(n)

(
mod 2α+3

)
.(1.12)

Moreover, for any n ≥ 0, 1 ≤ α ≤ 8 and 1 ≤ i ≤ 4,

Q2

(
52

α
n+

(12i+ 5)× 52
α−1 − 1

12

)
≡ 0

(
mod 2α+3

)
.(1.13)

Corollary 1.4. For any n ≥ 0, 1 ≤ α ≤ 8, 1 ≤ i ≤ 4 and β ≥ 1,

Q2

(
52

αβn+
(12i+ 5)× 52

αβ−1 − 1

12

)
≡ 0

(
mod 2α+3

)
(1.14)

The following theorem gives an infinite family of congruence relations
modulo 4 enjoyed by Q2(n).

Theorem 1.5. Let p ≥ 5 be a prime number such that p ≡ 3 (mod 4).
Then

∞∑
n=0

Q2

(
pn+

p2 − 1

12

)
qn ≡

∞∑
n=0

Q2(n)q
pn (mod 4) .(1.15)

In particular, for any n ≥ 0 and 1 ≤ i ≤ p− 1,

Q2

(
p2n+

p2 − 1

12

)
≡ Q2(n) (mod 4) .(1.16)

Moreover, for 1 ≤ i ≤ p− 1,

Q2

(
p2n+

(12i+ p)× p− 1

12

)
≡ 0 (mod 4) .(1.17)

Although (1.15) provides an infinite family of congruence relations modulo
4 satisfied by Q2(n), the modulus in (1.15) may not be the best possible for a
given prime p ≥ 5 and p ≡ 3 (mod 4). Utilizing the theory of modular forms,
we prove the following congruence relations modulo powers of 2 enjoyed by
Q2(n).

Theorem 1.6. Let

S :=
{
(5, 3, 4), (7, 9, 6), (11, 93, 10), (13, 1, 1), (17, 15, 5),

(19, 101, 7), (23, 89, 11), (29, 11, 4), (31, 33, 6), (37, 1, 1),

(41, 7, 5), (43, 125, 7), (47, 305, 11), (53, 3, 4), (59, 1805, 11),

(61, 1, 1), (67, 149, 8), (71, 5769, 13), (73, 1, 1), (79, 17, 6),

(83, 37, 10), (89, 23, 6), (97, 1, 1), (101, 3, 4), (103, 41, 6)
}
.
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Then for any (p, cp,m) ∈ S,

∞∑
n=0

Q2

(
pn+

p2 − 1

12

)
qn ≡ cp

∞∑
n=0

Q2(n)q
pn (mod 2m) .(1.18)

In particular, for any (p, cp, k) ∈ S and any n ≥ 0,

Q2

(
p2n+

p2 − 1

12

)
≡ cpQ2(n) (mod 2m) .(1.19)

Moreover, for 1 ≤ i ≤ 4,

Q2

(
p2n+

(12i+ p)× p− 1

12

)
≡ 0 (mod 2m) .(1.20)

A natural question worth studying is whether there exists a formula for
cp in (1.18).

The rest of this paper is organized as follows. In Section 2, we establish
some important initial and general relations which will be applied to prove
(1.11)–(1.14). The proofs of Theorem 1.3 and Corollary 1.4 are presented in
Section 3. In Section 4, we give the proofs of Theorems 1.5 and 1.6. Finally,
we pose two related conjectures and some follow-up questions to motivate
further investigation.

2. Some initial and general relations

In this section, we collect some necessary identities which will be applied
to prove the main results.

For the sake of convenience, we denote

E(q) := (q; q)∞.

We first introduce the following three auxiliary functions given by

γ =
E(q2)2E(q5)2

E(q)4
, δ =

E(q2)4E(q5)4

E(q)6E(q10)2
, ζ = q

E(q2)E(q10)3

E(q)3E(q5)
.(2.1)

Define the U -operator by

U

( ∞∑
n=n0

a(n)qn

)
=

∞∑
n=⌈n0/5⌉

a(5n)qn.

Next, we sketch the rough steps in the proofs of (1.12) and (1.13). Using
some q-series identities and recurrences involving the Rogers–Ramanujan
continued fraction (see (2.17)–(2.26)), we establish some q-series identities
involving γ, δ and ζ (see (2.4)–(2.13)). Based on these identities, we find
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that for any α ≥ 1,

∞∑
n=0

Q2

(
52α−1n+

52α−1 − 1

12

)
qn =

(52α−1)/12∑
i=1

g2α−1,i γζ
i−1,(2.2)

∞∑
n=0

Q2

(
52αn+

52α − 1

12

)
qn =

(52α+1−5)/12∑
i=1

g2α,i δζ
i−1,(2.3)

where {gα,i}α≥1,i≥1 are some positive integers. Utilizing another identity
(see (3.3)) and analyzing the 2-adic orders of the sequences {gα,i}α≥1,i≥1,
we obtain the desired internal congruences and congruences involving Q2(n).
However, we also need to utilize two recurrences (i.e., replacing ζi by γζi

and q−2δζi in (2.31)). From this perspective, the computations in proofs
of (1.12) and (1.13) are lengthier and more complicated than those of (1.9)
and (1.10) in [24].

