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IDENTITIES INVOLVING TRIGONOMETRIC, ZETA AND

PARTITION FUNCTIONS

MATEUS ALEGRI, ROBSON DA SILVA, AND WAGNER FERREIRA SANTOS

Abstract. Using well-known trigonometric functions, we establish
identities involving the multiple zeta function and the multiple lambda
function. Furthermore, we derive new identities by applying classical
trigonometric relations. Some of these results are expressed in terms
of colored partitions, highlighting connections between partition theory
and special functions.

1. Introduction

We recall that the multiple zeta function (MZV) is given by

ζ(s1, s2, . . . , sk) =
∑

n1>n2>...>nk≥1

1

ns1
1 ns2

2 · · ·nsk
k

,

where ζ(s1, s2, . . . , sk) converges absolutely in the domain ℜ(s1+· · ·+sj) > j
for every j = 1, . . . , k. The k-tuple having all entries equal to s is denoted
by {s}k. Thus,

ζ({s}k) =
∑

n1>n2>...>nk≥1

1

(n1n2 · · ·nk)
s .

For convenience we let ζ({n}0) = 1. A multi-index s = (s1, s2, . . . , sk)
is said to be admissible if the series ζ(s) converges (see Hoffman [16] and
Spanier [28]).

Working with the infinite product representation for sinx, namely

sinx = x
∞∏
n=1

(
1− x2

n2π2

)
(see Eberlein [10]) and its representation as a Maclaurin series naturally
yields an identity involving the multivariate zeta function as we can see in
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the first theorem of this paper. In addition, using the same approach with
the function cosx a different function appears, namely multiple lambda
function, which is defined as follows.

Definition 1.1. The multiple lambda function is defined by

λ(s1, s2, . . . , sk) =
∑

n1>n2>···>nk≥1

1

(2n1 − 1)s1(2n2 − 1)s2 . . . (2nk − 1)sk
.

In particular,

λ({s}k) =
∑

n1>n2>···>nk≥1

1

((2n1 − 1)(2n2 − 1) . . . (2nk − 1))s
.

This paper is devoted to establishing identities involving the multiple zeta
function and the multiple lambda function using some well-known trigono-
metric identities and elementary tools. Some of the identities we present
here involve colored partitions, including

∑
w1+···+wm∈C(n)

wi≥2

(−1)mp2(w1 − 2) · · · p2(wm − 2)

(2m+ 1)!
=

⌊n/2⌋∑
k=1

(−1)kp2k(n− 2k)

(2k + 1)!
,

where C(n) is the set of integer compositions of n and pk(n) denotes the
number of partitions of n whose parts have one of k colors. In Section 2, we
present a number of identities involving the multiple zeta and the multiple
lambda functions. Two new series, namely Z(k, ℓ,m) and Λ(k, ℓ,m), are
introduced in Section 3 and some identities involving them are derived.
Finally, in Section 4, we present some results involving k-colored partitions.

2. Results involving basic trigonometric functions

In order to prove some results in this section, we need the three lemmas
below.

Lemma 2.1. Let f be a polynomial. The coefficient of zm in the product∏∞
n=1

(
1 + az

f(n)s

)
is given by

(2.1)
∑

i1>···>im≥1

am

f(i1)s . . . f(im)s
.

Proof. In order to obtain zm from
∏∞

n=1

(
1 + az

f(n)s

)
we take m factors of

the type az
f(ij)s

, with different ij . So the coefficient of zm is∑
i1>···>im≥1

am

f(i1)s . . . f(im)s
.

□
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Lemma 2.2. Let f and g be polynomials. The coefficient of zm in

∞∏
n=1

(
1 +

az

f(n)s

) ∞∏
n=1

(
1 +

bz

g(n)t

)
is given by

m∑
k=0

 ∑
i1>···>ik≥1

1

f(i1)s . . . f(ik)s

(2.2)

×

 ∑
j1>···>jm−k≥1

1

g(j1)t . . . g(jm−k)t

 akbm−k

 .

Proof. The term zm is obtained by combining a zk from the first product
with zm−k from the second one, where k varies from 0 to m. By Lemma
2.1, the coefficient of zk in the first product is ∑

i1>···>ik≥1

1

f(i1)s . . . f(ik)s

 ak

and the coefficient of zm−k in the second product is ∑
j1>···>jm−k≥1

1

g(j1)t . . . g(jm−k)t

 bm−k.

Therefore, the coefficient of zm is given by (2.2). □

We recall below the notion of the composition of a positive integer.

Definition 2.3. A composition of a positive integer n is an ordered collec-
tion of positive integers whose sum is n. The set of compositions of n is
denoted by C(n).

Example 2.4. The eight compositions of 4 are

C(4) = {(4), (3, 1), (1, 3), (2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 1, 1)}.

More about integer compositions can be found in Heubach and Man-
sour [15] and Sills [27].

Lemma 2.5. Let f be a polynomial and a, s ∈ R. If |z| <
∣∣∣f(n)sa

∣∣∣, for all

n ≥ 1, then the coefficient of zm in
∏∞

n=1

(
1 + az

f(n)s

)−1
is given by∑

(w1,...,wj)∈C(m)

∑
i1>···>ij≥1

(−a)m

f(i1)w1s . . . f(ij)wjs
,

where C(m) is the set of integer compositions of m.
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Proof. Note that the factor
(
1 + az

f(n)s

)−1
can be seen as the sum of the

geometric series having ratio − az
f(n)s , since the absolute value of this ratio is

less than 1, or equivalently, |z| <
∣∣∣f(n)sa

∣∣∣ for all n ≥ 1. Rewriting the infinite

product in the form
∞∏
n=1

(
1− az

f(n)s
+

a2z2

f(n)2s
− a3z3

f(n)3s
+ . . .

