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COVERING THE CROSSPOLYTOPE WITH

CROSSPOLYTOPES

ANTAL JOÓS

Abstract. Let γd
m(K) be the smallest positive number λ such that

the convex body K can be covered by m translates of λK. Let Kd be
the d-dimensional crosspolytope. It will be proved that γd

m(Kd) = 1
for 1 ≤ m < 2d, d ≥ 4; γd

m(Kd) = d−1
d

for m = 2d, 2d + 1, 2d + 2,

d ≥ 4; γd
m(Kd) = d−1

d
for m = 2d + 3, d = 4, 5; γd

m(Kd) = 2d−3
2d−1

for m = 2d + 4, d = 4 and γd
m(Kd) ≤ 2d−3

2d−1
for m = 2d + 4, d ≥

5. Moreover the Hadwiger’s covering conjecture is verified for the d-
dimensional crosspolytope.

1. Introduction

Let Rd be the d-dimensional Euclidean space and let Kd be the set of all
convex bodies in Rd with nonempty interior. Let p and q be points in Rd.
Let [p, q], |pq| and −→pq denote, respectively, the line segment, the distance
and the vector with initial point p and terminal point q. If K ∈ Kd, then
let cd(K) denote the covering number of K, i.e., the smallest number of
translates of the interior of K such that their union can cover K. Levi [10]
proved in 1955 that

c2(K) =

{
4 if K is a parallelogram,
3 otherwise.

In 1957 Hadwiger [6] considered this question in any dimensions and posed

Conjecture 1 (Hadwiger’s covering problem). For every K ∈ Kd we have
cd(K) ≤ 2d, where the equality holds if and only if K is a parallelepiped.

In the literature, the Boltyanski’s illumination problem is a similar prob-
lem (see. e.g. [4], [15], [3]). Lassak [8] proved in 1984 the Hadwiger’s cover-
ing conjecture for the three-dimensional centrally symmetric bodies. Rogers
and Zong [12] presented the upper bound cd(K) ≤

(
2d
d

)
(d log d+d log log d+

5d) for general d-dimensional convex bodies and cd(K) ≤ 2d(d log d
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+ d log log d+5d) for centrally symmetric d-dimensional convex bodies. Us-
ing the idea of [1] Huang et. al. [7] presented the upper bound cd(K) ≤
c14

de−c2
√
d for some universal constants c1, c2 > 0. K. Bezdek [2] proved the

Conjecture 1 for convex polyhedron in R3 having an anaffine symmetry and
Dekster [5] verified it for convex bodies in R3 symmetric about a plane.

ForK ∈ Kd and any positive integerm, let γdm(K) be the smallest positive
number λ such that K can be covered by m translations of λK, i.e.,

γdm(K) = min

{
λ ∈ R+ : ∃(u1, . . . , um) ∈

(
Rd

)m
, s.t.K ⊆

m⋃
i=1

(λK + ui)

}
.

This is called the covering functional of K with respect to m [14] or the
m-covering number of K [9] [17]. A translate of λKd is called a homothetic
copy of Kd. In the following we use the short notation λKd for a homothetic
copy of Kd instead of λKd + v where v is a vector. Observe, γdm(K) = 1,
for all m ≤ d, and γdm(K) is a nonincreasing step sequence for all positive
integers m and all convex bodies K. Now cd(K) ≤ m for some m ∈ Z+ if
and only if γdm(K) < 1 [4]. Estimating covering functionals of convex bodies
plays a crucial role in Chuanming Zong’s quantitative program for attacking
Conjecture 1 (see [17] for more details). Lassak [9] showed that for every two-

dimensional convex domain K, γ24(K) ≤
√
2
2 . Zong [16] proved γ38(C) ≤ 2

3 for

a bounded three-dimensional convex cone C, and γ38(Bp) ≤
√

2
3 for all the

unit ball Bp of the three-dimensional lp spaces. Wu and He [13] estimated
the value of γ3m(P ) where P is a convex polytope. Wu et al. [14] determined
the value of γ3m(K) where K is the union of two compact convex sets having
no interior points. (See [4] for more information.)

Let Kd be the crosspolytope in the d-dimensional Euclidean space with
diameter 2, that is, Kd = {(x1, . . . , xd) : |x1|+ . . .+ |xd| ≤ 1}. In 2021 Lian
and Zhang [11] proved

γ3m(K3) =


1 if m = 1, . . . , 5,

2/3 if m = 6, . . . , 9,
3/5 if m = 10, . . . , 13,
4/7 if m = 14, . . . , 17.