2.1. Initial relations. The following lemma plays a vital role in the proofs
of (1.11)–(1.14).

Lemma 2.1. Let γ, δ and ζ be defined by (2.1). Then

(i)

U(γ) = δ
(
1 + 16× 10ζ + 28× 102ζ2 + 16× 103ζ3 + 32× 103ζ4

)
,(2.4)

U(γζ) = δ
(
385ζ + 401× 102ζ2 + 13128× 102ζ3(2.5)

+ 20912× 103ζ4 + 18992× 104ζ5 + 10432× 105ζ6

+ 3456× 106ζ7 + 64× 108ζ8 + 512× 107ζ9
)
,

U(γζ2) = δ
(
29× 10ζ + 119015ζ2 + 112356× 102ζ3(2.6)

+ 476348× 103ζ4 + 1153776× 104ζ5

+ 1794344× 105ζ6 + 1908992× 106ζ7

+ 14377472× 106ζ8 + 7778304× 107ζ9

+ 3016448× 108ζ10 + 821248× 109ζ11

+ 149504× 1010ζ12 + 16384× 1011ζ13 + 8192× 1011ζ14
)
,

U(γζ3) = δ
(
99ζ + 157795ζ2 + 36522125ζ3(2.7)

+ 33085695× 102ζ4 + 16194315× 104ζ5

+ 49956038× 105ζ6 + 1059335888× 105ζ7

+ 1628976896× 106ζ8 + 1879743552× 107ζ9
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+ 1663609088× 108ζ10 + 1143762304× 109ζ11

+ 614230016× 1010ζ12 + 2572978176× 1010ζ13

+ 833304576× 1011ζ14 + 204857344× 1012ζ15

+ 37003264× 1013ζ16 + 4636672× 1014ζ17

+ 360448× 1015ζ18 + 131072× 1015ζ19
)
,

U(γζ4) = δ
(
16ζ + 11809× 10ζ2 + 638351× 102ζ3 + 11315760375ζ4(2.8)

+ 1002222145× 103ζ5 + 537784392× 105ζ6

+ 19463929732× 105ζ7 + 50789296612× 106ζ8

+ 99869648352× 107ζ9 + 152569328944× 108ζ10

+ 185007570368× 109ζ11 + 180767148928× 1010ζ12

+ 1437629353984× 1010ζ13 + 936303455232× 1011ζ14

+ 500636522496× 1012ζ15 + 219558209536× 1013ζ16

+ 78607884288× 1014ζ17 + 22768123904× 1015ζ18

+ 52564656128× 1015ζ19 + 945225728× 1017ζ20

+ 127664128× 1018ζ21 + 12189696× 1019ζ22

+ 7340032× 1019ζ23 + 2097152× 1019ζ24
)
.

(ii)

U(q−2δ) = γ
(
23 + 276× 10ζ + 708× 102ζ2 + 768× 103ζ3(2.9)

+ 4192× 103ζ4 + 1152× 104ζ5 + 128× 105ζ6
)
,

U(q−2δζ) = γ
(
9 + 7525ζ + 7386× 102ζ2 + 279588× 102ζ3(2.10)

+ 562776× 103ζ4 + 691552× 104ζ5 + 554496× 105ζ6

+ 298176× 106ζ7 + 107264× 107ζ8 + 248832× 107ζ9

+ 33792× 108ζ10 + 2048× 109ζ11
)
,

U(q−2δζ2) = γ
(
1 + 789× 10ζ + 2306665ζ2(2.11)

+ 2127634× 102ζ3 + 9747472× 103ζ4

+ 26876968× 104ζ5 + 49352536× 105ζ6

+ 64017568× 106ζ7 + 607788352× 106ζ8

+ 430976512× 107ζ9 + 230242816× 108ζ10

+ 92517376× 109ζ11 + 27597824× 1010ζ12

+ 59392× 1013ζ13 + 8732672× 1011ζ14

+ 786432× 1012ζ15 + 32768× 1013ζ16
)
,
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U(q−2δζ3) = γ
(
4289ζ + 355983× 10ζ2 + 710828225ζ3

(2.12)

+ 636122475× 102ζ4 + 326815927× 104ζ5

+ 1096212234× 105ζ6 + 25909641648× 105ζ7

+ 4531493912× 107ζ8 + 6059231232× 108ζ9

+ 63324664896× 108ζ10 + 52483174784× 109ζ11

+ 34796112384× 1010ζ12 + 185224641536× 1010ζ13

+ 79074091008× 1011ζ14 + 2690289664× 1013ζ15

+ 7203004416× 1013ζ16 + 1485668352× 1014ζ17

+ 227966976× 1015ζ18 + 245235712× 1015ζ19

+ 16515072× 1016ζ20 + 524288× 1017ζ21
)
,

U(q−2δζ4) = γ
(
1338ζ + 3284195ζ2 + 13575158× 102ζ3

(2.13)

+ 221326582375ζ4 + 19455727335× 103ζ5

+ 107922559155× 104ζ6 + 414312241256× 105ζ7

+ 1168106573468× 106ζ8 + 2518614201968× 107ζ9

+ 4273799987216× 108ζ10 + 5826933222912× 109ζ11

+ 6480065706112× 1010ζ12 + 59417717491712× 1010ζ13

+ 45253146312704× 1011ζ14 + 28755008360448× 1012ζ15

+ 15271931029504× 1013ζ16 + 6773946425344× 1014ζ17

+ 2500362952704× 1015ζ18 + 7628372312064× 1015ζ19

+ 1903003828224× 1016ζ20 + 381921263616× 1017ζ21

+ 6018564096× 1019ζ22 + 7174356992× 1019ζ23

+ 6083837952× 1019ζ24 + 327155712× 1020ζ25

+ 8388608× 1021ζ26
)
.

Proof. By the definition of the U -operator, one easily obtains that

U

(( ∞∑
m=0

a(m)q5m

)( ∞∑
n=0

b(n)qn

))
=

( ∞∑
m=0

a(m)qm

)
· U

( ∞∑
n=0

b(n)qn

)
.

(2.14)

The identities (2.4)–(2.8) follow from (5.6)–(5.10) in [5] and (2.14) immedi-
ately.