)
we see that the coefficient of zm is obtained by taking a factor of the type
(−az)wk

f(ik)
wks in j different parenthesis, with (w1, . . . , wj) ∈ C(m). So, w1 + · · ·+

wj = m and the coefficient of zm is given by∑
(w1,...,wj)∈C(m)

∑
i1>···>ij≥1

(−a)m

f(i1)w1s . . . f(ij)wjs
.

□

Throughout this paper, we make use of the expansions of the trigonomet-
ric functions below:

(2.3) sinx =
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x

∞∏
n=1

(
1− x2

n2π2

)

(2.4) cosx =
∞∑
n=0

(−1)n

(2n)!
x2n =

∞∏
n=1

(
1− 4x2

(2n− 1)2π2

)
Analytic proofs of these identities can be found in Eberlein [10].

For |x| < π
2 , we have

(2.5) secx =
∞∑
n=0

(−1)nE2n

(2n)!
x2n =

∞∏
n=1

(2n− 1)2π2

((2n− 1)2)π2 − 4x2
.

For |x| < π, we have

cscx =
1

x
+

∞∑
n=1

(−1)n−1(22n − 2)B2n

(2n)!
x2n−1 =(2.6)

=
1

x

∞∏
n=1

n2π2

n2π2 − x2
.

The tangent and cotangent functions satisfy

tanx =

∞∑
n=0

(−1)n−122n(22n − 1)B2n

(2n)!
x2n−1(2.7)

= x

∞∏
n=1

(
n2π2 − x2

n2

)(
(2n− 1)2

(2n− 1)2π2 − 4x2

)
,
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for |x| < π/2, and

cotx =
∞∑
n=0

(−1)n−122nB2n

(2n)!
x2n−1(2.8)

=
1

x

∞∏
n=1

(
(2n− 1)2π2 − 4x2

(2n− 1)2

)(
n2

n2π2 − x2

)
,

for |x| < π. The numbers Bn and En, for n ≥ 0, are Bernoulli and Euler
numbers, respectively (see Abramowitz [1] and Arfken [7]). We recall that
the nth Euler number En is defined by the Taylor series expansion

1

coshx
=

∞∑
n=0

En

n!
xn,

and the nth Bernoulli numbers Bn is defined by the Taylor series expansion

x

ex − 1
=

∞∑
n=0

Bn

n!
xn.

The next theorem is a well-known result due to Euler (see Hoffman [16],
Terasoma [29] and Zagier [31]). We present an alternative proof of this
result.

Theorem 2.6 (Euler). For all m ≥ 1, we have

(2.9) ζ({2}m) =
π2m

(2m+ 1)!

Proof. Taking a = − 1
π2 , p(n) = n, and s = 2 in Lemma 2.1, it follows that

the coefficient of zm in (2.3) is equal to

(−1)m

π2m

∑
i1>···>im

1

i21 . . . i
2
m

.

Let z = x2 in (2.3). Since there is an x multiplying the product in (2.3), by
Lemma 2.1 the coefficient of x2m+1 in the expansion of the sine function is

equal to (−1)m

π2m ζ(2{m}). On the other hand, considering its Taylor series we

recall that this coefficient is equal to (−1)m

(2m+1)! . Hence,

ζ({2}m) =
π2m

(2m+ 1)!
.

□

Example 2.7. In particular, for m = 1 we have ζ(2) = π2

6 , while for m = 2

we know that ζ(2, 2) = π4

120 .

We prove below a theorem for the multiple lambda function, which is
analogous to Theorem 2.6.
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Theorem 2.8. For all m ≥ 1, we have

(2.10) λ({2}m) =
π2m

22m(2m)!
.

Proof. Taking a = − 4
π2 , f(n) = 2n− 1 and s = 2 in Lemma 2.1, we see that

the coefficient of zm on the right-hand side of (2.4) is equal to

(−4)m

π2m

∑
i1>···>im

1

(2i1 − 1)2 . . . (2im − 1)2
.

Taking z = x2, it follows by Theorem 2.1 that the coefficient of x2m in the

expansion of the cosine function is equal to (−4)m

π2m λ({2}m). On the other

hand its Taylor series yields (−1)m

(2m)! as the coefficient of x2m. Therefore,

λ({2}m) =
π2m

4m(2m)!
.

□

Example 2.9. For m = 1 we have λ(2) = π2

8 , while m = 2 yields λ(2, 2) =
π4

384 .

The next result follows directly from Theorems 2.6 and 2.8.

Corollary 2.10. For all m ≥ 1, we have

(2.11) λ({2}m) =

(
2m+ 1

22m

)
ζ({2}m).

In the next theorem, if w = (w1, w2, . . . , wj) ∈ C(m), we let ζ(2w) denote
ζ(2w1, 2w2, . . . , 2wj).

Theorem 2.11. For all m ≥ 1, we have

(2.12)
∑

w∈C(m)

ζ(2w) =
(−1)m−1(22m − 2)π2mB2m

(2m)!
,

where C(m) is the set of integer compositions of m.

Proof. Thanks to (2.7) we see that the cosecant function can be written as
the infinite product

csc(x) =
1

x

∞∏
n=1

(
1− x2

n2π2

)−1

.