Let K ⊂ Rd be a convex body, and denote by r and s points in K such
that −→rs ∥ −→pq and |rs| ≥ |r′s′| where {r′, s′} ⊂ K and r′s′ ∥ pq. The K-
length of [p, q], or equivalently, the K-distance of p and q is 2|pq|/|rs|, and
it is denoted by dK(p, q). If K is the Euclidean d-ball, then dK(p, q) is the
Euclidean distance. Let ||p||s be the s-norm of p, i.e. if p = (p1, . . . , pd),

then ||p||s = s

√∑d
i=1 |pi|s for s ≥ 1. The 2-norm of p − q is the Euclidean

distance of the points p and q. Observe, the dKd(p, q) is the distance of p−q
in 1-norm, i.e. dKd(p, q) = ||p− q||1.
Remark 1. Let p and q be different points in Rd. If [p, q] lies in a homothetic
copy λKd, then λ ≥ 1

2dKd(p, q) = 1
2 ||p− q||1.
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Remark 2. Let p be a point in Rd. If p lies in a homothetic copy λKd and
c is the centre of this homothetic copy λKd, then dKd(c, p) = ||c− p||1 ≤ λ.

Theorem 1. If 1 ≤ m < 2d, then γdm(Kd) = 1.

Proof. Of course, if λ = 1, then there is a homothetic copy λKd such that
Kd is covered by λKd. Thus γdm(Kd) ≤ 1. Assume γdm(Kd) = µ < 1.
Since the number of the vertices of Kd is 2d, then there is a homothetic
copy µKd which contains two vertices of Kd. Let v1 and v2 be these two
vertices. Observe, the opposite facets of Kd are parallel and any edge of Kd

connects two vertices of opposite facets. By Remark 1, µ ≥ 1
2 ||v1 − v2||1 =

1
2dKd(v1, v2) = 1, a contradiction. □

Lemma 1. Let F be a facet of Kd. If a vertex v of F is covered by Kd
1 a

homothetic copy of Kd with ratio λ (0 < λ < 1), then F ∩Kd
1 is contained

in the homothetic image of F with ratio λ and centre v.

Proof. Let α be the hyperplane x1+ . . .+xd = 1. Without loss of generality
it may be assumed that v = (0, . . . , 0, 1) and F is the facet on the hyperplane
α. Let A be the affine transformation such that Kd

1 = A(Kd). It may be
assumed that A(o) lies in Kd. Let w = (w1, . . . , wd) = A(v). Let us assume
that o ̸∈ Kd

1 (the opposite case is similar). Let F1 be the facet of Kd on
the hyperplane x1 + . . .+ xd−1 − xd = 1. Let p = (p1, . . . , pd) be a point of
F ∩ A(F1). First we will see that pd ≥ 1− λ. Observe, the equation of the
hyperplane containing A(F1) is

x1 − w1 + x2 − w2 + . . .+ xd−1 − wd−1 − xd + wd − λ = λ.

Since p lies on F and A(F1), we have

(1.1) p1 + . . .+ pd = 1

and

(1.2) p1 + p2 + . . .+ pd−1 − pd = w1 + . . .+ wd−1 − wd + 2λ.

From (1.1)–(1.2) we have

(1.3) pd =
1

2
+

1

2
(−w1 − . . .− wd−1 + wd)− λ

Observe, the point w lies in the translated image of Kd by the vector
[0, . . . , 0, 2]T . Since v is covered by Kd

1 , the point w lies in the halfspace
bounded by the hyperplane −x1 − . . .− xd−1 + xd = 1 and does not contain
the origin. Thus

−w1 − . . .− wd−1 + wd ≥ 1.

Substituting this into (1.3), we have

pd ≥ 1

2
+

1

2
− λ = 1− λ

Observe Kd
1 lies in the halfspace bounded by the hyperplane A(F1) and

containing the vertex v. Moreover p is an arbitrary point of the intersection
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of this halfspace and F . This means any point from the intersection has the
property that the last coordinate of the point is not less than 1− λ, which
completes the proof of the lemma. □

Theorem 2. If m = 2d, then γdm(Kd) = d−1
d .

Proof. Let Γ = {d−1
d Kd + (±1

d , 0 . . . , 0), . . . ,
d−1
d Kd + (0 . . . , 0,±1

d)}. Since

the homothetic copies in Γ cover the surface of Kd and the origin lies in
each element in Γ, Kd is covered by Γ. Thus γdm(Kd) ≤ d−1

d .