For (2.9)–(2.13), we only present the proof of (2.9) here, the remaining
cases can be demonstrated similarly but with lengthier calculations, and
thus, we omit the details. For this purpose, we require the following two
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identities (see [12, Eqs. (8.1.1) and (8.4.4)]):

E(q) = E(q25)
(
R(q5)−1 − q − q2R(q5)

)
,(2.15)

1

E(q)
=

E(q25)5

E(q5)6
(
R(q5)−4 + qR(q5)−3 + 2q2R(q5)−2 + 3q3R(q5)−1(2.16)

+ 5q4 − 3q5R(q5) + 2q6R(q5)2 − q7R(q5)3 + q8R(q5)4
)
,

where

R(q) =
(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

.

Moreover, we also need the following two identities, namely,

K + 1 = q−1E(q2)4E(q5)2

E(q)2E(q10)4
,(2.17)

K − 4 = q−1 E(q)3E(q5)

E(q2)E(q10)3
,(2.18)

where

K = q−1E(q2)E(q5)5

E(q)E(q10)5
.(2.19)

Actually, (2.17) and (2.18) are equivalent to (9.10) and (9.11) in [5], respec-
tively.

Further, for any m ∈ Z≥0 and n ∈ Z, we define

P (m,n) =
1

qmR(q)m+2nR(q2)2m−n
+ (−1)m+nqnR(q)m+2nR(q2)2m−n.

(2.20)

Chern and the author [6, Theorem 1.1] proved that

P (m,n+ 1) = 4K−1P (m,n) + P (m,n− 1),(2.21)

P (m+ 2, n) = KP (m+ 1, n) + P (m,n),(2.22)

where

P (0, 0) = 2,(2.23)

P (0, 1) = 4K−1,(2.24)

P (1, 0) = K,(2.25)

P (1,−1) = 4K−1 − 2 +K.(2.26)

Now we proceed with the proof of (2.9).
Replacing q by q2 in (2.15) gives

E(q2) = E(q50)
(
R(q10)−1 − q2 − q4R(q10)

)
.(2.27)

According to (2.14), (2.16) and (2.27), we find that

U(δ) = U

(
E(q2)4E(q5)4

E(q)6E(q10)2

)
=

E(q)4

E(q2)2
U(Π),(2.28)
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where

Π =

(
E(q50)4

(
R(q10)−1 − q2 − q4R(q10)

)4
×
(
E(q25)5

E(q5)6

)6(
R(q5)−4 + qR(q5)−3 + 2q2R(q5)−2 + 3q3R(q5)−1

+ 5q4 − 3q5R(q5) + 2q6R(q5)2 − q7R(q5)3 + q8R(q5)4
)6)

.

Now, we extract all the terms of the form q5n in the right-hand side of (2.28),

and replace q by q1/5, then express them in terms of P (·, ·) by (2.20), we
further deduce that

U(δ) = q6
E(q5)30E(q10)4

E(q)32E(q2)2
(
−4P (6, 9) + 27P (6, 8) + 48P (5, 9)(2.29)

+ 196P (5, 8)− 3432P (5, 7) + 4806P (5, 6) + 2P (4, 10)

− 216P (4, 9)− 1575P (4, 8) + 17104P (4, 7) + 19878P (4, 6)

− 131136P (4, 5) + 78758P (4, 4) + 6P (3, 10) + 392P (3, 9)

+ 1716P (3, 8)− 38448P (3, 7)− 93200P (3, 6)

+ 421152P (3, 5) + 215424P (3, 4)− 642208P (3, 3)

+ 171984P (3, 2) + 2138P (2, 8) + 39756P (2, 7)

+ 65568P (2, 6)− 630064P (2, 5)− 696525P (2, 4)

+ 1412736P (2, 3) + 334062P (2, 2)− 508044P (2, 1)

+ 98667P (2, 0) + 52644P (1, 6) + 430848P (1, 5)

+ 321104P (1, 4)− 1375872P (1, 3)− 635100P (1, 2)

+ 631888P (1, 1) + 55836P (1, 0) + 111672P (1,−1)

− 78986P (1,−2)− 78986P (0, 4) + 668124P (0, 3)

+ 254022P (0, 2)− 789336P (0, 1)− 532125
)
.

Substituting (2.21)–(2.26) into (2.29) and utilizing (2.17)–(2.19), after sim-
plification, we obtain that

U(δ) = q6
E(q5)30E(q10)4

E(q)32E(q2)2
(K − 4)4(K + 1)6

K10

×
(
23K6 + 2208K5 + 21120K4 + 47360K3

+ 94720K2 + 114688K + 32768
)
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= q6
E(q5)30E(q10)4

E(q)32E(q2)2
(K − 4)10(K + 1)6

K10

×
(
23 + 2760(K − 4)−1 + 70800(K − 4)−2

+ 768000(K − 4)−3 + 4192000(K − 4)−4

+ 11520000(K − 4)−5 + 12800000(K − 4)−6
)

= γ
(
23 + 2760ζ + 70800ζ2 + 768000ζ3

+ 4192000ζ4 + 11520000ζ5 + 12800000ζ6
)
,

which is nothing but (2.9).
We therefore complete the proof of Lemma 2.1. □

2.2. General relations. Chern and Hirschhorn [5, Theorem 4.1] estab-
lished the following modular equation involving ζ and Z = ζ(q5):

ζ5 −
(
205Z + 4300Z2 + 34000Z3 + 120000Z4 + 160000Z5

)
ζ4(2.30)

−
(
215Z + 4475Z2 + 35000Z3 + 122000Z4 + 160000Z5)ζ3

−
(
85Z + 1750Z2 + 13525Z3 + 46500Z4 + 60000Z5

)
ζ2

−
(
15Z + 305Z2 + 2325Z3 + 7875Z4 + 10000Z5

)
ζ

−
(
Z + 20Z2 + 150Z3 + 500Z4 + 625Z5

)
= 0.