For |x| < π, we have x2

n2π2 < 1 and then 1

1− x2

n2π2

is the limit of the geometric

series with ratio x2

n2π2 . Taking a = − 1
π2 , f(n) = n, and s = 2 in Lemma 2.5,

we see that the coefficient of zm in the infinite product above is equal to∑
(w1,...,wj)∈C(m)

∑
i1>···>ij≥1

1
π2m

i2w1
1 . . . i

2wj

j

.
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This expression can be rewritten as 1
π2m

∑
(w1,...,wj)∈C(m) ζ(2w1, . . . , 2wj) or

simply
1

π2m

∑
w∈C(m)

ζ(2w).

Since z = x2 and there is a factor 1/x multiplying the infinite product,
we see that the coefficient of x2m−1 in the cosecant function is equal to
1

π2m

∑
w∈C(m) ζ(2w). On the other hand, considering the Taylor expansion of

the cosecant function, we know that such a coefficient is (−1)m−1(22m−2)B2m

(2m)! .

Therefore,
∑

w∈C(m) ζ(2w) =
(−1)m−1(22m−2)π2mB2m

(2m)! . □

Example 2.12. Since C(2) = {(2), (1, 1)} and C(3) = {(3), (2, 1), (1, 2),
(1, 1, 1)}, we have

ζ(4) + ζ(2, 2) =
(2− 24)π4B4

4!
,

ζ(6) + ζ(4, 2) + ζ(2, 4) + ζ(2, 2, 2) =
(26 − 2)π6B6

6!
.

The corollary below is an immediate consequence of combining Theorem
2.11 and the following identity (see [1, Identity 23.2.6])

ζ(2m) =
(2π)2m(−1)m−1B2m

2(2m)!
.

Corollary 2.13. We have∑
w∈C(m)

ζ(2w) =

(
22m−1 − 1

22(m−1)

)
ζ(2m).

The next result can be proven similarly to Theorem 2.11, using the ex-
pression (2.7) for the cosecant function instead of the secant function. So
its proof will be omitted.

Theorem 2.14. For all m ≥ 1, we have∑
w∈C(m)

λ(2w) =
(−1)mπ2mE2m

22m(2m)!
.(2.13)

Example 2.15. We have

λ(4) + λ(2, 2) =
π4E4

244!
,

λ(6) + λ(4, 2) + λ(2, 4) + λ(2, 2, 2) = −π6E6

266!
.

The next theorem is obtained by using the infinite products expansion of
tangent function (2.8).
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Theorem 2.16. For all m ≥ 1, we have

m−1∑
k=0

(−1)k22(m−1−k)ζ({2}k)
∑

w∈C(m−1−k)

λ(2w)


=

(−1)m−122m(22m − 1)π2m−2B2m

(2m)!
.

Proof. We rewrite (2.8) as

tan(x) = x
∞∏
n=1

(
1− x2

n2π2

) ∞∏
n=1

(
1− 22x2

(2n− 1)2π2

)−1

.

Since we have a factor x multiplying the product above, in order to obtain
x2m−1 we have to get x2m−2 from the two products: x2k from the first one
and x2(m−1−k) from the second one, with 0 ≤ k ≤ m − 1. By Lemma 2.1

we have that the coefficient of x2k in the first product is (−1)k

π2k ζ({2}k). On

the other hand, it follows by Lemma 2.5 that the coefficient of x2(m−1−k) in

second one is 22(m−1−k)

π2(m−1−k)

∑
w∈C(m−1−k) λ(2w). Thus, the coefficient of x2m−1

is equal to

m−1∑
k=0

(−1)k

π2k
ζ({2}k · 2

2(m−1−k)

π2(m−1−k)

∑
w∈C(m−1−k)

λ(2w)

 .

The previous sum can be rewritten as

1

π2m−2

m−1∑
k=0

(−1)kζ(2{k})22(m−1−k)
∑

w∈C(m−1−k)

λ(2w)

 .

Comparison of this and the coefficient of x2m−1 obtained from the Taylor
series expansion of the tangent function yields

m−1∑
k=0

(−1)k22(m−1−k)ζ({2}k)
∑

w∈C(m−1−k)

λ(2w)


=

(−1)m−122m(22m − 1)π2m−2B2m

(2m)!
,

which completes the proof. □

Example 2.17. For m = 3 we have

16(λ(4) + λ(2, 2))− 4ζ(2)λ(2) + ζ(2, 2) =
26(26 − 1)π4B6

6!
.

Similarly, using (2.9) we can prove the following theorem.
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Theorem 2.18. For all m ≥ 1, we have

m∑
k=0

(−1)m−k22kλ({2}k)
∑

w∈C(m−k)

ζ(2w)

 =
(−1)m−122mπ2mB2m

(2m)!
.

Proof. Thanks to (2.9), we know that

cot(x) =
1

x

∞∏
n=1

(
1− 22x2

(2n− 1)2π2

) ∞∏
n=1

(
1− x2

n2π2

)−1

.

Considering the factor 1/x in the expression above, we see that x2m−1 is

obtained by taking x2k from first product and x2(m−k) from the second one,
with 0 ≤ k ≤ m. Then the coefficient of x2m−1 is

m∑
k=0

 22k

π2k
λ({2}k) · (−1)m−k

π2(m−k)

∑
w∈C(m−k)

ζ(2w)

 ,

which can be rewritten as

1

π2m

m∑
k=0

(−1)m−kλ({2}k)22k
∑

w∈C(m−k)

ζ(2w).

Comparing this with the coefficient of x2m−1 that we obtain from the Taylor
series of the cotangent function, we have

m∑
k=0

(−1)m−k22kλ({2}k)
∑

w∈C(m−k)

ζ(2w) =
(−1)m−122mπ2mB2m

(2m)!
.

□

Example 2.19. For m = 2 we have

(ζ(4) + ζ(2, 2))− 4λ(2)ζ(2) + 16λ(2, 2) = −24π4B4

4!

