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COVERING THE CROSSPOLYTOPE WITH
CROSSPOLYTOPES

ANTAL JOOS

ABSTRACT. Let 7% (K) be the smallest positive number A such that
the convex body K can be covered by m translates of AK. Let K¢ be
the d-dimensional crosspolytope. It will be proved that & (K?) = 1
for 1 <m < 2d, d > 4; v (K% = 42 for m = 2d,2d + 1,2d + 2,
d > 4; y(K?) = &L for m = 2d + 3, d = 4,5 v, (K?) = 243
for m = 2d+4, d = 4 and v, (K?) < 2223 for m = 2d + 4, d >
5. Moreover the Hadwiger’s covering conjecture is verified for the d-
dimensional crosspolytope.

1. INTRODUCTION

Let R? be the d-dimensional Euclidean space and let K% be the set of all
convex bodies in R? with nonempty interior. Let p and ¢ be points in R%.
Let [p,q], |pq| and pg denote, respectively, the line segment, the distance
and the vector with initial point p and terminal point ¢. If K € K%, then
let ¢?(K) denote the covering number of K, i.e., the smallest number of
translates of the interior of K such that their union can cover K. Levi [10]
proved in 1955 that

4 if K is a parallelogram
2 _ p g )
c’(K) = { 3 otherwise.

In 1957 Hadwiger [6] considered this question in any dimensions and posed

Conjecture 1 (Hadwiger’s covering problem). For every K € K% we have
c(K) < 24, where the equality holds if and only if K is a parallelepiped.

In the literature, the Boltyanski’s illumination problem is a similar prob-
lem (see. e.g. [4], [15], [3]). Lassak [8] proved in 1984 the Hadwiger’s cover-
ing conjecture for the three-dimensional centrally symmetric bodies. Rogers
and Zong [12] presented the upper bound c?(K) < (2dd) (dlogd+dloglogd+

5d) for general d-dimensional convex bodies and c?(K) < 2%(dlogd
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+ dloglog d+ 5d) for centrally symmetric d-dimensional convex bodies. Us-
ing the idea of [1] Huang et. al. [7] presented the upper bound c?(K) <

142V for some universal constants c1,c2 > 0. K. Bezdek [2] proved the
Conjecture 1 for convex polyhedron in R? having an anaffine symmetry and
Dekster [5] verified it for convex bodies in R? symmetric about a plane.
For K € K¢ and any positive integer m, let v% (K) be the smallest positive
number A such that K can be covered by m translations of AK, i.e.,

v (K) = min{)\ ERT : I(ug,...,um) € <Rd>m, s.t. K C U ()\K—Fui)}.
i=1

This is called the covering functional of K with respect to m [14] or the
m-covering number of K [9] [17]. A translate of AK? is called a homothetic
copy of K?. In the following we use the short notation AK? for a homothetic
copy of K% instead of AK? + v where v is a vector. Observe, 7% (K) = 1,
for all m < d, and 'yﬁln(K ) is a nonincreasing step sequence for all positive
integers m and all convex bodies K. Now c?(K) < m for some m € Z7F if
and only if 74 (K) < 1 [4]. Estimating covering functionals of convex bodies
plays a crucial role in Chuanming Zong’s quantitative program for attacking
Conjecture 1 (see [17] for more details). Lassak [9] showed that for every two-

dimensional convex domain K, 73 (K) < g Zong [16] proved v3(C) < % for

a bounded three-dimensional convex cone C, and v3(B,) < \/g for all the

unit ball B, of the three-dimensional [, spaces. Wu and He [13] estimated
the value of 73, (P) where P is a convex polytope. Wu et al. [14] determined
the value of 73, (K) where K is the union of two compact convex sets having
no interior points. (See [4] for more information.)

Let K% be the crosspolytope in the d-dimensional Euclidean space with
diameter 2, that is, K¢ = {(21,...,24) : |z1] + ... + |24 < 1}. In 2021 Lian
and Zhang [11] proved

1 if m=1,...,5,
3 3\ 2/3 lf — 9,
Y (K7) = 3/5 if _10,...,13,

47 if m=14,...,17.