Based on (2.30), Chern and Hirschhorn [5, Eq. (5.1)] proved that for any
i ≥ 5, U(ζi) satisfies the following recurrence:

U(ζi) =
(
205ζ + 4300ζ2 + 34000ζ3 + 120000ζ4 + 160000ζ5

)
U(ζi−1)

(2.31)

+
(
215ζ + 4475ζ2 + 35000ζ3 + 122000ζ4 + 160000ζ5)U(ζi−2)

+
(
85ζ + 1750ζ2 + 13525ζ3 + 46500ζ4 + 60000ζ5

)
U(ζi−3)

+
(
15ζ + 305ζ2 + 2325ζ3 + 7875ζ4 + 10000ζ5

)
U(ζi−4)

+
(
ζ + 20ζ2 + 150ζ3 + 500ζ4 + 625ζ5

)
U(ζi−5).

Interestingly, multiplying (2.30) by γ and q−2δ and applying the U -operator,
we readily find that for any i ≥ 5, U(γζi) and U(q−2δζi) also satisfy the
recurrence (2.31).

3. Proofs of Theorem 1.3 and Corollary 1.4

This section is devoted to the proofs of Theorem 1.3 and Corollary 1.4.
In this section, all the following congruences are modulo 4096 unless oth-

erwise specified.
We first prove Theorem 1.3.
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Proof of Theorem 1.3. Applying the operator U to the generating function
of Q2(n) and utilizing (2.15), (2.16) and (2.20), we find that

∞∑
n=0

Q2(5n+ 2)qn

(3.1)

= U

( ∞∑
n=0

Q2(n)q
n−2

)

= U

(
q−2E(q2)2

E(q)2

)
= U

(
q−2E(q50)2

(
R(q10)−1 − q2 − q4R(q10)

)2
×
(
E(q25)5

E(q5)6

)2(
R(q5)−4 + qR(q5)−3 + 2q2R(q5)−2 + 3q3R(q5)−1

+ 5q4 − 3q5R(q5) + 2q6R(q5)2 − q7R(q5)3 + q8R(q5)4
)2)

= q2
E(q5)10E(q10)2

E(q)12
(
−2P (2, 3) + 5P (2, 2) + 4P (1, 3)− 10P (1, 2)

− 32P (1, 1) + 20P (1, 0) + 20P (0, 2) + 54P (0, 1)− 15
)
.

Plugging (2.21)–(2.26) into (3.1), upon simplification, we deduce that

∞∑
n=0

Q2(5n+ 2)qn = q2
E(q5)10E(q10)2

E(q)12
(K − 4)3(K + 1)2

K3
(3.2)

×
(
3 + 20(K − 4)−1

)
= γ(3 + 20ζ).

Multiplying the factor qE(q2)E(q10)3/(E(q)3E(q5)) in both sides of (2.18)
gives that

E(q2)2E(q5)4

E(q)4E(q10)2
= 1 + 4q

E(q2)E(q10)3

E(q)3E(q5)
,

from which we obtain that

γ =
E(q2)2E(q5)2

E(q)4
=

E(q10)2

E(q5)2
· E(q2)2E(q5)4

E(q)4E(q10)2
(3.3)

=
E(q10)2

E(q5)2

(
1 + 4q

E(q2)E(q10)3

E(q)3E(q5)

)
=

E(q10)2

E(q5)2
(1 + 4ζ).
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Substituting (3.3) into (3.2) yields that

∞∑
n=0

Q2(5n+ 2)qn =
E(q10)2

E(q5)2
(
3 + 32ζ + 80ζ2

)
(3.4)

≡ 3
E(q10)2

E(q5)2
(mod 16) .

The congruence (1.11) follows from (3.4) immediately.
Moreover, it is easy to see that there are all the terms of the form q5n in

the series expansion of the right-hand side of (3.4). Thus we get that for
1 ≤ i ≤ 4,

Q2

(
5(5n+ i) + 2

)
≡ 0 (mod 16) .

This proves that (1.13) is true for α = 1.
Applying the operator U to (3.2) and using (2.4) and (2.5), after simpli-

fication, we find that

∞∑
n=0

Q2(25n+ 2)qn ≡ δ
(
3 + 4084ζ + 3488ζ2 + 3584ζ3 + 3328ζ4 + 3072ζ5

)
,

or, equivalently,

∞∑
n=0

Q2(25n+ 2)qn−2(3.5)

≡ q−2δ
(
3 + 4084ζ + 3488ζ2 + 3584ζ3 + 3328ζ4 + 3072ζ5

)
.

Applying the operator U to (3.5) and utilizing (2.9)–(2.13) and (2.31), upon
simplification, we find that

∞∑
n=0

Q2

(
53n+

54 − 1

12

)
qn(3.6)

≡ γ
(
3449 + 220ζ + 3440ζ2 + 2624ζ3 + 1792ζ4 + 3072ζ5

)
.