Combining Theorems 2.14 and 2.16, we get

m−1∑
k=0

(−1)k22m−2−2k π2k

(2k + 1)!

(
(−1)m−k−1π2m−2k−2E2m−2k−2

22m−2k−2(2m− 2k − 2)!

)

=
(−1)m−122m(22m − 1)π2m−2B2m

(2m)!
.

With a few algebraic manipulations, we can deduce the identity relating
Bernoulli numbers and Euler numbers below.

Corollary 2.20. For all m ≥ 1, we have

m−1∑
k=0

E2m−2k−2

(2k + 1)!(2m− 2k − 2)!
=

22m(22m − 1)B2m

(2m)!
.
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Combining Theorems 2.11 and 2.18, we obtain

m∑
k=0

(−1)m−k4kπ2k

4k(2k)!

∑
w∈C(m−k)

ζ(2w) =
(−1)m−122mπ2mB2m

(2m)!
.

After some manipulations, we can deduce the recurrence for the Bernoulli
numbers below.

Corollary 2.21. For all m ≥ 1, we have

m∑
k=0

(22m−2k − 2)B2m−2k

(2k)!(2m− 2k)!
=

(−1)m22mB2m

(2m)!
.

We now prove a result that follows from the well-known trigonometric
identity sin(2x) = 2 sin(x) cos(x).

Theorem 2.22. For all m ≥ 1, we have

ζ({2}m) =
m∑
k=0

[
1

4k
ζ({2}k)λ({2}m−k)

]
.

Proof. For x ̸= 0, we use (2.3) and (2.4) to write

∞∏
n=1

(
1− (2x)2

n2π2

)
=

∞∏
n=1

(
1− x2

n2π2

) ∞∏
n=1

(
1− 4x2

(2n− 1)2π2

)
.

By Theorem 2.1 we know that the coefficient of x2m on the left-hand side of
the identity above is

(−1)m4m

π2m
ζ({2}m).

By Theorem 2.2 we see that the coefficient of x2m on the right-hand side is

(−1)m

π2m

m∑
k=0

4m−kζ({2}k)λ({2}m−k).

Then we have

ζ({2}m) =
m∑
k=0

[
1

4k
ζ({2}k)λ({2}m−k)

]
.

□

Example 2.23. For m = 1 the identity gives ζ(2) = λ(2) + 1
4ζ(2) while for

m = 2 we have

ζ(2, 2) = λ(2, 2) +
1

4
ζ(2)λ(2) +

1

16
ζ(2, 2).

Combining the above result with Theorems 2.6 and 2.8, we obtain the
identity below.
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Corollary 2.24. For all m ≥ 1, we have
m∑
k=0

1

(2k + 1)!(2m− 2k)!
=

4m

(2m+ 1)!
.

Our next result is a consequence of the well-known elementary fact
sin2(x) + cos2(x) = 1.

Theorem 2.25. For all m ≥ 1, we have

m∑
k=0

ζ({2}k)ζ({2}m−k) =
4m+1

π2

m+1∑
k=0

λ({2}k)λ({2}m+1−k).

Proof. Using (2.3) and (2.4) we can write the trigonometric identity sin2(x)+
cos2(x) = 1 as

x2
∞∏
n=1

(
1− x2

n2π2

) ∞∏
n=1

(
1− x2

n2π2

)

+

∞∏
n=1

(
1− 4x2

(2n− 1)2π2

) ∞∏
n=1

(
1− 4x2

(2n− 1)2π2

)
= 1.

Since the first term is multiplied by x2, the coefficient of x2m+2 on the left
side of the identity above is given by a combination of the coefficient of x2m

from the first factor and the coefficient of x2m+2 from the second one. By
Theorem 2.2, the coefficient from first factor is

(−1)m

π2m

m∑
k=0

ζ({2}k)ζ({2}m−k)

and the coefficient from the second factor is

(−1)m+14m+1

π2m+2

m+1∑
k=0

λ({2}k)λ({2}m+1−k).

Therefore,

m∑
k=0

ζ({2}k)ζ({2}m−k) =
4m+1

π2

m+1∑
k=0

λ({2}k)λ({2}m+1−k).

□

The following two identities were proved by Olver [23] and Schmidt [25]:

(2.14)
(−1)nE2n−1(x)π

2n

4(2n− 1)!
=

∞∑
k=0

cos((2k + 1)πx)

(2k + 1)2n
,

and

(2.15)
(−1)nE2n(x)π

2n+1

4(2n)!
=

∞∑
k=0

sin((2k + 1)πx)

(2k + 1)2n+1
,
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where En(x) denotes the Euler’s polynomial (see [11]), which is given by

En(x) =
n∑

k=0

(
n

k

)
Ek

2k

(
x− 1

2

)n−k

.

Using (2.14) and treating the right-hand side as we did in Theorems 2.6
and 2.8, we have following result.

Theorem 2.26. Given a positive integer l, we have

λ(2l) =
(−1)lπ2l

22l+1

2l−1∑
k=0

(−1)k+1Ek

k!(2l − k − 1)!
.

Next, using our techniques, which is different from the other known
proofs, we prove a well-known result involving Dirichlet’s beta function (see
Koch [18]), given by

β(s) =
∞∑
k=0

(−1)k

(2k + 1)s
.

Theorem 2.27. For all l ≥ 0, we have

β(2l − 1) =
(−1)lπ2lE2l−2

22l(2l − 2)!
.

Proof. We begin by replacing x by x+ 1
2 in (2.14) to obtain

(2.16)
(−1)nE2n−1(x+ 1

2)π
2n

4(2n− 1)!
=

∞∑
k=0

cos((2k + 1)π(x+ 1
2))

(2k + 1)2n
.

