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IDENTITIES INVOLVING TRIGONOMETRIC, ZETA AND
PARTITION FUNCTIONS

MATEUS ALEGRI, ROBSON DA SILVA, AND WAGNER FERREIRA SANTOS

ABSTRACT. Using well-known trigonometric functions, we establish
identities involving the multiple zeta function and the multiple lambda
function. Furthermore, we derive new identities by applying classical
trigonometric relations. Some of these results are expressed in terms
of colored partitions, highlighting connections between partition theory
and special functions.

1. INTRODUCTION

We recall that the multiple zeta function (MZV) is given by

1
C(s1,82,...,8;) = Z PN T am——

1,,52
n n . .n
ni>na>..>np>1 0 L2 k

where ((s1, s2,. .., i) converges absolutely in the domain R(s1+---+s;5) > j
for every j = 1,...,k. The k-tuple having all entries equal to s is denoted
by {s}*. Thus,

(sh= % !

Y E——
n n .. 'n
n1>n2>...>np>1 ( 17%2 k)

For convenience we let (({n}") = 1. A multi-index s = (s1,s2,...,5%)
is said to be admissible if the series ((s) converges (see Hoffman [16] and
Spanier [28]).

Working with the infinite product representation for sin z, namely

00 2

. x

Slnl':l‘ll (1—22>

nm
n=1

(see Eberlein [10]) and its representation as a Maclaurin series naturally
yields an identity involving the multivariate zeta function as we can see in
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the first theorem of this paper. In addition, using the same approach with
the function cosx a different function appears, namely multiple lambda
function, which is defined as follows.

Definition 1.1. The multiple lambda function is defined by
1

7Skz) = ‘
n1>n2;>nk>1 (2n1 - 1)31 (2’]7,2 — 1)82 L. (an _ 1)sk

)\(51, 52, ..

In particular,

1
A{s}*) = :
n1>n2;>nk21 ((2n1 —1)(2ng —1)...(2ng — 1))®
This paper is devoted to establishing identities involving the multiple zeta
function and the multiple lambda function using some well-known trigono-
metric identities and elementary tools. Some of the identities we present
here involve colored partitions, including
[n/2]
3 (=D)"pa(w1 —2) - pa(wm —2) _ nz: (=1)%par(n — 2k)
(2m +1)! (2k +1)! ’

wi+-+wm €C(n) k=1

w;>2
where C'(n) is the set of integer compositions of n and pg(n) denotes the
number of partitions of n whose parts have one of k colors. In Section 2, we
present a number of identities involving the multiple zeta and the multiple
lambda functions. Two new series, namely Z(k,?¢,m) and A(k,¢,m), are
introduced in Section 3 and some identities involving them are derived.
Finally, in Section 4, we present some results involving k-colored partitions.

2. RESULTS INVOLVING BASIC TRIGONOMETRIC FUNCTIONS

In order to prove some results in this section, we need the three lemmas
below.

Lemma 2.1. Let f be a polynomial. The coefficient of z™ in the product
L2, (1 + #nz)s) is given by

m

(2.1) > fi)s .o flim)®

1> >0 >1

Proof. In order to obtain 2™ from [[>7 (1 + ﬁ) we take m factors of
the type ﬁ, with different ¢;. So the coefficient of 2™ is
J

m

2 Fin)s ... flim)*

11> >0y, >1
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Lemma 2.2. Let f and g be polynomials. The coefficient of 2™ in

II <1 * le;)s) loj <1 * gfj)t>

n=1

s given by

m 1
(2.2) > > F0) . fln)®

k=0 | \i1>->ip>1

o Z 1 Sk

o GG gl

Proof. The term 2™ is obtained by combining a z* from the first product
with 2™~ % from the second one, where k varies from 0 to m. By Lemma
2.1, the coefficient of z* in the first product is

1 k
> 7. fln)e | ©

i3> >y >1

and the coefficient of 2™~ % in the second product is

Z ! pm—k,

1> >imo g >1 g(jl)t ot g(jm—k)t

Therefore, the coefficient of 2™ is given by (2.2). O
We recall below the notion of the composition of a positive integer.

Definition 2.3. A composition of a positive integer n is an ordered collec-

tion of positive integers whose sum is n. The set of compositions of n is
denoted by C(n).

Example 2.4. The eight compositions of 4 are
C4) ={4),31),(1,3),(2,2),(2,1,1),(1,2,1),(1,1,2),(1, 1,1, 1)}.