Let K C RY be a convex body, and denote by r and s points in K such
that 7% || pg and |rs| > |r's’| where {r',s'} ¢ K and r's’ || pg. The K-
length of [p, q], or equivalently, the K-distance of p and ¢ is 2|pq|/|rs|, and
it is denoted by dx (p, q). If K is the Euclidean d-ball, then dg(p, q) is the
Euclidean distance. Let ||p||s be the s-norm of p, i.e. if p = (p1,...,pq),
then ||p||s = 1/ Z?:l |pi|* for s > 1. The 2-norm of p — ¢ is the Euclidean
distance of the points p and g. Observe, the dga(p, q) is the distance of p—gq
in L-norm, ie. dia(p,q) = [Ip — 1.

Remark 1. Let p and q be different points in R®. If [p, q] lies in a homothetic
copy AK?, then A > Ldya(p,q) = L||p — ql|1.
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Remark 2. Let p be a point in R. If p lies in a homothetic copy \K® and
c is the centre of this homothetic copy NK?, then dya(c,p) = ||c — p|]1 < \.

Theorem 1. If 1 < m < 2d, then ¥4 (K%) = 1.

Proof. Of course, if A = 1, then there is a homothetic copy AK? such that
K% is covered by AK9. Thus v%(K?%) < 1. Assume 7% (K9) = p < 1.
Since the number of the vertices of K% is 2d, then there is a homothetic
copy nK¢ which contains two vertices of K. Let v; and vy be these two
vertices. Observe, the opposite facets of K¢ are parallel and any edge of K¢
connects two vertices of opposite facets. By Remark 1, u > L|jv; — vof[1 =

2dga(v1,v2) = 1, a contradiction. O

Lemma 1. Let F be a facet of K. If a vertex v of F is covered by K{l a
homothetic copy of K% with ratio A (0 < X\ < 1), then F N K¢ is contained
in the homothetic image of F' with ratio A and centre v.

Proof. Let a be the hyperplane x1+ ...+ x4 = 1. Without loss of generality

it may be assumed that v = (0,...,0,1) and F is the facet on the hyperplane

a. Let A be the affine transformation such that K{ = A(K?). It may be

assumed that A(0) lies in K. Let w = (wy,...,wq) = A(v). Let us assume

that o ¢ K{ (the opposite case is similar). Let F; be the facet of K¢ on

the hyperplane x; + ...+ z4-1 —xq = 1. Let p = (p1,...,pq) be a point of

F N A(F)). First we will see that pg > 1 — A. Observe, the equation of the

hyperplane containing A(F}) is
T1—wi+To—wot ...+ xTg] —Whg_1 —Tg+wg— A=A\

Since p lies on F' and A(F}), we have

(1.1) prt+...+pa=1

and

(1.2) pL+pet+ ...+ Pig—1—Pg=w1+...+wi—1 — wg+ 2\

From (1.1)—(1.2) we have

1 1
(1.3) pd:§+§(—w1—...—wd,1—|—wd)—)\
Observe, the point w lies in the translated image of K? by the vector
[0,...,0,2]T. Since v is covered by K¢, the point w lies in the halfspace
bounded by the hyperplane —x; —... —x4_1 + x4 = 1 and does not contain
the origin. Thus
—W] — ... — Wg—1 +wg > 1.
Substituting this into (1.3), we have
1 1
>—+-=—A=1-=-2A
Pa 25 + 2

Observe K{ lies in the halfspace bounded by the hyperplane A(F;) and
containing the vertex v. Moreover p is an arbitrary point of the intersection
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of this halfspace and F'. This means any point from the intersection has the
property that the last coordinate of the point is not less than 1 — A, which
completes the proof of the lemma. O

Theorem 2. If m = 2d, then 7% (K9) = <.

Proof. Let T' = {&2A K9 + (£1,0...,0),..., =2 K9+ (0...,0,+£1)}. Since
the homothetic copies in T' cover the surface of K% and the origin lies in
each element in T', K¢ is covered by I'. Thus 7% (K9) < %.

Assume 4 (K9) = p < d%‘ll. Since p < % < 1, there is no homothetic
copy containing two vertices of K Let F be a facet of K¢ lying on the
hyperplane 21 +. ..+ x4 = 1 and let ¢ be the centre of the (d —1)-simplex F.