Thus, for n > j, the coefficient of x2j+1 in E2n−1(x+ 1
2) is equal to(

2n− 1

2n− 2j − 2

)
E2n−2j−2

22n−2j−2
.

On the other hand, the coefficient of x2j+1 in cos((2k+1)π(x+ 1
2)) is equal

to

(−1)k+1(2k + 1)2j+1(−1)jζ({2}j) = (−1)k+1+j(2k + 1)2j+1π2j

(2j + 1)!
,

which can be derived using the identity:

cos

(
(2k + 1)π(x+

1

2
)

)
=cos((2k + 1)πx) cos

(
(2k + 1)

π

2

)
− sin((2k + 1)πx) sin

(
(2k + 1)

π

2

)
=(−1)k+1 sin((2k + 1)πx).

Hence,
∞∑
k=0

(−1)k+1+j(2k + 1)2j+1π2j

(2j + 1)!
=

(−1)j+1π(2j)

(2j + 1)!
β(2n− 2j − 1).
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Thus, extracting the coefficients of x2j+1 in

(−1)nE2n−1(x+ 1
2)π

2n

4(2n− 1)!

and
∞∑
k=0

cos((2k + 1)π(x+ 1
2))

(2k + 1)2n
,

we have the desired result. □

In the next theorem we make use of the sum∑
a1>···>ak≥1
b1>···>bℓ≥1
c1>···>cm≥1
ai ̸=bi ̸=ci

1∏k
i=1(2ai − 1)2

∏ℓ
i=1(2bi − 1)2

∏m
i=1(2ci − 1)2

,

which is equal to (
k + l +m

k

)(
l +m

m

)
λ({2}k+l+m).

Theorem 2.28. Let r and s be nonnegative integers with r ≡ s (mod 2)
and r ≤ s. Then

⌊r/2⌋∑
k=0

2r−2k

( s+r
2

k

)( s+r
2 − k

r − 2k

)
λ({2}

s+r
2 ) =

1

r!s!

(π
2

)r+s
.

Proof. It follows from (2.3) that

(2.17)

cos(x+ y) =
∞∏
n=1

(
1− 4(x+ y)2

(2n+ 1)2π2

)
(
1− 4

12π2
x2 − 4

12π2
y2 − 8

12π2
xy

)(
1− 4

32π2
x2 − 4

32π2
y2 − 8

32π2
xy

)
· · ·

The expansion of this expression only has powers of the type xrys, with
r and s having the same parity. Let r = 2k + m and s = 2ℓ + m, with
k, ℓ,m nonnegative integers and k ≤ ℓ. The coefficient obtained by mul-
tiplying k terms − 4

(2ai−1)2π2x
2, ℓ terms − 4

(2bi−1)2π2 y
2, and m mixed terms

− 8
(2ci−1)2π2xy is equal to

(
− 4

π2

)k (
− 4

π2

)ℓ(
− 8

π2

)m(k + l +m

k

)(
l +m

m

)
λ({2}k+l+m).

Then the coefficient is equal to

a(k, ℓ,m) = 2m
(
−22

π2

)k+ℓ+m(
k + l +m

k

)(
l +m

m

)
λ({2}k+l+m).
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However, there are many ways to obtain xrys. Let c(r, s) be the coefficient
of xrys in the product (2.17). We have r < s, r ≡ s (mod 2), (r, s) =
(2k +m, 2ℓ+m), where ℓ = s−r

2 + k, m = r − 2k, and 0 ≤ k ≤
⌊
r
2

⌋
. Thus,

c(r, s) =

⌊r/2⌋∑
k=0

a

(
k,

s− r

2
+ k, r − 2k

)
,

which can be rewritten as

c(r, s) =

(
2
√
−1

π

)r+s ⌊r/2⌋∑
k=0

2r−2k

( s+r
2

k

)( s+r
2 − k

r − 2k

)
λ({2}

s+r
2 ).

On the other hand, using the sum angle identity and Taylor series, we know

that the coefficient of xrys is (
√
−1)r+s

r!s! . Therefore, it follows that

⌊r/2⌋∑
k=0

2r−2k

( s+r
2

k

)( s+r
2 − k

r − 2k

)
λ({2}

s+r
2 ) =

1

r!s!

(π
2

)r+s
.

□

Combining the previous result with Theorem 2.8 we can state the well-
known combinatorial identity below.

Corollary 2.29. For r and s nonnegative integers with r ≡ s (mod 2) and
r ≤ s, then

⌊r/2⌋∑
k=0

2r−2k

( s+r
2

k

)( s+r
2 − k

r − 2k

)
=

(
r + s

r

)
.

This identity appears as equation (3.22) in Gould [14].
In the next theorem, we make use of the sum∑

a1>···>ak≥1
b1>···>bℓ≥1
c1>···>cm≥1
ai ̸=bi ̸=ci

(
1

a21 . . . a
2
k

)(
1

b21 . . . b
2
ℓ

)(
1

c21 . . . c
2
m

)
,

is equal to (
k + l +m

k

)(
l +m

m

)
ζ({2}k+l+m).