More about integer compositions can be found in Heubach and Man-
sour [15] and Sills [27].

Lemma 2.5. Let f be a polynomial and a,s € R. If |z| < ‘@ , for all

n > 1, then the coefficient of 2™ in []72, (1 + %) is given by

(o)™
Z Z f(z'l)uns o f(,ij)wj37

(WI7~..,wj)€C(m) i1>...>ij21

where C(m) is the set of integer compositions of m.
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-1
Proof. Note that the factor <1 + f(‘lyf)s> can be seen as the sum of the
geometric series having ratio —ﬁ, since the absolute value of this ratio is

‘f(n

less than 1, or equivalently, |z| < ‘ for all n > 1. Rewriting the infinite

product in the form

> az a222 CLSZS
11 (1 T e TimE T fmE )

n=1

we see that the coefficient of 2™ is obtained by taking a factor of the type
;(g‘jljki in j different parenthesis, with (w1, ...,w;) € C(m). So, wy +--- +
w; = m and the coefficient of 2™ is given by

(=a)™
O S

(W17~..,wj)€C(m) i1>...>ij21

O

Throughout this paper, we make use of the expansions of the trigonomet-
ric functions below:

. o~ (D" 4,
(2.3) sinx = Z (2(n +)1) 2ntl —xH ( - 2)

e L 4a?
(2.4) cosx = Z ((Qn;! %" = H (1 - (271_1)2772>

n=0 n=1
Analytic proofs of these identities can be found in Eberlein [10].
For [z| < §, we have

o0 [e.9]

—1)" n— 1)272
25)  seex=3 T T . (2n - 1)
n=1

—  (2n)! 2n —1)2)m2 — 4o

For |z| < m, we have

[e.e]

(2.6) cscx = é-i— Z =

= H o g

The tangent and cotangent functions satisfy

~1(22" — 2) By, 221
(2n)!

I G i O 1 - e
(2.7) tanz = nz:(] @n)! x

B o [(n?r? — 2? (2n —1)?
- : n? (2n —1)272 — 422 )’

n=
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for |z| < m/2, and

(o]
_ (=1)""'2°"Byy 5,1
(2.8) cotr = nEO o)l x

B H( n_221) 4x2> <n27r7;2x2>’

for |z| < w. The numbers B,, and E,, for n > 0, are Bernoulli and Euler
numbers, respectively (see Abramowitz [1] and Arfken [7]). We recall that
the nth Euler number E,, is defined by the Taylor series expansion

o0

1 En .
cosh z _ZF ’

and the nth Bernoulli numbers B, is defined by the Taylor series expansion
o
r B, .,
o1
n=0

The next theorem is a well-known result due to Euler (see Hoffman [16],
Terasoma [29] and Zagier [31]). We present an alternative proof of this
result.

Theorem 2.6 (Euler). For all m > 1, we have

2m
(2.9) C({2}") =

s

(2m +1)!

Proof. Taking a = —ﬂ%, p(n) = n, and s = 2 in Lemma 2.1, it follows that
the coefficient of 2™ in (2.3) is equal to

(=™ 1
ﬂ-Zm Z i2 . Z72n

B> >0, L

Let z = 22 in (2.3). Since there is an = multiplying the product in (2.3), by

Lemma 2.1 the coefficient of z2™*! in the expansion of the sine function is
equal to %C (2{m}). On the other hand, considering its Taylor series we

recall that this coeflicient is equal to % Hence,

7T2m

C({2}™) = Gmil

U

Example 2.7. In particular, for m = 1 we have {(2) = % while form = 2
4

we know that ((2,2) = {55.

We prove below a theorem for the multiple lambda function, which is
analogous to Theorem 2.6.
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Theorem 2.8. For all m > 1, we have

7.[.2m

(2.10) M2 = g

Proof. Taking a = —%, f(n) =2n—1 and s = 2 in Lemma 2.1, we see that
the coefficient of 2™ on the right-hand side of (2.4) is equal to

(=4)™ 1
2m i1>2;im (27 — 1)2... (26, — 1%’
Taking z = 22, it follows by Theorem 2.1 that the coefficient of 2™ in the
expansion of the cosine function is equal to ;Qm A({2}™). On the other

n™

hand its Taylor series yields (( )T A8 the coefficient of 2?™. Therefore,

2m
2} = ————.
A2 4m(2m)!
([
Example 2.9. For m =1 we have \(2) = %2, while m = 2 yields \(2,2) =
7r4
ﬂ.
The next result follows directly from Theorems 2.6 and 2.8.
Corollary 2.10. For all m > 1, we have
m 2m +1 m
(2.11) A = () e
In the next theorem, if w = (wy,ws,...,w;) € C(m), we let ((2w) denote

C(le, 211}2, cee ,2wj).