Observe ¢ = (1/d,...,1/d). By Lemma 1, a homothetic copy uK? does not

contain both ¢ and a vertex of F. Since d%‘ll < 1, a homothetic copy uK?
does not contain both ¢ and a vertex of K¢ on the plane z1+ ...+ x4 = —1,
a contradiction O

Observe, the proof of Theorem 2 comes from Remark 1. Indeed, the
1-norm of ||c — vl||; > 2%1 where v is a vertex of K{.

Corollary 1. We have ¢*(K%) < 2d for d > 4. The Hadwiger’s covering
problem is solved for the d-dimensional crosspolytope for d > 4.

Theorem 3. If m = 2d + 1,2d + 2, then v%(K?) = 2L for d > 4.

Proof. Since

d—1

d d d d d (7-d

Vady2(KY) < 72011 (K7) < 79q(K°) = 7

from ¢, oK 4y = % it comes the statement of the theorem. Let it be as-
sumed that 'ded+2 (K9 =p < %. Let c1, ..., coa be the centres of the facets
of K¢ and let C be the d-cube with vertices c1, ..., cya. By Lemma 1, 2d ho-
mothetic copies of K¢ cover the 2d vertices of K¢ and the points ci, ..., ¢y
are uncovered by these homothetic copies. Let S be the set containing the
vertices of K¢ and the centres (1/d,...,1/d) and (—1/d,...,—1/d). Let 3
and xo be two different points in S. By Remark 1, a homothetic copy of K¢
with ratio p does not contain both x; and 3, a contradiction. O

Lemma 2. Let c1,...,cqa be the centres of the facets of K¢. If A < 1 and
the facets containing c¢; and c; are parallel facets, then a homothetic copy
AK? does not contain both ¢; and cj-

Proof. Without loss of generality it may be assumed that the two hyper-
planes are a; : x1 + ...+ 2y =1 and ag : x1 + ...+ g = —1. In this
case the centres are ¢; = (—1/d,...,—1/d) and ¢; = (1/d,...,1/d). Now
lle; — ¢jlli = dgal(ci,c;) = 2. By Remark 1, a homothetic copy AK? does
not contain both ¢; and ¢;. O
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Lemma 3. Let c1,...,coa be the centres of the facets of K If ) < d%dl
and the facets containing c; and cj have only a vertex in common, then a
homothetic copy AK® does not contain both ¢; and cj.

Proof. Without loss of generality it may be assumed that the two centres

are ¢; = (1/d,—-1/d,...,—1/d) and ¢; = (1/d,...,1/d). Now the common
vertex of the facets of ¢; and ¢; is (1,0, ...,0). Thus ||c;—c;||1 = dga(ci, ¢j) =
2% and by Remark 1, a homothetic copy AK¢ does not contain both ¢;
and ¢;. O

Theorem 4. If m = 2d + 3, then 4 (K9) = d%dl ford=4,5.
d—1
d

Proof. By Theorem 3, 74, ,(K?) < . Assume that 74, 5(K%) = pu <
d%dl. Let ci,...,coa be the centres of the facets of K¢ and let C' be the
d-cube with vertices ¢y,...,cya. By Lemma 1, the 2d homothetic copies of
K% cover the 2d vertices of K¢ and the points c1,. .., ¢y are uncovered by
these homothetic copies. It will be proved that the vertices of the d-cube C
are not covered by 3 homothetic copies of K¢ with ratio y. Let us assume,
that the vertices of the d-cube C' are covered by 3 homothetic copies of K¢
with ratio p. Observe, ¢; and ¢; lie on two parallel facets of K ¢ if and only
it ¢; and ¢; are the endpoints of a diagonal of C'. Thus if ¢; and ¢; are the
endpoints of a diagonal of the d-cube C, then by Lemma 2, a homothetic
copy #K? does not contain both ¢; and cj. Observe, ¢; and ¢; lie on two
facets and the two facets have only one vertex in common if and only if ¢;
and c; are the endpoints of a diagonal of a facet of C'. Thus if ¢; and ¢; are
the endpoints of a diagonal of a facet of C, then by Lemma 3, a homothetic
copy pK? does not contain both ¢; and cj. We distinguish 2 cases.

CASE 1: d =4.