Theorem 2.30. Let r and s be positive integers with r ̸≡ s (mod 2) and
r < s. Then

⌊(r−1)/2⌋∑
k=0

2(r−1)−2k

( s+r−1
2

k

)( s+r−1
2 − k

r − 2k − 1

)
ζ({2}

s+r−1
2 )

+

⌊r/2⌋∑
k=0

2r−2k

( s+r−1
2

k

)( s+r−1
2 − k

r − 2k − 1

)
ζ({2}

s+r
2 )) =

πr+s−1

r!s!
.
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Proof. Using (2.3), we see that

sin(x+ y) = (x+ y)
∞∏
n=1

(
1− (x+ y)2

n2π2

)
(2.18)

= (x+ y)
∞∏
n=1

(
1− 1

n2π2
x2 − 1

n2π2
y2 − 2

n2π2
xy

)
The coefficient obtained by multiplying k terms− 1

a2i π
2x

2, ℓ terms− 1
b2i π

2 y
2,

and m mixed terms − 2
c2i π

2xy is equal to(
− 1

π2

)k (
− 1

π2

)ℓ(
− 2

π2

)m(k + l +m

k

)(
l +m

m

)
ζ({2}k+l+m).

Then this coefficient is equal to

a(k, ℓ,m) = 2m
(
−1

π2

)k+ℓ+m(k + l +m

k

)(
l +m

m

)
ζ({2}k+l+m).

Let c(r, s) be the coefficient of xrys in the expansion of sin(x + y) and
c̄(r, s) be the coefficient of xrys in the infinity product (2.19) divided by
(x + y). Then, c(r, s) = c̄(r − 1, s) + c̄(r, s − 1). If r ̸≡ s (mod 2), then
(r − 1) ≡ s (mod 2) and r ≡ (s − 1) (mod 2). Both cases are similar to
Theorem 2.28. Thus, the coefficient c(r, s) is equal to(√

−1

π

)r+s−1
⌊(r−1)/2⌋∑

k=0

2(r−1)−2k

( s+r−1
2

k

)( s+r−1
2 − k

r − 2k − 1

)
ζ({2}

s+r−1
2 )

+

⌊r/2⌋∑
k=0

2r−2k

( s+r−1
2

k

)( s+r−1
2 − k

r − 2k − 1

)
ζ({2}

s+r
2 )

 .

On the other hand, using the sum angle identity and Taylor series, we see

that the coefficient of xrys in sin(s + y) is (
√
−1)r+s−1

r!s! , for r ̸≡ s (mod 2).
Thus, for 0 < r < s, we have

⌊(r−1)/2⌋∑
k=0

2(r−1)−2k

( s+r−1
2

k

)( s+r−1
2 − k

r − 2k − 1

)
ζ({2}

s+r−1
2 )

+

⌊r/2⌋∑
k=0

2r−2k

( s+r−1
2

k

)( s+r−1
2 − k

r − 2k − 1

)
ζ({2}

s+r
2 ) =

πr+s−1

r!s!
.

□

Combining the previous Theorem with Theorem 2, we deduce the follow-
ing combinatorial identity.
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Corollary 2.31. For r and s positive integers with r ̸≡ s (mod 2) and
r < s, then

⌊(r−1)/2⌋∑
k=0

2r−2k−1

( s+r−1
2

k

)( s+r−1
2 − k

r − 2k − 1

)
+

⌊r/2⌋∑
k=0

2r−2k

( s+r−1
2

k

)( s+r−1
2 − k

r − 2k

)

=

(
r + s

r

)
.

3. Integer partitions

An integer partition of n is a nonincreasing sequence of natural numbers
whose sum is n. The five partitions of n = 4 are: 4, 3 + 1, 2 + 2, 2 + 1 + 1,
and 1 + 1 + 1 + 1. More information about integer partitions can be found
in [3, 4, 5, 6]. A partition is called a k-colored partition if each part can
appear in k different colors. We denote each part of a k-colored partition
with a subscript that represents its color. For instance, if k = 2, and the
colors are black and red, the twenty 2-colored partitions of n = 4 are: 4b,
4r, 3b + 1b, 3b + 1r, 3r + 1b, 3r + 1r, 2b + 2b, 2r + 2b, 2r + 2r, 2b + 1b + 1b,
2b+1b+1b, 2b+1r+1b, 2r+1r+1b, 2b+1r+1r, 2r+1r+1r, 1b+1b+1b+1b,
1r + 1b + 1b + 1b, 1r + 1r + 1b + 1b, 1r + 1r + 1r + 1b, and 1r + 1r + 1r + 1r.

Let pk(n) denote the number of k-colored partitions of n. The generating
function for pk(n) is given by

∞∑
n=0

pk(n)q
n =

1

(q; q)k∞
,

where we are using the standard q-Pochhammer symbol defined by

(a, q)n =

{
(1− a)(1− aq)(1− aq2) · · · (1− aqn−1), if n > 0;

1, if n = 0.

If n → ∞, we have

(a, q)∞ = lim
n→∞

(a, q)n.

In the next theorem we analyze the following equation, for |q| < 1:

(3.1)
q

(q; q)∞

∞∏
n=1

(
1− q2

π2n2(q; q)2∞

)
=

∞∑
n=0

(−1)nq2n+1

(2n+ 1)!(q; q)2n+1
∞

,

which is obtained by using the product expansion and Taylor expansion of

sin

(
q

(q; q)∞

)
.

We note that this composition of generating functions is well-defined. In-
deed, the independent term in q

(q;q)∞
is equal to 0, which is a sufficient con-

dition to ensure the convergence of the composition of generating functions
(see Wilf [30]).
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We can rewrite (3.1) in a more simply form as

(3.2)
∞∏
n=1

(
1− q2

π2n2(q; q)2∞

)
=

∞∑
n=0

(−1)nq2n

(2n+ 1)!(q; q)2n∞
.

The next result is a consequence of extracting the coefficient of qn from
(3.2).

Theorem 3.1. For all n > 2,

∑
(w1,...,wm)∈C(n)

wi≥2

(−1)mp2(w1 − 2) · · · p2(wm − 2)

(2m+ 1)!
=

⌊n/2⌋∑
k=1

(−1)kp2k(n− 2k)

(2k + 1)!
.