Theorem 2.11. For all m > 1, we have

1)m—1(22m _ 2)7.‘_2mB2m
(2.12) we%: )g (2w) @] :

where C(m) is the set of integer compositions of m.

Proof. Thanks to (2.7) we see that the cosecant function can be written as

the infinite product
1 00 —1
csc(x — .
=55

For |z| < 7, we have # < 1 and then : L, is the limit of the geometric
series with ratio —Z-. Taking @ = —25, f(n) =n, and s = 2 in Lemma 2.5,
n<m X0

we see that the coefficient of 2™ in the infinite product above is equal to
1

> > ma
2w Z.2’wj :

(W1 ey )EC (M) 11>+ >0 21 1y
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This expression can be rewritten as Wg#m Z(wl,...,wj)eC(m) ¢(2wr, ..., 2w;) or
simply
1
= D (2w
weC(m)

Since z = x? and there is a factor 1/z multiplying the infinite product,
we see that the coefficient of 2?™~1 in the cosecant function is equal to
ﬁim 2 wec(m) C(2w). On the other hand, considering the Taylor expansion of
(=1)™~ (2" ~2)Bom
(2m)! :

Therefore, 3, cc(m) C(2w) = (*1)7"/—1(2(22:’1;!2)71'21%32,”1. O

the cosecant function, we know that such a coefficient is

Example 2.12. Since C(2) = {(2),(1,1)} and C(3) = {(3),(2,1),(1,2),
(1,1,1)}, we have

(2-2Y7*B
C(4) +¢(2,2) = T4’
C(6) +¢(4,2) +¢(2,4) +¢(2,2,2) = (26—2!)”636_

The corollary below is an immediate consequence of combining Theorem
2.11 and the following identity (see [1, Identity 23.2.6])

(2m)*™(=1)™"" Bam

¢(2m) = 2(2m)!
Corollary 2.13. We have
22m—1 -1
> ¢w) = <22(m_1)> ¢(2m).

weC(m)

The next result can be proven similarly to Theorem 2.11, using the ex-
pression (2.7) for the cosecant function instead of the secant function. So
its proof will be omitted.

Theorem 2.14. For all m > 1, we have

_ m7.‘.2m m
(2.13) > A(m):M.

Example 2.15. We have

T Ey
A4)+A(2,2) = EYYTR
6
A(6) +A(4,2) + A(2,4) + A(2,2,2) = _7;67?‘6.

The next theorem is obtained by using the infinite products expansion of
tangent function (2.8).



160 MATEUS ALEGRI, ROBSON DA SILVA, AND WAGNER FERREIRA SANTOS

Theorem 2.16. For all m > 1, we have

m—1

DFRIRC(2)) ST A2w)

k=0 weC(m—1-k)

(_1)m—122m(22m _ 1)7T2m_2Bgm
(2m)! '

Proof. We rewrite (2.8) as

ot =TT (1) T (- )

n=1

Since we have a factor x multiplying the product above, in order to obtain
2™~ 1 we have to get ™2 from the two products: z2* from the first one
and z2(™m=1-%) from the second one, with 0 < k <m — 1 By Lemma 2.1
we have that the coefficient of 2?* in the first product is ¢ 2k ({2}%). O

the other hand, it follows by Lemma 2.5 that the coefﬁcient of z2(m=1-k) in

. 92(m—1-k) . _
second one is W weC(m—1—k) M2w). Thus, the coefficient of p?m—l

is equal to

m—1 (m—1—k)

2
Qk C {2}k 2 m l—k) Z )\(2’11))

k=0 weC(m—1—k)

The previous sum can be rewritten as

weC(m—1—k)

2m—1

Comparison of this and the coefficient of x obtained from the Taylor

series expansion of the tangent function yields

m—1
RPN YT A 2w)
k=0 weC(m—1—k)
B (_1)m—122m(22m _ 1)7T2m_2BQm
(2m)! ’
which completes the proof. O

Example 2.17. For m = 3 we have

20(26 — 1)7*Bg
6! '

Similarly, using (2.9) we can prove the following theorem.