Next, we apply the operator U and employ (2.4)–(2.13) and (2.31) to sim-
plify the corresponding expressions repeatedly. Through some tedious but
straightforward calculation, we further conclude that

∞∑
n=0

Q2

(
57n+

58 − 1

12

)
qn ≡ γ

(
753 + 3516ζ + 2256ζ2(3.7)

+ 3264ζ3 + 3328ζ4 + 3072ζ5
)
,

∞∑
n=0

Q2

(
515n+

516 − 1

12

)
qn ≡ γ

(
1505 + 2940ζ + 2448ζ2(3.8)

+ 2496ζ3 + 2304ζ4 + 3072ζ5
)
,
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∞∑
n=0

Q2

(
531n+

532 − 1

12

)
qn ≡ γ

(
3009 + 1788ζ + 784ζ2(3.9)

+ 960ζ3 + 256ζ4 + 3072ζ5
)
,

∞∑
n=0

Q2

(
563n+

564 − 1

12

)
qn ≡ γ

(
1921 + 3580ζ + 1552ζ2(3.10)

+ 1984ζ3 + 256ζ4 + 3072ζ5
)
,

∞∑
n=0

Q2

(
5127n+

5128 − 1

12

)
qn ≡ γ

(
3841 + 3068ζ + 3088ζ2(3.11)

+ 4032ζ3 + 256ζ4 + 3072ζ5
)
,

∞∑
n=0

Q2

(
5255n+

5128 − 1

12

)
qn ≡ γ

(
3585 + 2044ζ + 2064ζ2(3.12)

+ 4032ζ3 + 256ζ4 + 3072ζ5
)
.

Plugging (3.3) into (3.6)–(3.12), after simplification, we obtain that

∞∑
n=0

Q2

(
53n+

54 − 1

12

)
qn

≡ E(q10)2

E(q5)2
(
3449 + 14016ζ + 4320ζ2

+ 16384ζ3 + 12288ζ4 + 8192ζ5 + 4096ζ6
)
,

∞∑
n=0

Q2

(
57n+

58 − 1

12

)
qn

≡ E(q10)2

E(q5)2
(
753 + 6528ζ + 16320ζ2

+ 12288ζ3 + 16384ζ4 + 16384ζ5 + 12288ζ6
)
,

∞∑
n=0

Q2

(
515n+

516 − 1

12

)
qn

≡ E(q10)2

E(q5)2
(
1505 + 8960ζ + 14208ζ2

+ 12288ζ3 + 12288ζ4 + 12288ζ5 + 12288ζ6
)
,

∞∑
n=0

Q2

(
531n+

532 − 1

12

)
qn

≡ E(q10)2

E(q5)2
(
3009 + 13824ζ + 7936ζ2

+ 4096ζ3 + 4096ζ4 + 4096ζ5 + 12288ζ6
)
,
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∞∑
n=0

Q2

(
563n+

564 − 1

12

)
qn

≡ E(q10)2

E(q5)2
(
1921 + 11264ζ + 15872ζ2

+ 8192ζ3 + 8192ζ4 + 4096ζ5 + 12288ζ6
)
,

∞∑
n=0

Q2

(
5127n+

5128 − 1

12

)
qn

≡ E(q10)2

E(q5)2
(
3841 + 18432ζ + 15360ζ2

+ 16384ζ3 + 16384ζ4 + 4096ζ5 + 12288ζ6
)
,

∞∑
n=0

Q2

(
5255n+

5128 − 1

12

)
qn

≡ E(q10)2

E(q5)2
(
3585 + 16384ζ + 10240ζ2

+ 12288ζ3 + 16384ζ4 + 4096ζ5 + 12288ζ6
)
,

from which we obtain that
∞∑
n=0

Q2

(
53n+

54 − 1

12

)
qn ≡ 25

E(q10)2

E(q5)2
(mod 32) ,(3.13)

∞∑
n=0

Q2

(
57n+

58 − 1

12

)
qn ≡ 49

E(q10)2

E(q5)2
(mod 64) ,(3.14)

∞∑
n=0

Q2

(
515n+

516 − 1

12

)
qn ≡ 97

E(q10)2

E(q5)2
(mod 128) ,(3.15)

∞∑
n=0

Q2

(
531n+

532 − 1

12

)
qn ≡ 193

E(q10)2

E(q5)2
(mod 256) ,(3.16)

∞∑
n=0

Q2

(
563n+

564 − 1

12

)
qn ≡ 385

E(q10)2

E(q5)2
(mod 512) ,(3.17)

∞∑
n=0

Q2

(
5127n+

5128 − 1

12

)
qn ≡ 769

E(q10)2

E(q5)2
(mod 1024) ,(3.18)

∞∑
n=0

Q2

(
5255n+

5256 − 1

12

)
qn ≡ 1537

E(q10)2

E(q5)2
(mod 2048) .(3.19)

The congruence (1.12) follows from (3.13)–(3.19) immediately. Moreover,
one readily sees that there are all the terms of the form q5n in the right-
hand sides of (3.13)–(3.19). The cases 2 ≤ α ≤ 8 of (1.13) thus follow.

This completes the proof of Theorem 1.3. □
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Now we turn to prove Corollary 1.4.

Proof of Corollary 1.4. We only prove the case α = 1 in (1.14), and the
remaining cases can be proved similarly.

Replacing n by 25n+ 2 in (1.11) gives that

Q2

(
54n+

54 − 1

12

)
≡ 3Q2(25n+ 2) ≡ 32Q2(n) (mod 16) .

By induction, we find that for any β ≥ 1,

Q2

(
52βn+

52β − 1

12

)
≡ 3βQ2(n) (mod 16) .(3.20)

Taking α = 1 in (1.13), we get that

Q2

(
52n+

(12i+ 5)× 5− 1

12

)
≡ 0 (mod 16) .(3.21)

Replacing n by 5(5n+ i)+ (52− 1)/12 in (3.20), we find that for any β ≥ 1,

Q2

(
52β+2n+

(12i+ 5)× 52β+1 − 1

12

)
≡ 0 (mod 16) .(3.22)

Combining (3.21) and (3.22), we conclude that for any β ≥ 1,

Q2

(
52βn+

(12i+ 5)× 52β−1 − 1

12

)
≡ 0 (mod 16) .