(3.3)

Proof. Firstly we will show that∑
(w1,...,wm)∈C(n)

wi≥2

∑
1≤l1<...<lm

(−1)mp2(w1 − 2) · · · p2(wm − 2)

l21 · · · l2mπ2m

=

⌊n/2⌋∑
k=1

(−1)kp2k(n− 2k)

(2k + 1)!
.

The left side of equation (3.2) can be rewritten as

∞∏
n=1

(
1−

q2
∑∞

k=0 p2(k)q
k

π2n2

)
.

In order to find the coefficient of qn for n > 2 in the previous infinite product,
we consider an integer composition (w1, w2, . . . , wm) ∈ C(n), with wi ≥ 2.
In the term

− 1

π2l21

∞∑
k=0

p2(k)q
k+2,

for l1 ≥ 1, the coefficient of qw1 is equal to

−p2(w1 − 2)

π2l21
.

Also, for l2 > l1, the contribution to the coefficient of qw2 is

−p2(w2 − 2)

π2l22
.

In general, given a sequence l1, l2, . . . , lm, with 1 ≤ l1 < l2 < . . . < lm, the
contribution to the coefficient of qw1+w2+···+wm = qn is

(−1)mp2(w1 − 2)p2(w2 − 2) · · · p2(wm − 2)

π2ml21l
2
2 . . . l

2
m

.
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Considering all sequences l1, l2, . . . , lm, with the aforementioned restric-
tions and all integer compositions in C(n), for each part greater than 1, the
coefficient of qn in the left side of (3.2) is∑

(w1,...,wm)∈C(n)
wi≥2

∑
1≤l1<l2<...<lm

(−1)m
p2(w1 − 2) · · · p2(wm − 2)

π2ml21 · · · l2m

=
∑

(w1,...,wm)∈C(n)
wi≥2

(−1)m
p2(w1 − 2) · · · p2(wm − 2)

π2m

∑
1≤l1<l2<...<lm

1

l21 · · · l2m
.

Since ζ({2}m) = π2m/(2m+ 1)!, we have∑
(w1,...,wm)∈C(n)

wi≥2

(−1)m
p2(w1 − 2) · · · p2(wm − 2)

π2m

∑
1≤l1<l2<...<lm

1

l21 · · · l2m

=
∑

(w1,...,wm)∈C(n)
wi≥2

(−1)m
p2(w1 − 2) · · · p2(wm − 2)

(2m+ 1)!
.

To finish the proof, we extract the coefficient of qn in the right side of
(3.2):

∞∑
n=0

(−1)nq2n

(2n+ 1)!(q; q)2n∞
= 1− q2

3!

∞∑
k=0

p2(k)q
k +

q4

5!

∞∑
k=0

p4(k)q
k

− q6

7!

∞∑
k=0

p6(k)q
k + . . .

It is easy to see that the coefficient of qn in this sum is given by

− 1

3!
p2(n− 2) +

1

5!
p4(n− 4)− 1

7!
p6(n− 6) + . . .+

(−1)n

(2n+ 1)!
p2m(n− 2m),

where m = ⌊n/2⌋. Equating the coefficients of qn on both sides of (3.2), we
obtain the desired result. □

Example 3.2. For n = 6, we have 5 compositions of 6 with parts greater
than 1, namely

{(6), (4, 2), (2, 4), (3, 3), (2, 2, 2)}.
Applying Theorem 3.1 we obtain

− 1

3!
p2(4) +

1

5!
(p2(2)p2(0) + p2(0)p2(2) + p2(1)p2(1))−

1

7!
p2(0)p2(0)p2(0)

as the left side of (3.3). On the other hand, the right side of (3.3) is equal
to

− 1

3!
p2(4) +

1

5!
p4(2)−

1

7!
p6(0)

Simplifying the resulting identity, we are left with

2p2(2) + [p2(1)]
2 = p4(2),
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which can also be verified by using p2(2) = 5, p2(1) = 2 and p4(2) = 14.

Analogously to the previous theorem, the next one is obtained by analyz-
ing the expansion of the cosine function (2.4) with

x =
q

(q; q)∞
.

Theorem 3.3. For all n ≥ 0,

∑
(w1,...,wm)∈C(n)

wi≥2

(−1)mp2(w1 − 2) · · · p2(wm − 2)

(2m)!
=

⌊n/2⌋∑
k=1

(−1)kp2k(n− 2k)

(2k)!
.

Now we present generalizations of the two theorems above.

Theorem 3.4. For any generating function q
∑∞

k=0 akq
k, taking

b2n(i) =
∑

k1+···+k2n∈C(i)

ak1 . . . ak2n ,

we have

⌊m/2⌋∑
n=1

(−1)n

(2n)!
b2n(m− 2n) =

∑
(w1,...,ws)∈C(m)

wi≥2

(−1)sb2(w1 − 2) . . . b2(ws − 2)

(2s)!
.

Proof. By the Taylor expansion of cosx for x = q
∑∞

k=0 akq
k, we have

cos

(
q

∞∑
k=0

akq
k

)
=

∞∑
n=0

(−1)n

(2n)!

(
q

∞∑
k=0

akq
k

)2n

.

Since
(
q
∑∞

k=0 akq
k
)2n

= q2n
∑∞

i=0 b2n(i)q
i, with

b2n(i) =
∑

k1+···+k2n=i
kj≥0

ak1 . . . ak2n , the coefficient of qm is equal to

⌊m/2⌋∑
n=1

(−1)n

(2n)!
b2n(m− 2n).