16(A(4) + A(2,2)) —4C(2)N(2) + ((2,2) =
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Theorem 2.18. For all m > 1, we have

m _1\ym—1 2m7.‘.2m
S o) Y e | = E 2T e

(2m)!
k=0 weC(m—k)
Proof. Thanks to (2.9), we know that

=21 (- ) L (- )

n=1 n=1

Considering the factor 1/z in the expression above, we see that 22™~! is

obtained by taking z2* from first product and 22 ~*) from the second one,
with 0 < k < m. Then the coefficient of 221 is

% s
S e Sl Y e,

k=0 weC (m—Fk)
which can be rewritten as
7 U S cow)
weC(m—k)

Comparing this with the coefficient of 22™~! that we obtain from the Taylor
series of the cotangent function, we have

S Y ceu) - (Y2 B,
k=0 weC(m—k) (2m)!
O
Example 2.19. For m = 2 we have
(C(4) +¢(2,2) — 4AM(2)¢(2) + 160(2,2) = _2471:'34

Combining Theorems 2.14 and 2.16, we get

-1 g o7
m (_1)k22m—2—2k 7T2k (_1)m k 17r2m 2k 2E2m72k72
kz_o (2k + 1)! 22m=2k=2 (2, — 2k — 2)!

(—1)m—122m(22m _ 1\p2m=2p,
(2m)!
With a few algebraic manipulations, we can deduce the identity relating
Bernoulli numbers and Euler numbers below.

Corollary 2.20. For all m > 1, we have

ni: Eop—2k—2 _ 2%m (22m — >B2m
— (2k + 1)!I(2m — 2k — 2)! (2m)!
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Combining Theorems 2.11 and 2.18, we obtain
m ( 1)mfk4k7r2k

g - 4F(2K)!

After some manipulations, we can deduce the recurrence for the Bernoulli
numbers below.

_1\ym—1 2m7r2m m

weC(m—k)

Corollary 2.21. For all m > 1, we have

m (22m—2k o 2)B2m—2k _ (_1)m22mBzm
2K)1(2m — 2k)! 2m)!

k=0
We now prove a result that follows from the well-known trigonometric
identity sin(2z) = 2sin(x) cos(x).

Theorem 2.22. For all m > 1, we have

m

2™ = Y- | etz

k=0
Proof. For x # 0, we use (2.3) and (2.4) to write
Nt (22)2 > x? > 42
1— - R [ —

By Theorem 2.1 we know that the coefficient of 2™ on the left-hand side of
the identity above is

EU .

By Theorem 2.2 we see that the coefficient of 2*™ on the right-hand side is

C S a2y,
k=0

Then we have

m

(2 =Z[ M) |

k=0
i

Example 2.23. For m = 1 the identity gives ((2) = A(2) + ${(2) while for
m = 2 we have

C(2.2) = A(2,2) + CRIAR) + 1:0(2,2).

Combining the above result with Theorems 2.6 and 2.8, we obtain the
identity below.
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Corollary 2.24. For allm > 1, we have
- 1 g
2k +1)!(2m — 2k)! — 2m+ 1)

k=0
Our next result is a consequence of the well-known elementary fact
sin?(x) + cos?(x) = 1.
Theorem 2.25. For all m > 1, we have

4m+1 m+1

A{ZY)A({2 ).

k=0

ZC {22y =

Proof. Using (2.3) and (2.4) we can write the trigonometric identity sin?(z)+

cos?(z) =1 as
o0 2\ > 2
9 T T
“11 <1‘nzw2> 11 <1‘naw2>
2 0 42
—_ l—-—— =5 | =1
+H( 2n—127r2>7£11< (2n—1)27r2>

Since the first term is multiplied by x2, the coefficient of 222 on the left
side of the identity above is given by a combination of the coefficient of z2™
from the first factor and the coefficient of 2>™*2 from the second one. By
Theorem 2.2, the coefficient from first factor is

2m ZC {223 ")

and the coefficient from the second factor is

_1\ym+1,m+1 m+1
e 3 MA) ™)
k=0

Therefore,

4m+1 m+1

A2y ).

k=0

>y =
k=0

O

The following two identities were proved by Olver [23] and Schmidt [25]:

(—1)"Eop 1 (z)m" B 2. cos((2k + 1)7x)
&14) 4(2T2L —11)! - Z 2k +1)2n
and
(2.15) (—1)"Egp (x)m2n L i sin((2k + 1)7x)

4(2n)! (2k:+ 1)2nt+l 7

k=0
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where E,(z) denotes the Euler’s polynomial (see [11]), which is given by
n n—k
n Ek 1

Using (2.14) and treating the right-hand side as we did in Theorems 2.6
and 2.8, we have following result.