Assume γdm(Kd) = µ < d−1
d . Since µ < d−1

d < 1, there is no homothetic

copy containing two vertices of Kd. Let F be a facet of Kd lying on the
hyperplane x1+ . . .+xd = 1 and let c be the centre of the (d−1)-simplex F .
Observe c = (1/d, . . . , 1/d). By Lemma 1, a homothetic copy µKd does not
contain both c and a vertex of F . Since d−1

d < 1, a homothetic copy µKd

does not contain both c and a vertex of Kd on the plane x1+ . . .+xd = −1,
a contradiction □

Observe, the proof of Theorem 2 comes from Remark 1. Indeed, the
1-norm of ||c− v||1 ≥ 2d−1

d where v is a vertex of Kd
1 .

Corollary 1. We have cd(Kd) ≤ 2d for d ≥ 4. The Hadwiger’s covering
problem is solved for the d-dimensional crosspolytope for d ≥ 4.

Theorem 3. If m = 2d+ 1, 2d+ 2, then γdm(Kd) = d−1
d for d ≥ 4.

Proof. Since

γd2d+2(K
d) ≤ γd2d+1(K

d) ≤ γd2d(K
d) =

d− 1

d
,

from γd2d+2(K
d) = d−1

d it comes the statement of the theorem. Let it be as-

sumed that γd2d+2(K
d) = µ < d−1

d . Let c1, . . . , c2d be the centres of the facets

of Kd and let C be the d-cube with vertices c1, . . . , c2d . By Lemma 1, 2d ho-
mothetic copies of Kd cover the 2d vertices of Kd and the points c1, . . . , c2d
are uncovered by these homothetic copies. Let S be the set containing the
vertices of Kd and the centres (1/d, . . . , 1/d) and (−1/d, . . . ,−1/d). Let x1
and x2 be two different points in S. By Remark 1, a homothetic copy of Kd

with ratio µ does not contain both x1 and x2, a contradiction. □

Lemma 2. Let c1, . . . , c2d be the centres of the facets of Kd. If λ < 1 and
the facets containing ci and cj are parallel facets, then a homothetic copy

λKd does not contain both ci and cj.

Proof. Without loss of generality it may be assumed that the two hyper-
planes are α1 : x1 + . . . + xd = 1 and α2 : x1 + . . . + xd = −1. In this
case the centres are ci = (−1/d, . . . ,−1/d) and cj = (1/d, . . . , 1/d). Now

||ci − cj ||1 = dKd(ci, cj) = 2. By Remark 1, a homothetic copy λKd does
not contain both ci and ci. □
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Lemma 3. Let c1, . . . , c2d be the centres of the facets of Kd. If λ < d−1
d

and the facets containing ci and cj have only a vertex in common, then a

homothetic copy λKd does not contain both ci and cj.

Proof. Without loss of generality it may be assumed that the two centres
are ci = (1/d,−1/d, . . . ,−1/d) and cj = (1/d, . . . , 1/d). Now the common
vertex of the facets of ci and cj is (1, 0, . . . , 0). Thus ||ci−cj ||1 = dKd(ci, cj) =

2d−1
d and by Remark 1, a homothetic copy λKd does not contain both ci

and ci. □

Theorem 4. If m = 2d+ 3, then γdm(Kd) = d−1
d for d = 4, 5.

Proof. By Theorem 3, γd2d+3(K
d) ≤ d−1

d . Assume that γd2d+3(K
d) = µ <

d−1
d . Let c1, . . . , c2d be the centres of the facets of Kd and let C be the

d-cube with vertices c1, . . . , c2d . By Lemma 1, the 2d homothetic copies of
Kd cover the 2d vertices of Kd and the points c1, . . . , c2d are uncovered by
these homothetic copies. It will be proved that the vertices of the d-cube C
are not covered by 3 homothetic copies of Kd with ratio µ. Let us assume,
that the vertices of the d-cube C are covered by 3 homothetic copies of Kd

with ratio µ. Observe, ci and cj lie on two parallel facets of Kd if and only
it ci and cj are the endpoints of a diagonal of C. Thus if ci and cj are the
endpoints of a diagonal of the d-cube C, then by Lemma 2, a homothetic
copy µKd does not contain both ci and cj . Observe, ci and cj lie on two
facets and the two facets have only one vertex in common if and only if ci
and cj are the endpoints of a diagonal of a facet of C. Thus if ci and cj are
the endpoints of a diagonal of a facet of C, then by Lemma 3, a homothetic
copy µKd does not contain both ci and cj . We distinguish 2 cases.