By the Pigeonhole principle there is a homothetic copy - say Hy - that H;
contains 6 vertices of the 4-cube C'. Without loss of generality it may be
assumed that ¢; = (1/4,1/4,1/4,1/4) lies in H;. By Lemma 2, the vertex
(—=1/4,—-1/4,—1/4,—-1/4) does not lie in H;. By Lemma 3, the vertices
(1/4,-1/4,-1/4,-1/4), (—1/4,1/4,—-1/4,—-1/4), (—=1/4,-1/4,1/4,—1/4)
and (—1/4,—1/4,—1/4,1/4) do not lie in Hy. Let co = (—1/4,1/4,1/4,1/4),
c3 = (1/4,-1/4,1/4,1/4), ¢y = (1/4,1/4,-1/4,1/4), ¢5 = (1/4,1/4,1/4,
—1/4), c¢ = (—1/4,—-1/4,/4,1/4), ¢z = (—1/4,1/4,—-1/4,1/4), cg = (—1/4,
1/4,1/4,—1/4), co = (1/4,—1/4,=1/4,/4), c19 = (1/4,—1/4,1/4, —1/4),
ci1 = (1/4,1/4,-1/4,—-1/4) and S* = {ca,c3,c4,c5}. We distinguish 5
subcases.

SUBCASE 1.1: The homothetic copy H; contains the vertices co, c3, ¢4 and
Cs.

By Lemma 3, H; does not contain the vertices cg, ...,c11. Thus H; does
not contain 6 vertices of C', a contradiction.

SUBCASE 1.2: The homothetic copy H; contains exactly three vertices from
S
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Without loss of generality it may be assumed that H; contains cg, c3 and
c4. By Lemma 3, Hi does not contain the vertices cg, ..., c11. Thus Hy does
not contain 6 vertices of C', a contradiction.

SUBCASE 1.3: The homothetic copy H; contains exactly two vertices from
S,

Without loss of generality it may be assumed that H; contains c¢o and cs.
By Lemma 3, H; does not contain the vertices c7,...,c11. Thus H; does
not contain 6 vertices of C, a contradiction.

SUBCASE 1.4: The homothetic copy H; contains exactly one vertex from
S,

Without loss of generality it may be assumed that H; contains ce. By
Lemma 3, H; does not contain the vertices cg,...,c11. Thus H; does not
contain 6 vertices of C, a contradiction.

SUBCASE 1.5: The homothetic copy Hi does not contain any vertex from
S4.

By Lemma 2, H; does not contain both ¢ and ¢y;. By Lemma 2, H;
does not contain both ¢7 and ¢1g. Thus H; does not contain 6 vertices of C,
a contradiction.

CASE 2: d=5.

By the Pigeonhole principle there is a homothetic copy - say H; - that H;
contains 11 vertices of the 5-cube C'. Without loss of generality it may be
assumed that ¢; = (1/5,1/5,1/5,1/5,1/5) lies in Hy. By Lemma 2, the
vertex (—1/5,—1/5,—1/5,—1/5,—1/5) does not lie in Hy. By Lemma 3,
the vertices (1/5,-1/5,—-1/5,-1/5,—-1/5), (-1/5,1/5,-1/5,—1/5,—1/5),
(-1/5,-1/5,1/5,—-1/5,-1/5), (-1/5,—1/5,—1/5,1/5,—1/5) and (—1/5,
—1/5,—-1/5,—1/5,1/5) do not lie in H;. Let ¢ = (—1/5,1/5,1/5,1/5,1/5),
3 = (1/5’_1/5a1/57 1/5? 1/5)a €4 = (1/5a 1/57_1/5a1/5a 1/5)7 C5 = (1/57
1/5,1/5,-1/5,1/5), cg = (1/5,1/5,1/5,1/5,—1/5), ¢; = (—1/5,—1/5,1/5,
1/5,1/5), cs = (—1/5,1/5,—1/5,1/5,1/5), cg = (—1/5,1/5,1/5,—1/5,1/5),
c1o = (=1/5,1/5,1/5,1/5,-1/5), c11 = (1/5,—1/5,—1/5,1/5,1/5), c1a =
(1/5,—1/5,1/5,—1/5,1/5), c13 = (1/5,—1/5,1/5,1/5,—1/5), c14 = (1/5,
1/5,—1/5,—1/5,1/5), c15 = (1/5,1/5,-1/5,1/5,—1/5), c16 = (1/5,1/5,
1/5,-1/5,-1/5), e17 = (—=1/5,-1/5,-1/5,1/5,1/5), c18 = (—1/5,—1/5,
1/5,-1/5,1/5), c19 = (—=1/5,-1/5,1/5,1/5,—1/5), ca0 = (—1/5,1/5,—1/5,
—1/5,1/5), a1 = (=1/5,1/5,-1/5,1/5,—1/5), caa = (—1/5,1/5,1/5,—1/5,
—1/5), ¢35 = (1/5,-1/5,-1/5,—-1/5,1/5), cas = (1/5,-1/5,—1/5,1/5,
—1/5), co5 = (1/5,—-1/5,1/5,—-1/5,—1/5), co6 = (1/5,1/5,—1/5,—1/5,
—1/5) and S° = {ca, c3, ¢4, c5, c6}. We distinguish 6 subcases.