This proves that (1.14) is true for α = 1.
We therefore complete the proof of Corollary 1.4. □

4. Proofs of Theorems 1.5 and 1.6

In this section, we give the proofs of Theorems 1.5 and 1.6.
For this purpose, we first recall that Ramnujan’s theta function is given

by

f(a, b) :=
∞∑

n=−∞
an(n+1)/2bn(n−1)/2(4.1)

= (−a, ab)∞(−b; ab)∞(ab; ab)∞, |ab| < 1.

where the last equality in (4.1) is the celebrated Jacobi triple product iden-
tity [2, p. 17, Eq. (1.4.8)]. One of three special cases of f(a, b) is the Euler
product f(−q), given by

f(−q) := f(−q,−q2) =

∞∑
n=−∞

qn(3n+1)/2 = E(q).

The following p-dissection for f(−q) due to Cui and Gu [8] is the main
ingredient in proof of (1.15).
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Lemma 4.1. [8, Theorem 2.2] Let p ≥ 5 be a prime number. Then

f(−q) =

(p−1)/2∑
k=−(p−1)/2
k ̸=(±p−1)/6

(−1)kqk(3k+1)/2f
(
−q(3p

2+(6k+1)p)/2,−q(3p
2−(6k+1)p)/2

)(4.2)

+ (−1)(±p−1)/6q(p
2−1)/24f

(
−qp

2)
,

where

(±p− 1)/6 =

{
(p− 1)/6 if p ≡ 1 (mod 6) ,

(−p− 1)/6 if p ≡ 5 (mod 6) .

Next, we collect some necessary terminology and lemmas in theory of
modular forms. The full modular group is given by

Γ =

{(
a b
c d

)
: a, b, c, d ∈ Z, and ad− bc = 1

}
,

and for a positive integer N , the congruence subgroup Γ0(N) is defined by

Γ0(N) =

{(
a b
c d

)
∈ Γ: c ≡ 0 (mod N)

}
.

Let γ be the matrix

(
a b
c d

)
hereinafter. Define γ act on τ ∈ C by the linear

fractional transformation

γτ =
aτ + b

cτ + d
and γ∞ = lim

τ→∞
γτ.

Let N , k be positive integers and H = {τ ∈ C : Im(τ) > 0}. A holomor-
phic function f : H → C is called a modular function of weight k for Γ0(N),
if it satisfies the following two conditions:

(1) for all γ ∈ Γ0(N), f(γτ) = (cτ + d)kf(τ);
(2) for any γ ∈ Γ, (cτ + d)−kf(γτ) has a Fourier expansion of the form

(cτ + d)−kf(γτ) =
∞∑

n=nγ

a(n)qnwγ
,

where a(nγ) ̸= 0, qwγ = e2πiτ/wγ and wγ = N/ gcd(c2, N).
In particular, if nγ ≥ 0 for all γ ∈ Γ, then we call that f is a modular

form of weight k for Γ0(N). A modular function with weight 0 for Γ0(N) is
referred to as a modular function for Γ0(N). For a modular function f(τ) of
weight k with respect to Γ0(N), the order of f(τ) at the cusp a/c ∈ Q∪{∞}
is defined by

orda/c(f) = nγ
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for some γ ∈ Γ such that γ∞ = a/c. It is known that orda/c(f) is well-
defined, see [9, p. 72]. Radu [18] developed the Ramanujan–Kolberg al-
gorithm to establish the Ramanujan–Kolberg identities on a class of parti-
tion functions defined in terms of eta-quotients using modular functions for
Γ0(N). A description of the Ramanujan–Kolberg algorithm can be found in
Paule and Radu [17]. Smoot [22] developed a Mathematica package RaduRK
to implement Radu’s algorithm.

Let the partition function a(n) be defined by

∞∑
n=0

a(n)qn =
∏
δ|M

(qδ, qδ)rδ∞,(4.3)

where M , δ are positive integers, and rδ are integers. For any m ≥ 1 and
0 ≤ t ≤ m− 1, Radu [18] defined

gm,t(τ) = q(t+ℓ)/m
∞∑
n=0

a(mn+ t)qn,(4.4)

where

ℓ =
1

24

∑
δ|M

δrδ,

and gave a criterion for a function involving gm,t(τ) to be a modular function
with respect to Γ0(N), where N satisfies the following: let κ = gcd(1 −
m2, 24),

(1) for every prime p, p|m implies p|N ;

(2) for every δ|M with rδ ̸= 0, δ|M implies δ|mN ;

(3) κmN2
∑

δ|M rδ/δ ≡ 0 (mod 24);

(4) κN
∑

δ|M rδ ≡ 0 (mod 8);

(5) 24m/ gcd
(
κ(−24t−

∑
δ|M δrδ), 24m

)
|N ;

(6) if 2|m, then κN ≡ 0 (mod 4) and 8|Ns, or 2|s and 8|N(1−j), where∏
δ|M δ|rδ| = 2sj, and j, s ∈ Z, j is odd.

Given a positive integer n and an integer x, we denote by [x]n the residue
class of x modulo n. Let

Z∗
n = {[x]n ∈ Zn : gcd(x, n) = 1} and Sn = {y2 : y ∈ Z∗

n}.

Let the set

Pm(t) =


[
ts+

s− 1

24

∑
δ|M

δrδ

]
m

: s ∈ S24m

.
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Recall that the Dedekind eta-function η(τ) is defined by

η(τ) = q1/24
∞∏
n=1

(1− qn),

where q = e2πiτ and τ ∈ H.