Case 1: d = 4.
By the Pigeonhole principle there is a homothetic copy - say H1 - that H1

contains 6 vertices of the 4-cube C. Without loss of generality it may be
assumed that c1 = (1/4, 1/4, 1/4, 1/4) lies in H1. By Lemma 2, the vertex
(−1/4,−1/4,−1/4,−1/4) does not lie in H1. By Lemma 3, the vertices
(1/4,−1/4,−1/4,−1/4), (−1/4, 1/4,−1/4,−1/4), (−1/4,−1/4, 1/4,−1/4)
and (−1/4,−1/4,−1/4, 1/4) do not lie inH1. Let c2 = (−1/4, 1/4, 1/4, 1/4),
c3 = (1/4,−1/4, 1/4, 1/4), c4 = (1/4, 1/4,−1/4, 1/4), c5 = (1/4, 1/4, 1/4,
−1/4), c6 = (−1/4,−1/4, /4, 1/4), c7 = (−1/4, 1/4,−1/4, 1/4), c8 = (−1/4,
1/4, 1/4,−1/4), c9 = (1/4,−1/4,−1/4, /4), c10 = (1/4,−1/4, 1/4,−1/4),
c11 = (1/4, 1/4,−1/4,−1/4) and S4 = {c2, c3, c4, c5}. We distinguish 5
subcases.

Subcase 1.1: The homothetic copy H1 contains the vertices c2, c3, c4 and
c5.

By Lemma 3, H1 does not contain the vertices c6, . . . , c11. Thus H1 does
not contain 6 vertices of C, a contradiction.

Subcase 1.2: The homothetic copy H1 contains exactly three vertices from
S4.



COVERING THE CROSSPOLYTOPE WITH CROSSPOLYTOPES 305

Without loss of generality it may be assumed that H1 contains c2, c3 and
c4. By Lemma 3, H1 does not contain the vertices c6, . . . , c11. Thus H1 does
not contain 6 vertices of C, a contradiction.

Subcase 1.3: The homothetic copy H1 contains exactly two vertices from
S4.

Without loss of generality it may be assumed that H1 contains c2 and c3.
By Lemma 3, H1 does not contain the vertices c7, . . . , c11. Thus H1 does
not contain 6 vertices of C, a contradiction.

Subcase 1.4: The homothetic copy H1 contains exactly one vertex from
S4.

Without loss of generality it may be assumed that H1 contains c2. By
Lemma 3, H1 does not contain the vertices c9, . . . , c11. Thus H1 does not
contain 6 vertices of C, a contradiction.

Subcase 1.5: The homothetic copy H1 does not contain any vertex from
S4.

By Lemma 2, H1 does not contain both c6 and c11. By Lemma 2, H1

does not contain both c7 and c10. Thus H1 does not contain 6 vertices of C,
a contradiction.

Case 2: d = 5.
By the Pigeonhole principle there is a homothetic copy - say H1 - that H1

contains 11 vertices of the 5-cube C. Without loss of generality it may be
assumed that c1 = (1/5, 1/5, 1/5, 1/5, 1/5) lies in H1. By Lemma 2, the
vertex (−1/5,−1/5,−1/5,−1/5,−1/5) does not lie in H1. By Lemma 3,
the vertices (1/5,−1/5,−1/5,−1/5,−1/5), (−1/5, 1/5,−1/5,−1/5,−1/5),
(−1/5,−1/5, 1/5,−1/5,−1/5), (−1/5,−1/5,−1/5, 1/5,−1/5) and (−1/5,
−1/5,−1/5,−1/5, 1/5) do not lie in H1. Let c2 = (−1/5, 1/5, 1/5, 1/5, 1/5),
c3 = (1/5,−1/5, 1/5, 1/5, 1/5), c4 = (1/5, 1/5,−1/5, 1/5, 1/5), c5 = (1/5,
1/5, 1/5,−1/5, 1/5), c6 = (1/5, 1/5, 1/5, 1/5,−1/5), c7 = (−1/5,−1/5, 1/5,
1/5, 1/5), c8 = (−1/5, 1/5,−1/5, 1/5, 1/5), c9 = (−1/5, 1/5, 1/5,−1/5, 1/5),
c10 = (−1/5, 1/5, 1/5, 1/5,−1/5), c11 = (1/5,−1/5,−1/5, 1/5, 1/5), c12 =
(1/5,−1/5, 1/5,−1/5, 1/5), c13 = (1/5,−1/5, 1/5, 1/5,−1/5), c14 = (1/5,
1/5,−1/5,−1/5, 1/5), c15 = (1/5, 1/5,−1/5, 1/5,−1/5), c16 = (1/5, 1/5,
1/5,−1/5,−1/5), c17 = (−1/5,−1/5,−1/5, 1/5, 1/5), c18 = (−1/5,−1/5,
1/5,−1/5, 1/5), c19 = (−1/5,−1/5, 1/5, 1/5,−1/5), c20 = (−1/5, 1/5,−1/5,
−1/5, 1/5), c21 = (−1/5, 1/5,−1/5, 1/5,−1/5), c22 = (−1/5, 1/5, 1/5,−1/5,
−1/5), c23 = (1/5,−1/5,−1/5,−1/5, 1/5), c24 = (1/5,−1/5,−1/5, 1/5,
−1/5), c25 = (1/5,−1/5, 1/5,−1/5,−1/5), c26 = (1/5, 1/5,−1/5,−1/5,
−1/5) and S5 = {c2, c3, c4, c5, c6}. We distinguish 6 subcases.