SUBCASE 2.1: The homothetic copy Hi contains the vertices cs, c3, ¢4, C5
and cg.

By Lemma 3, H; does not contain ci7,...,co6. Let it be assumed that
H; contains c7. (The cases Hj contains cs,...,c15, or cjg are similar.) By
Lemma 3, H; does not contain cy4, c15 or c1g. By Lemma 3, H; does not
contain both cg and cjo. By Lemma 3, H; does not contain both ¢y and
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c13. By Lemma 3, Hy does not contain both c¢1g and ¢11. Thus H; does not
contain 11 vertices of C, a contradiction.

SUBCASE 2.2: The homothetic copy Hi contains exactly four vertices from
S°.

Without loss of generality it may be assumed that H; contains co, c3, ¢4
and c5. By Lemma 3, H; does not contain the vertices ci7, ..., cos.
Let us assume that H;j contains ¢7. (The cases that H; contains cg, ¢, c11,
c12 or c14 are similar.) By Lemma 3, H; does not contain ci4, c15 or cie.
By Lemma 3, H; does not contain both cg and c12. By Lemma 3, H; does
not contain both c¢g and c¢i11. Thus H; does not contain 11 vertices of C, a
contradiction.
Let us assume that H; contains cjo (and does not contain the vertices
c7,¢8,C9,C11,C12 Or c14). (The cases that H; contains ci3, c¢15 or cig are
similar.) Now, H; contains at most the vertices ci,...,cs, ci0, €13, C15, C16,
thus H; does not contain 11 vertices of C, a contradiction.

SUBCASE 2.3: The homothetic copy H; contains exactly three vertices from
S5.

Without loss of generality it may be assumed that H; contains ca, ¢ and
c4. By Lemma 3, H1 does not contain the vertices cig, ..., cog.
Let us assume that H; contains c7. (The cases Hj contains cg or cj; are
similar.) By Lemma 3, H; does not contain cj4, ¢15 or ¢16. By Lemma 3,
H, does not contain both cg and c¢j3. By Lemma 3, H; does not contain
both ¢cg and ¢13. By Lemma 3, H; does not contain both cjg and ¢1;. Thus
H, does not contain 11 vertices of C, a contradiction.
Let us assume that H; contains ¢g (and does not contain the vertices c7, cg
or c11). (The cases H; contains cjg, ci2, €13, €14 Or c15 are similar.) By
Lemma 3, H; does not contain ci1, ¢i3 or c¢i5. Since H; contains at most
the vertices c1, ..., ¢4, cg, c10, C12, C14, C16, C17, H1 does not contain 11 ver-
tices of C', a contradiction.
Let us assume that H; contains cjg (and does not contain the vertices
C7,...,C14 OF c15). Since Hp contains at most the vertices cy,...,cq, cig,
c17, Hy does not contain 11 vertices of C, a contradiction.
Let us assume that H; contains c17 (and does not contain the vertices
¢7,...,C15 Or c16). Since Hp contains at most the vertices ci,...,c4, c17,
H; does not contain 11 vertices of C, a contradiction.

SUBCASE 2.4: The homothetic copy H; contains exactly two vertices from
S5.