Theorem 2.26. Given a positive integer I, we have

20—1
(_1)l7r2l (_1)kz+1Ek
22+1 K20 —k— 1)
k=0

A(20) =

Next, using our techniques, which is different from the other known
proofs, we prove a well-known result involving Dirichlet’s beta function (see
Koch [18]), given by

o
Bls)=>"
k=0
Theorem 2.27. For alll > 0, we have
(—I)ZWQZEQZ_Q
22L(2] — 2)!

(="
(2k+1)%°

B2t~ 1) =

Proof. We begin by replacing = by x + % in (2.14) to obtain

(V" Bonoalo + " 5 cos(Zh+ Dlo + 5))

(2.16) 4(2n —1)! (2k + 1)

k=0

Thus, for n > 7, the coefficient of 2% in Ea, {(z + %) is equal to

2n —1 Eon 22
o —2j —2) 222"
On the other hand, the coefficient of %1 in cos((2k + 1)7(z + 3)) is equal
to

1\k+14j 241,25
(-1) (2k+1) T

(=D 2k + )P (-1 C({2)) =

(25 + 1)! (25 + 1)

(27 +1)! ’
which can be derived using the identity:
1
cos ((2k + Dm(z + 2))

— cos((2k + 1)mz) cos ((Qk v 1)%) — sin((2k + 1)7z) sin ((2k n 1)%)

=(—1)**Lsin((2k + 1)7z).
Hence,

2 (—D)FHI 2k + 1) g2 (—1)7 (g4

k=0
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Thus, extracting the coefficients of z2%/+1 in
(—1)"Eop_1(z + %)772”

4(2n —1)!
and
i cos((2k + D)7(z + 1))
2n ’
— (2k+1)
we have the desired result. O

In the next theorem we make use of the sum

1
2 [T (2a; — )2 [Ti_y (26 — D2 T2, (20 — 1)2

a;>-->ap>1
b1>-->bp>1
1> >em>1

a;#bi#c;
k+l4+m\ (l+m kHl+m
( k ) ( - )A<{2} )

which is equal to
Theorem 2.28. Let r and s be nonnegative integers with r = s (mod 2)
and r <s. Then

[r/2] stry\ /str L 1 T+s
or=2k( 2 \( 2 “F\ oty - (T _
Z (k)(r—%:) ({20 =) r!s!<2)
k=0
Proof. Tt follows from (2.3) that
(2.17)

e A(z +y)°
cos(z +y) = g <1 “ong 1)27r2>

4, 4 , 8 4, 4 , 8
<1_ 122t T zeY T 127r2$y) (1—327T2x T gz2Y TRtV

The expansion of this expression only has powers of the type z"y®, with
r and s having the same parity. Let r = 2k + m and s = 2¢ + m, with
k, ¢, m nonnegative integers and k < £. The coefficient obtained by mul-
tiplying k terms —sz, ¢ terms —Wﬁ, and m mixed terms

—Wwy is equal to

(4 (4 (2) (i) (e

Then the coefficient is equal to

ol b.m) = 27 (—25)””’” <k+i€+ m> <l -:nm>)\({2}k+l+m)‘

s
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However, there are many ways to obtain x"y®. Let c¢(r, s) be the coefficient
of 2"y® in the product (2.17). We have r < s, r = s (mod 2), (r,s) =
(2k +m, 20 +m), where £ = 5" + k, m =r —2k,and 0 < k < L%J Thus,

[r/2]
c(r,s) = Za(k,82r+k,r—2k¢>,

k=0

which can be rewritten as

o) = (1) éj () (e

On the other hand, using the sum angle identity and Taylor series, we know
that the coefficient of 2"y* is =0 Therefore, it follows that

rls!

[r/2] s+r s+r k
k(2 N[ 2 — siry Lo gmyrs
kZOQ <k><r—2k)>\({2}2)_rls!(2) ’

O

Combining the previous result with Theorem 2.8 we can state the well-
known combinatorial identity below.