Subcase 2.1: The homothetic copy H1 contains the vertices c2, c3, c4, c5
and c6.

By Lemma 3, H1 does not contain c17, . . . , c26. Let it be assumed that
H1 contains c7. (The cases H1 contains c8, . . . , c15, or c16 are similar.) By
Lemma 3, H1 does not contain c14, c15 or c16. By Lemma 3, H1 does not
contain both c8 and c12. By Lemma 3, H1 does not contain both c9 and
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c13. By Lemma 3, H1 does not contain both c10 and c11. Thus H1 does not
contain 11 vertices of C, a contradiction.

Subcase 2.2: The homothetic copy H1 contains exactly four vertices from
S5.

Without loss of generality it may be assumed that H1 contains c2, c3, c4
and c5. By Lemma 3, H1 does not contain the vertices c17, . . . , c26.
Let us assume that H1 contains c7. (The cases that H1 contains c8, c9, c11,
c12 or c14 are similar.) By Lemma 3, H1 does not contain c14, c15 or c16.
By Lemma 3, H1 does not contain both c8 and c12. By Lemma 3, H1 does
not contain both c9 and c11. Thus H1 does not contain 11 vertices of C, a
contradiction.
Let us assume that H1 contains c10 (and does not contain the vertices
c7, c8, c9, c11, c12 or c14). (The cases that H1 contains c13, c15 or c16 are
similar.) Now, H1 contains at most the vertices c1, . . . , c5, c10, c13, c15, c16,
thus H1 does not contain 11 vertices of C, a contradiction.

Subcase 2.3: The homothetic copy H1 contains exactly three vertices from
S5.

Without loss of generality it may be assumed that H1 contains c2, c3 and
c4. By Lemma 3, H1 does not contain the vertices c18, . . . , c26.
Let us assume that H1 contains c7. (The cases H1 contains c8 or c11 are
similar.) By Lemma 3, H1 does not contain c14, c15 or c16. By Lemma 3,
H1 does not contain both c8 and c12. By Lemma 3, H1 does not contain
both c9 and c13. By Lemma 3, H1 does not contain both c10 and c11. Thus
H1 does not contain 11 vertices of C, a contradiction.
Let us assume that H1 contains c9 (and does not contain the vertices c7, c8
or c11). (The cases H1 contains c10, c12, c13, c14 or c15 are similar.) By
Lemma 3, H1 does not contain c11, c13 or c15. Since H1 contains at most
the vertices c1, . . . , c4, c9, c10, c12, c14, c16, c17, H1 does not contain 11 ver-
tices of C, a contradiction.
Let us assume that H1 contains c16 (and does not contain the vertices
c7, . . . , c14 or c15). Since H1 contains at most the vertices c1, . . . , c4, c16,
c17, H1 does not contain 11 vertices of C, a contradiction.
Let us assume that H1 contains c17 (and does not contain the vertices
c7, . . . , c15 or c16). Since H1 contains at most the vertices c1, . . . , c4, c17,
H1 does not contain 11 vertices of C, a contradiction.

Subcase 2.4: The homothetic copy H1 contains exactly two vertices from
S5.