Theorem 4.2. [18, Theorem 45] For a partition function a(n) defined as
(4.3), and integers m ≥ 1, 0 ≤ t ≤ m−1, suppose that N is a positive integer
satisfying the conditions (1)–(6). Let

F (τ) =
∏
δ|N

ηsδ(δτ)
∏

t′∈Pm(t)

gm,t′(τ),

where sδ are integers. Then F (τ) is a modular function for Γ0(N) if and
only if sδ satisfy the following

[(1)]

(1) |Pm(t)|
∑

δ|M rδ +
∑

δ|N sδ = 0;

(2)
∑

t′∈Pm(t)(1−m2)
(
24t′ +

∑
δ|M δrδ

)
/m

+|Pm(t)|m
∑

δ|M δrδ +
∑

δ|N δsδ ≡ 0 (mod 24) ;

(3) |Pm(t)|mN
∑

δ|M rδ/δ +
∑

δ|N (N/δ)sδ ≡ 0 (mod 24) ;

(4)
(∏

δ|M (mδ)|rδ|
)|Pm(t)|∏

δ|N δ|sδ| is a square.

Radu [18, Theorem 47] also gave the lower bounds of the orders of F (τ)
at cusps of Γ0(N).

Theorem 4.3. For a partition function a(n) defined as (4.3), and integers
m ≥ 1, 0 ≤ t ≤ m− 1, let

F (τ) =
∏
δ|N

ηsδ(δτ)
∏

t′∈Pm(t)

gm,t′(τ),

be a modular function for Γ0(N), where sδ are integers and N satisfies
the conditions (1)–(6). Let {s1, s2, . . . , sϵ} be a complete set of inequivalent
cusps of Γ0(N), and for each 1 ≤ i ≤ ϵ, let γi ∈ Γ be such that γi∞ = si.
Then

ordsi(F (τ)) ≥ N

gcd(c2, N)

(
|Pm(t)|p(γi) + p∗(γi)

)
,

where

p(γi) = min
λ∈{0,1,...,m−1}

1

24

∑
δ|M

rδ
gcd2(δ(a+ κλc),mc)

δm
,
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and

p∗(γi) =
1

24

∑
δ|N

sδ
gcd2(δ, c)

δ
.

The following theorem of Sturm [23, Theorem 1] plays a crucial role in
proving congruences using the theory of modular forms.

Theorem 4.4. Let k be an integer and g(τ) =
∑∞

n=0 c(n)q
n a modular form

of weight k for Γ0(N). For any given positive integer u, if c(n) ≡ 0 (mod u)
holds for all n ≤ (kN/12)

∏
p|N, p prime(1+1/p), then c(n) ≡ 0 (mod u) holds

for any n ≥ 0.

Now we proceed with the proof of Theorem 1.5.

Proof of Theorem 1.5. From (1.6) we find that

∞∑
n=0

Q2(n)q
n =

E(q2)2

E(q)2
=

E(q2)2

E(q)4
· E(q)2 ≡ f(−q)2 (mod 4) .(4.5)

For a prime p ≥ 5 and two integers −(p − 1)/2 ≤ j, k ≤ (p − 1)/2, assume
that

3j2 + j

2
+

3k2 + k

2
≡ p2 − 1

12
(mod p) ,

which implies that

(6j + 1)2 + (6k + 1)2 ≡ 0 (mod p) .(4.6)

Since p ≡ 3 (mod 4), one obtains
(−1

p

)
= (−1)(p−1)/2 = −1 by the quadratic

reciprocal law, where
( ·
p

)
is the Legendre symbol. Therefore, it follows from

(4.6) that j = k = (±p− 1)/6. Combining (4.2) and (4.5), we conclude that

∞∑
n=0

Q2

(
pn+

p2 − 1

12

)
qn ≡ f(−qp)2 ≡

∞∑
n=0

Q2(n)q
pn (mod 4) ,

which is nothing but (1.15).
The proof of Theorem 1.5 is complete. □

The following lemma plays an important role in the proof of Theorem 1.6.

Lemma 4.5. For any prime p ≥ 5, let k1 =
⌈
(p2 − 1)/(24p)

⌉
and k2 =⌈

(p2 − 1)/(12p2)
⌉
. Then for any constant c,

η24k1(τ)η16k2(2pτ)

η8k2(pτ)

(
qp/12

η2(pτ)

η2(2pτ)

∞∑
n=0

Q2

(
pn+

p2 − 1

12

)
qn − c

)
is a modular form of weight 12k1 + 4k2 for Γ0(2p).
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Proof. Recall that the generating function of Q2(n) is
∞∑
n=0

Q2(n)q
n =

(q2; q2)2∞
(q; q)2∞

.

Taking M = 2, (r1, r2) = (−2, 2), m = p, t = (p2 − 1)/12 in Theorem
4.2, one easily find that N = 2p satisfies the conditions (1)–(6), and for
(s1, s2, sp, s2p) = (0, 0, 2,−2),

F (τ) = qp/12
η2(pτ)

η2(2pτ)

∞∑
n=0

Q2

(
pn+

p2 − 1

12

)
qn

is a modular function for Γ0(2p).
The set of inequivalent cusps of Γ0(2p) is given by{

0,
1

2
,
1

p
,∞
}
.

According to Theorem 4.3, we derive the following lower bounds of F (τ) at
the cusps of Γ0(2p):

ord0(F (τ)) ≥ −p2 − 1

12
, ord1/2(F (τ)) ≥ 0,

ord1/p(F (τ)) ≥ p2 − 1

12p
, ord∞(F (τ)) ≥ −p2 − 1

12p
,

which implies that

ord0(F (τ)− c) ≥ −p2 − 1

12
, ord1/2(F (τ)− c) ≥ 0,

ord1/p(F (τ)− c) ≥ 0, ord∞(F (τ)− c) ≥ −p2 − 1

12p
.