Corollary 2.29. For r and s nonnegative integers with r = s (mod 2) and

r < s, then
/2] s+r s+r
3 o N R _ (s
k r— 2k r )
k=0

This identity appears as equation (3.22) in Gould [14].
In the next theorem, we make use of the sum

Z 1 1 1
a?...az ) \b?...b2) \c3...c2)’

a1>>ap>1

b1>-->bp>1

1> >em>1
a;#bi#c;

(k e m) (l fn’”) ({2,

Theorem 2.30. Let r and s be positive integers with r # s (mod 2) and
r <s. Then

L(r—1)/2] s+r—1 s+r—1 k
(r—1)—2k 2 2 str—1
kz_o 2 ( k >(r—2k‘—1)<({2} =)

[r/2] ok s+r—1 st+r—1 k sir 7Tr+sfl
2" 2 2 2727 ) = ———.
+k§::0 < k )(r—Qk—l)C({}z)) 15!

is equal to
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Proof. Using (2.3), we see that

n2m?

(2.18)sin(z +y) = (z+y) ﬁ( x+?/)2>

= :E—l— ﬁ 1 290
= y: n22y n2n2 Y

The coefficient obtained by multiplying k terms — ﬁa@, £ terms —ﬁy{

and m mixed terms —#xy is equal to
7

(2 () () ¢

Then this coefficient is equal to
I\l m\ 1+ m
artm =2 () )T etz
s k m

Let ¢(r,s) be the coefficient of z"y® in the expansion of sin(z + y) and
¢(r,s) be the coefficient of 2"y* in the infinity product (2.19) divided by
(x +y). Then, ¢(r,s) = ¢(r —1,s) +¢(r,s —1). If r # s (mod 2), then
(r—1) =s (mod 2) and r = (s — 1) (mod 2). Both cases are similar to
Theorem 2.28. Thus, the coefficient ¢(r, s) is equal to

r+s—1 [|(r—1)/2] str— s+r—
V-1 o(r—1)—2k +2 ! +2 Lk o1 5=t
T Z k r—2k—1 ({2} )

k=0
/2] o [ strol .
DI () (5 e

On the other hand, using the sum angle identity and Taylor series, we see

that the coefficient of x"y® in sin(s + y) is %, for r £ s (mod 2).
Thus, for 0 < r < s, we have

L(?"*l)/QJ s+r— s+r—
2(T—1)—2k +2 1 +2 1 _k' S—H‘ 1
> P (e

k=0

/2] s+r—1 r+s—1
sl pr.
r—2k 2 2 —
+22 < k ><r—2k—1><<{2}2)_ R

O

Combining the previous Theorem with Theorem 2, we deduce the follow-
ing combinatorial identity.
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Corollary 2.31. For r and s positive integers with r # s (mod 2) and
r <s, then

[(r—1)/2] s+7" 1 s+7" 1k lr/2] s+r 1 str=1 _ L.
Z or—2k—1 - Z or—2k 2
k r— 2k -1 r—2k

()

3. INTEGER PARTITIONS

An integer partition of n is a nonincreasing sequence of natural numbers
whose sum is n. The five partitions of n =4 are: 4,3+ 1,2+2,2+1+1,
and 1+ 14 1+ 1. More information about integer partitions can be found
n [3, 4, 5, 6]. A partition is called a k-colored partition if each part can
appear in k different colors. We denote each part of a k-colored partition
with a subscript that represents its color. For instance, if k¥ = 2, and the
colors are black and red, the twenty 2-colored partitions of n = 4 are: 4,
4py 3y + 14y 3p + 15y 3 + 1p, 3p + 10y 25+ 29, 20 + 2, 20 + 25, 25 + 1y + 1y,
2p+1p+1p, 25+ 1+ 1y, 2, + 1+ 1y, 25+ 1+ 15, 2.+ 1+ 1, 1+ 15+ 15+ 1,
Lo+1p+ 1+ 1, L+ 1, +1p+ 1, L, + 1.+ 1.+ 1p,and 1, + 1, + 1, + 1,.

Let pr(n) denote the number of k-colored partitions of n. The generating
function for px(n) is given by

> nie = o
k(n)g" = 77
(; )%
where we are using the standard g-Pochhammer symbol defined by
(1—a)(1—aq)(1—ag®)  --(1—ag"t), ifn>0;
(CL, Q)n = .
1, ifn=0.
If n — oo, we have
(CL, Q)oo = nh—>ngo(a7 Q)n-
In the next theorem we analyze the following equation, for |g| < 1:

q o0 q2 B oo (_l)nq2n+1
31 o1l (1 - (g q)§o> - ; (2n + 1)!(g; )3

(€ @)oo 75

which is obtained by using the product expansion and Taylor expansion of

sin ((qz)oj .