Without loss of generality it may be assumed that H; contains co and cs.
By Lemma 3, H; does not contain the vertices cop, . . ., cog.
Let us assume that H; contains c7. By Lemma 3, H; does not contain cy4,
c15 or ci1g. By Lemma 3, Hy does not contain both cg and c12. By Lemma
3, Hi does not contain both cg and ¢13. By Lemma 3, H; does not contain
both ¢19 and ¢11. Thus Hy does not contain 11 vertices of C, a contradic-
tion.
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Let us assume that H; contains cg (and does not contain the vertex c7).
(The cases H; contains cg, ¢19, €11, €12 Or ¢13 are similar.) By Lemma 3, H;
does not contain cy9, c13 or ci16. By Lemma 3, H1 does not contain both cg
and c11. By Lemma 3, H; does not contain both c1g and c14. Thus Hy does
not contain 11 vertices of C', a contradiction.

Let us assume that H; contains c14 (and does not contain the vertices
¢7y...,c12 or c¢13). (The cases Hj contains cj5 or cjg are similar.) Since
H; contains at most the vertices ¢y, co, 3, 14, ..., C19, H1 does not contain
11 vertices of C', a contradiction.

Let us assume that H; contains cj7 (and does not contain the vertices
C7y...,¢15 or c16). (The cases Hj contains cjg or cjg are similar.) Since
H; contains at most the vertices c1, ¢2, c3, c17, 18, ¢19, Hy does not contain
11 vertices of C', a contradiction.

SUBCASE 2.5: The homothetic copy Hi contains exactly one vertex from
S°.

Without loss of generality it may be assumed that H; contains ce. By
Lemma 3, H; does not contain the vertices ca3, . . ., cog-
Let us assume that H; contains c7. (The cases H; contains cg, cg or cig are
similar.) By Lemma 3, H; does not contain ¢4, ¢15 or ¢16. By Lemma 3,
H, does not contain both cg and cj3. By Lemma 3, H; does not contain
both cg and c13. By Lemma 3, H; does not contain both cjg and c;;. By
Lemma 3, H; does not contain both c¢y7 and cos. By Lemma 3, H; does
not contain both ¢1g and c91. Thus H7 does not contain 11 vertices of C, a
contradiction.
Let us assume that H; contains c¢i; (and does not contain the vertices
¢7,...,¢9 or c1p). (The cases H; contains cjo, ¢13, €14, C15, Cig are sim-
ilar.) By Lemma 3, H; does not contain c¢js. By Lemma 2, H; does not
contain cgo. By Lemma 2, H; does not contain both c¢12 and co;. By Lemma
2, Hq does not contain c¢13 and cog. Thus H; does not contain 11 vertices of
C, a contradiction.
Let us assume that H; contains c¢17 (and does not contain the vertices
¢7y...,¢15 or c16). (The cases Hi contains c¢ig, ..., coo are similar.) Since
H, contains at most the vertices ¢y, ca, c17,...,co, Hi does not contain 11
vertices of C', a contradiction.

SUBCASE 2.6: The homothetic copy Hy does not contain any vertex from
S°.

Let us assume that H; contains ¢7. (The cases Hy contains cg, . .., cig are
similar.) By Lemma 3, H; does not contain cy4, ¢15 or ¢16. By Lemma 2, H;
does not contain cog. By Lemma 3, H; does not contain both cg and ¢15. By
Lemma 3, Hi does not contain both c¢g and c13. By Lemma 3, H; does not
contain both c1g and ¢1;. By Lemma 3, H; does not contain both ci7 and
c95. By Lemma 3, H; does not contain both c¢1g and ¢o4. By Lemma 3, Hy
does not contain both c19 and cog. By Lemma 3, H; does not contain both
co1 and co3. Thus Hy does not contain 11 vertices of C, a contradiction.
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Let us assume that H; contains c17 (and does not contain the vertices
¢7y...,¢15 or cig). (The cases Hp contains cig,...,cos are similar.) By
Lemma 3, H; does not contain coo, co5 or cog. Since Hp contain at most the
vertices c1, ¢2, €17, €18, €19, C20, C21, C23, Co4, H1 does not contain 11 vertices
of C, a contradiction. O

Since fygd+3(Kd) < V40K and 44, (K9 = % for d > 6,
vgd+2(Kd) < d%dl for d > 6.