With the help of Theorem 1.64 and Theorem 1.65 in [16], one easily
obtains that

F1(τ) = η24(τ) and F2(τ) =
η16(2pτ)

η8(pτ)

are modular forms with weight 12 and 4 for Γ0(2p), respectively, and the
orders at the cusps of Γ0(2p) are

ord0(F1(τ)) = 2p, ord1/2(F1(τ)) = p, ord1/p(F1(τ)) = 2,

ord∞(F1(τ)) = 1, ord0(F2(τ)) = 0, ord1/2(F2(τ)) = 1,

ord1/p(F2(τ)) = 0, ord∞(F2(τ)) = p.

Therefore, we obtain that all orders of F k1
1 (τ)F k2

2 (τ)F (τ) at all cusps of

Γ0(2p) are nonnegative, and then F k1
1 (τ)F k2

2 (τ)F (τ) is a modular form with
weight 12k2 + 4k2 for Γ0(2p).

The proof is therefore complete. □

Finally, we prove Theorem 1.6.
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Proof of Theorem 1.6. For a given integer m ≥ 1. By Lemma 4.5 and
Sturm’s theorem, to prove

(qp; qp)2∞
(q2p; q2p)2∞

∞∑
n=0

Q2

(
pn+

p2 − 1

12

)
qn − cp ≡ 0 (mod 2m) ,

we only need to check that the coefficients of the first lp = (3k1 + k2)(p+1)
terms of the expansion

η24k1(τ)η16k2(2pτ)

η8k2(pτ)

(
qp/12

η2(pτ)

η2(2pτ)

∞∑
n=0

Q2

(
pn+

p2 − 1

12

)
qn − cp

)
are congruent to 0 modulo 2m. Here, k1 and k2 are defined in Lemma 4.5
and the corresponding lp are displayed in Table 1. This information allows
us to do the computations to complete the proof of Theorem 1.6. □

Table 1. A table of values of lp.

p 5 7 11 13 17 19 23 29 31 37 41 43
lp 24 32 48 56 72 80 96 210 224 266 294 308
p 47 53 59 61 67 71 73 79 83 89 101 103
lp 336 540 600 620 680 720 962 1040 1092 1170 1632 1664

5. Final remarks

We conclude this paper with several remarks.
First, it appears that (1.12) and (1.13) are just some initial cases in the

following corresponding internal congruence family and congruence family.

Conjecture 5.1. For any α ≥ 2 and n ≥ 0,

Q2

(
52

α
n+

52
α − 1

12

)
≡
(
3× 2α+1 + 1

)
Q2(n)

(
mod 2α+3

)
.(5.1)

Moreover, for any α ≥ 1 and 1 ≤ i ≤ 4,

Q2

(
52

α
n+

(12i+ 5)× 52
α−1 − 1

12

)
≡ 0

(
mod 2α+3

)
.(5.2)

Second, (1.18) together with numerical evidence suggests the following
conjecture.

Conjecture 5.2. Let p ≥ 5 be a prime number such that p ̸≡ 1 (mod 12).
Then

∞∑
n=0

Q2

(
pn+

p2 − 1

12

)
qn ≡ cp

∞∑
n=0

Q2(n)q
pn (mod 16) ,(5.3)

where cp is an odd positive integer depending on p.
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The appearance of (1.18) suggests that there are a large number of in-
ternal congruences and congruences modulo powers of 2 enjoyed by Q2(n).
Motivated by (5.1) and (5.2), a natural question worth further investigation
is whether there exist some similar internal congruences and congruences
modulo powers of 2 satisfied by Q2(n) for another prime p. From (1.8)
and (1.18), we find that there is an inseparable relation between congruence
properties modulo powers of 2 and arithmetic density property on powers
of 2. Therefore, the other natural question is whether there exist internal
congruences and congruences modulo powers of 2 similar to (1.11)–(1.13) for
another partition function, which has the same arithmetic density property
on powers of 2 as Q(n) and Q2(n). We would like to address this question
in a forthcoming paper [10].

Third, if we consider the partition function Qk(n), which denotes the
number of k-colored partitions of n into distinct parts, and its generating
function is given by

∞∑
n=0

Qk(n)q
n = (−q; q)k∞ =

(q2; q2)k∞
(q; q)k∞

=
E(q2)k

E(q)k
.

Obviously, Q1(n) = Q(n). Following a similar strategy of proving (1.11)–
(1.13), one can prove that

∞∑
n=0

Q3(5n+ 3)qn ≡ 13
E(q10)3

E(q5)3
(mod 64) ,

∞∑
n=0

Q3(125n+ 78)qn ≡ 105
E(q10)3

E(q5)3
(mod 128) ,

∞∑
n=0

Q4(5n+ 4)qn ≡ 51
E(q10)3

E(q5)3
(mod 256) ,

∞∑
n=0

Q4(125n+ 104)qn ≡ 297
E(q10)3

E(q5)3
(mod 512) .

Unfortunately, for k = 5, we have not found similar results yet. Based on
these congruences, it is natural to ask whether there exists a criterion which
can be applied to search for an internal congruence family and congruence
family similar to (5.1), (5.2) and (5.3) for Qk(n) with a given positive integer
k.

Finally, the results involved in Q(n) and Q2(n) imply that there is an
inseparable connection between congruences properties modulo powers of
2 and arithmetic density property on powers of 2 for these two objects.
In 2020, Cotron et al. [7, Theorem 1.1] proved a powerful theorem on the
arithmetic density property for a class of infinite products by utilizing the
theory of modular forms. As an immediate consequence, one easily gets that
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for a given positive integer k and any positive integer m,

lim
X→∞

#{0 ≤ n < X : Qk(n) ≡ 0 (mod 2m)}
X

= 1.(5.4)

Therefore, another natural question is whether there exist other types of
internal congruences families and congruence families modulo any powers of
2 for Qk(n), where k is a positive integer.
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