We note that this composition of generating functions is well-defined. In-
deed, the independent term in ﬁ is equal to 0, which is a sufficient con-

dition to ensure the convergence of the composition of generating functions
(see Wilf [30]).
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We can rewrite (3.1) in a more simply form as

oo q2 B 00 (_l)nq2n
(3.2) 11 (1 - ﬂznz(q;q)g) - n;) (2n+1)(g; )2

n=1

The next result is a consequence of extracting the coefficient of ¢" from
(3.2).

Theorem 3.1. For all n > 2,

(3.3)
(=D)"pa(w1 —2) - pa(wm —2) _ & (—=1)*poy(n — 2k)
<w11---7wzm60<n> (2m +1)! B ; Qk+1)!

wi>2
Proof. Firstly we will show that

3 3 (=1)™pa(w1 — 2) - - - po(wm — 2)

l2 l2 ﬂ-Qm

(W1, ywm )EC(n) 1< <<,

n2
/J pgkn—Qk‘)

(2k+1

M

k=1
The left side of equation (3.2) can be rewritten as

< ¢ Ziiopz(k)qk) '

m2n2

In order to find the coeflicient of ¢" for n > 2 in the previous infinite product,
we consider an integer composition (wq,ws,...,w,) € C(n), with w; > 2.

In the term
k+2
212 ZP
I k=0

for {1 > 1, the coefficient of ¢** is equal to
_pa(w1 —2)
2
w23
Also, for I3 > l1, the contribution to the coefficient of ¢*2 is
_p2(w2 —2)
w23
In general, given a sequence l1,lo,...,l,, with 1 <1} <y < ... <y, the
contribution to the coefficient of gwitw2++Twm — gn j

(=1)"p2(w1 — 2)p2(w2 — 2) - - - p2(wy, — 2)
mT2mi2i2 12, ’
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Considering all sequences I1,1s, ..., L, with the aforementioned restric-
tions and all integer compositions in C'(n), for each part greater than 1, the
coefficient of ¢" in the left side of (3.2) is

Sy sl
a2,
(wl,.A.,wm)EC(n) 1<hi<la<...<lm
wi>2
-~ p2(w1 —2) - - pa(wp — 2) 1
B Z (=™ 2m Z l%...z?ﬂ’
(w1, wm )EC(N) 1<l <la<...<lm

Since (({2}™) = %™ /(2m + 1)!, we have

Z (_1)mP2(w1 —2)-pa(wm — 2) Z 21

2m
T 1 m
(w1,...,wm )EC(n) 1<l <2 <...<lm
'UJ7;22

-y e =2 pa(en —2)
(w1,...swm)€C(n) (2m +1)!
i >2

To finish the proof, we extract the coefficient of ¢” in the right side of
(3.2):

S ED TN DS paket
e (2n+1)!(g; )2 3l 2 5l 4

6 o0
q
fﬁsz(zﬁ)q’w...
" k=0

It is easy to see that the coefficient of ¢" in this sum is given by

1 1 1 (—1)n
where m = |n/2|. Equating the coefficients of ¢" on both sides of (3.2), we
obtain the desired result. ]

Example 3.2. For n = 6, we have 5 compositions of 6 with parts greater
than 1, namely

{(6),(4,2),(2,4),(3,3),(2,2,2)}.
Applying Theorem 3.1 we obtain

222 (4) + 2 (22(2)p2(0) + p(0)p2(2) + p2()pa(1)) — Zp2(O)p2(0)pa(0)

as the left side of (3.3). On the other hand, the right side of (3.3) is equal
to

1 1 1
—§P2(4) + am(?) - ﬂp6(0>
Simplifying the resulting identity, we are left with
2p2(2) + [p2(1)]* = pa(2),
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which can also be verified by using p2(2) = 5,p2(1) = 2 and ps(2) = 14.

Analogously to the previous theorem, the next one is obtained by analyz-
ing the expansion of the cosine function (2.4) with

T = q
(¢ @)oo
Theorem 3.3. For alln > 0,
n/2
Z (=1)"pa(wy — 2) - - - pa(wy — 2) _ Léj (=1 por(n — 2k)
(2m)! (2k)! '
(W1,...,wm)ec(n) k=1

w;>2
Now we present generalizations of the two theorems above.