On the other hand, by the product expansion of cos
(
q
∑∞

k=0 akq
k
)
we known

that
∞∏
n=1

(
1− 4

(2n+ 1)2π2
q2

( ∞∑
i=0

b2(i)q
i

))
,

which can be written as

1− 4

π2
λ(2)b2(0)q

2 − 4

π2
λ(2)b2(1)q

3

+

(
− 4

π2
λ(2)b2(2) +

(
− 4

π2

)2

λ(2, 2)b2(0)b2(0)

)
q4 + · · · .
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Thus, the coefficient of qm, for m > 1, is given by∑
(w1,...,ws)∈C(m)

wi≥2

(
− 4

π2

)s

λ({2}s)b2(w1 − 2) . . . b2(ws − 2).

Substituting λ({2}s) by the result of Theorem 2.8, the last expression be-
comes ∑

(w1,...,ws)∈C(m)
wi≥2

(−1)sb2(w1 − 2) . . . b2(ws − 2)

(2s)!
.

Then, for all m > 1, we have

⌊m/2⌋∑
n=1

(−1)n

(2n)!
b2n(m− 2n) =

∑
(w1,...,ws)∈C(m)

wi≥2

(−1)sb2(w1 − 2) . . . b2(ws − 2)

(2s)!
,

which completes the proof. □

Example 3.5. The five compositions of 6 with parts greater than 1 are
{(6), (4, 2), (2, 4), (3, 3), (2, 2, 2)}. Thus, by Theorem 3.4 we have

− 1

2!
b2(4) +

1

4!
b4(2)−

1

6!
b6(0) = − 1

2!
b2(4) +

1

4!
(b2(2)b2(0) + b2(0)b2(2)

+ b2(1)b2(1))−
1

6!
b2(0)b2(0)b2(0),

which, after some cancellations, gives b4(2) = 2b2(2)b2(0) + b22(1). In terms
of the coefficients ak of the generating function, this equation can be rewrit-
ten as 4a30a2 +6a20a

2
1 = 2(2a0a2 + a21)a

2
0 + (2a0a1)

2. Hence, 4a30a2 +6a20a
2
1 =

(4a30a2 + 2a20a
2
1) + 4a20a

2
1.

Example 3.6. The thirteen compositions of 8 with parts greater than 1 are

(8) (6,2) (2,6) (5,3) (3,5) (4,4) (4,2,2)
(2,4,2) (2,2,4) (3,3,2) (3,2,3) (2,3,3) (2,2,2,2)

Then by Theorem 3.4 we have

30b4(4)− b6(2) = 60b2(4)b2(0) + 60b2(3)b2(1) + 30b22(2)

− 3b2(2)b
2
2(0)− 3b22(1)b2(0).

Theorem 3.7. For any generating function q
∑∞

k=0 akq
k, taking

b2n(i) =
∑

(k1,...,k2n)∈C(i)

ak1 . . . ak2n ,

we have

⌊m/2⌋∑
n=1

(−1)n

(2n+ 1)!
b2n(m− 2n) =

∑
(w1,...,ws)∈C(m)

wi≥2

(−1)sb2(w1 − 2) . . . b2(ws − 2)

(2s+ 1)!
.
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Example 3.8. Let p1m(n) denote the number of partitions of n having only
parts equal to 1 in m different colors and having at least one part 1 of each
color. For instance: p1m(n) = 0 if n < m and p1m(m) = 1. The generating
function for p1m(n) is given by

∞∑
n=0

p1m(n)qn =
qm

(1− q)m
.

Thus, by Theorem 3.7, we know that, for all n ≥ 0,

n∑
m=0

∑
(w1,...,wm)∈C(n)

(−1)mp12(w1) · · · p12(wm)

(2m+ 1)!
=

⌊n
2
⌋∑

m=0

(−1)m

(2m+ 1)!
p12m(n).

4. Concluding Remarks

There are many trigonometric identities not explored here. Considering
compositions with convergent q-series, gamma function, and other special
functions, we believe that there are more identities like the ones presented
here to be discovered. We leave such an investigation to the interested
reader. Another direction to be taken is to look for combinatorial proofs for
the theorems presented in this paper.
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22. István Mező and Michael E. Hoffman, Zeros of the digamma function and its barnes

g-function analogue, Integral Transforms and Special Functions 28 (2017), no. 11,
846–858.

23. F. W. J. Olver, D.W. Lozier, R. F. Boisvert, and C. W. Clark, Nist handbook of
mathematical functions, Cambridge University Press, 2010.

24. Mika Sakata, Taylor series for the reciprocal gamma function and multiple zeta values,
Proc. Japan Acad. 93 (2017), 47–49.

25. Maxie D. Schmidt, Zeta series generating function transformations related to gener-
alized stirling numbers and partial sums of the hurwitz zeta function, Online Journal
of Analytic Combinatorics 12 (2017), 1–22.

26. Robert Schneider, Partition zeta functions, Research in Number Theory 2 (2016),
1–17.

27. A. V. Sills, Compositions, partitions, and fibonacci numbers, Fibonacci Quarterly 40
(2011), 348–354.

28. Jerome Spanier and Keith B. Oldham, An atlas of functions, Taylor & Francis, 1987.
29. T. Terasoma, Mixed tate motives and multiple zeta values, Inventiones Mathematicae

149 (2002), 339–369.
30. H. S. Wilf, Generatingfunctionology, Academic Press, Inc, 1989.
31. D. Zagier, Evaluation of the multiple zeta values ζ(2, . . . , 2, 3, 2, . . . , 2), Annals of

Mathematics 175 (2012), 977–1000.
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