Conjecture 2. If m = 2d + 3, then 4 (K9) = d%dl for d > 6.

Theorem 5. If m = 2d + 4, then ¥4 (K9) = 24=3 for d = 4 and 7%, (K?) <

2d—1
% ford > 5.
Proof. First it will be proved that 7% (K9) < 24=3 for d > 4. Let A\ =
2d—3

24=3 and consider the following homothetic copies of K% K¢ = AK¢ +

r T T

2 d __ d 2 d __ d
5E00.0,...,0] L Kf = AK® 4 [O,ﬁ,o,...,o] ., K4 = KT+
(0,...,0, 52| Kd, = Ak + 0.0.....0] . ... Ki = \Kd
RERREE vqu} d+1 = [ ST ] p e M9 = +

- T
_0""707_2(12—1} Kgd+1—>‘Kd+[2d 12010 0,0. 0} 7K§id+2:)‘Kd+

2d—1> 2d 1’

- T T
1.5 15 d _ d 1.5
__2d71’2d71’070"'>0] ) K2d+3 = MK + [—7 —5-,0,0. O} ,

T
Ky = AK?+ [ 425, —542:,0,0...,0] . Now it will be proved that the

surface of K% is covered by the homothetic copies K {l, ey Kgd 44 Consider

a facet F of K¢ Without loss of generality it can be assumed that F lies
on the hyperplane x1 + ... + x4 = 1. The homothetic image of F' with
ratio A and centre (1,0,0...,0) ((0,1,0...,0),...,(0,...,0,1), resp.) is

covered by K¢ (K¢, ... ,Kfll, resp.). Let n; = (

1 2 2 2
2d—1’ 2d—1° 2d—-17"" " 2d-1 )>

_ 2 1 2 2 _ 2 2 1
nz = (2d—172d—172d—17"‘72d—1)7“'7 nNg = <2d—17"‘72d—172d—1)' The

convex hull of the points ny,...,ng is uncovered by Kf, e Kg. Since

1.5 1.5
‘ <2d—1’2d—1707070> —n;

2 0.5 2 1 >

1

+(d72)2d—1’22d—1+(d73)2d—1 t o1

_2d—-3
o 2d—-1
for ¢ = 1,...,d, the points nq,...,nq are covered by K 2d+1 Since Kgd+1

0.
< 2
—max< 2d — 1

and the convex hull of the points niy,...,ng are convex bodies, Kgd 41 COV-
ers the convex hull of the points ni,...,ngy. Thus the facet F is cov-
ered by K¢, ... ,Kfl, Kgd 41~ Similarly any other facet of K 4 is covered by
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Kf, . 7K§ld+4' Since the origin lies in each homothetic copy K¢, ... ’Kgd+4>
K% is covered by K¢,... K4, , and 74, ,(K?%) < 2423 for d > 4.

Now consider the case d = 4. Let it be assumed that 7, (K%) = u < %
Let ni1 = (1/7a 2/77 2/77 2/7)7 ni2 = (2/7a 1/77 2/77 2/7)7 n3 = (2/7a 2/77
1/7,2/7), mia = (2/7,2/7,2/7,1/7), noq = (—1/7,2/7,2/7,2/7), ...,
nig = (2/7,-2/7,1/7,-2/7), ..., nieg = (=2/7,-2/7,-1/7,2/7), ...,
niay = (—1/7,2/7,-2/7,-2/7) ..., ni¢a = (—2/7,-2/7,-2/7,—1/7). By
Lemma 1, the 8 homothetic copies of K4 with ratio p cover the 8 vertices of
K* and the points ni,1,.-.,Ni64 are uncovered by these homothetic copies.
It will be proved that four homothetic copies of K* with ratio ; does not
cover the points Ni1y---,N164- Since HnLl — n10,3 |1 = ||n171 — n1273|]1 =
l[n1,1—n141])1 = [|n10,3—n12,3]|1 = [[n103—"n14,1][1 = [|R123—n141][1 = ¥ =
2, the points n1 1, 7103, n12,3 and n14,1 are not covered by four homothetic
copies of K* with ratio y, a contradiction. O

Conjecture 3. If m = 2d + 4, then % (K%) = %—j’ ford > 5.
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