Theorem 3.4. For any generating function ¢y ;- arq®, taking
bgn(’t) = Z Ak - Qkop s
ki+-+koneC(i)
we have

Lnfj (—1)nb2 (m—2n) = > (=1)°b2(w1 —2)...ba(ws — 2)
@)l 2" '

25)!
(w1 ,eyws)EC(M) (2s)
wi>2

n=1

Proof. By the Taylor expansion of cosz for x = ¢ ;- arq®, we have

0o 00 n 00 2n
os (¢ adt) =S E (0 et )
k=0 n=0 (2n)' k=0

Since (g Y _po g akq ) = ¢*" 320 ban(i)g', with
ban (1) =D kit thon—i Oy - - - Qky, » the coefficient of ¢™ is equal to
kj>0

Lm/2] n
Z ((;711;!172,1(771 —2n).

n=1

On the other hand, by the product expansion of cos (q Yoo aqu) we known

that
1l ba(
I (1 gt (S0 ) ).
which can be written as
4 4
1— = A(2)b2(0)g* — < A(2)ba(1)g?
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Thus, the coefficient of ¢, for m > 1, is given by

> <—7f;> A{2})bs (w1 — 2) .. ba(w, — 2).

(w1105 EC(m)
w;>2

Substituting A({2}°) by the result of Theorem 2.8, the last expression be-
comes

3 (—1)%ba(w1 —2) ... ba(ws — 2)
' .
(wy,...,ws)EC () (2s)!

Then, for all m > 1, we have

Lm/2]
(=" (=1)%b2 (w1 — 2) ... ba(ws — 2)
_om) —
2 @y M = 2n) 2 (25)! ’
n=l (w1,.sws) €C(m)
wi>2
which completes the proof. U

Example 3.5. The five compositions of 6 with parts greater than 1 are
{(6),(4,2),(2,4),(3,3),(2,2,2)}. Thus, by Theorem 3.4 we have
1

1012 = 506(0) = —5iba(4) + 1 (12(2)ba(0) + b2(0)a(2)

1

+ba(1)ba(1)) = G ha(0b2(0(0),

which, after some cancellations, gives by(2) = 2b2(2)bo(0) + b2(1). In terms
of the coefficients ay, of the generating function, this equation can be rewrit-
ten as 4a8a2 + 6a(2)a% = 2(2apaz + a%)ag + (2apa1)?. Hence, 4aga2 + 6a3a% =
(4adas + 2a3a?) + 4a3a?.

Example 3.6. The thirteen compositions of 8 with parts greater than 1 are

(8) (6:2)  (26) (53)  (35) (4:4)  (4:2.2)
(2.4,2) (2.2.4) (3.5.2) (323) (233) (2222)
Then by Theorem 3.4 we have

30b4(4) — b6(2) = 60b2(4)b2 (O) + 60b2(3)b2(1) + 30()%(2)
— 3b2(2)b5(0) — 3b3(1)ba(0).

Theorem 3.7. For any generating function qzzozo arq®, taking

an(Z) = Z akl . aan,

(klu,an)EC(l)

we have

Lm/2J (_1)71, (—1)Sb2(w1 —2)b2(ws _2)
Z 7'b2n(m — 2n) = Z | :
— (2n +1)! (w1,...;ws ) EC(m) (25 +1)!

w; >2
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Example 3.8. Let p.,(n) denote the number of partitions of n having only
parts equal to 1 in m different colors and having at least one part 1 of each
color. For instance: pL (n) = 0 if n < m and pl,(m) = 1. The generating
function for pk (n) is given by

- 1 n qm
Pm\N)q = o,
2 rn(md" =
Thus, by Theorem 3.7, we know that, for all n > 0,
n m 5] m
3 3 (=D)™py(wr) - py(wm) _ ~ _(=1) b (n)
| | 5em ’
0 (o)) (2m + 1)! = (2m + 1)!

4. CONCLUDING REMARKS

There are many trigonometric identities not explored here. Considering
compositions with convergent g¢-series, gamma function, and other special
functions, we believe that there are more identities like the ones presented
here to be discovered. We leave such an investigation to the interested
reader. Another direction to be taken is to look for combinatorial proofs for
the theorems presented in this paper.
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