Without loss of generality it may be assumed that H1 contains c2 and c3.
By Lemma 3, H1 does not contain the vertices c20, . . . , c26.
Let us assume that H1 contains c7. By Lemma 3, H1 does not contain c14,
c15 or c16. By Lemma 3, H1 does not contain both c8 and c12. By Lemma
3, H1 does not contain both c9 and c13. By Lemma 3, H1 does not contain
both c10 and c11. Thus H1 does not contain 11 vertices of C, a contradic-
tion.
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Let us assume that H1 contains c8 (and does not contain the vertex c7).
(The cases H1 contains c9, c10, c11, c12 or c13 are similar.) By Lemma 3, H1

does not contain c12, c13 or c16. By Lemma 3, H1 does not contain both c9
and c11. By Lemma 3, H1 does not contain both c10 and c14. Thus H1 does
not contain 11 vertices of C, a contradiction.
Let us assume that H1 contains c14 (and does not contain the vertices
c7, . . . , c12 or c13). (The cases H1 contains c15 or c16 are similar.) Since
H1 contains at most the vertices c1, c2, c3, c14, . . . , c19, H1 does not contain
11 vertices of C, a contradiction.
Let us assume that H1 contains c17 (and does not contain the vertices
c7, . . . , c15 or c16). (The cases H1 contains c18 or c19 are similar.) Since
H1 contains at most the vertices c1, c2, c3, c17, c18, c19, H1 does not contain
11 vertices of C, a contradiction.

Subcase 2.5: The homothetic copy H1 contains exactly one vertex from
S5.

Without loss of generality it may be assumed that H1 contains c2. By
Lemma 3, H1 does not contain the vertices c23, . . . , c26.
Let us assume that H1 contains c7. (The cases H1 contains c8, c9 or c10 are
similar.) By Lemma 3, H1 does not contain c14, c15 or c16. By Lemma 3,
H1 does not contain both c8 and c12. By Lemma 3, H1 does not contain
both c9 and c13. By Lemma 3, H1 does not contain both c10 and c11. By
Lemma 3, H1 does not contain both c17 and c22. By Lemma 3, H1 does
not contain both c18 and c21. Thus H1 does not contain 11 vertices of C, a
contradiction.
Let us assume that H1 contains c11 (and does not contain the vertices
c7, . . . , c9 or c10). (The cases H1 contains c12, c13, c14, c15, c16 are sim-
ilar.) By Lemma 3, H1 does not contain c16. By Lemma 2, H1 does not
contain c22. By Lemma 2, H1 does not contain both c12 and c21. By Lemma
2, H1 does not contain c13 and c20. Thus H1 does not contain 11 vertices of
C, a contradiction.
Let us assume that H1 contains c17 (and does not contain the vertices
c7, . . . , c15 or c16). (The cases H1 contains c18, . . . , c22 are similar.) Since
H1 contains at most the vertices c1, c2, c17, . . . , c22, H1 does not contain 11
vertices of C, a contradiction.

Subcase 2.6: The homothetic copy H1 does not contain any vertex from
S5.

Let us assume that H1 contains c7. (The cases H1 contains c8, . . . , c16 are
similar.) By Lemma 3, H1 does not contain c14, c15 or c16. By Lemma 2, H1

does not contain c26. By Lemma 3, H1 does not contain both c8 and c12. By
Lemma 3, H1 does not contain both c9 and c13. By Lemma 3, H1 does not
contain both c10 and c11. By Lemma 3, H1 does not contain both c17 and
c25. By Lemma 3, H1 does not contain both c18 and c24. By Lemma 3, H1

does not contain both c19 and c20. By Lemma 3, H1 does not contain both
c21 and c23. Thus H1 does not contain 11 vertices of C, a contradiction.
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Let us assume that H1 contains c17 (and does not contain the vertices
c7, . . . , c15 or c16). (The cases H1 contains c18, . . . , c26 are similar.) By
Lemma 3, H1 does not contain c22, c25 or c26. Since H1 contain at most the
vertices c1, c2, c17, c18, c19, c20, c21, c23, c24, H1 does not contain 11 vertices
of C, a contradiction. □

Since γd2d+3(K
d) ≤ γd2d+2(K

d) and γd2d+2(K
d) = d−1

d for d ≥ 6,

γd2d+2(K
d) ≤ d−1

d for d ≥ 6.

Conjecture 2. If m = 2d+ 3, then γdm(Kd) = d−1
d for d ≥ 6.

Theorem 5. If m = 2d+ 4, then γdm(Kd) = 2d−3
2d−1 for d = 4 and γdm(Kd) ≤

2d−3
2d−1 for d ≥ 5.

Proof. First it will be proved that γdm(Kd) ≤ 2d−3
2d−1 for d ≥ 4. Let λ =

2d−3
2d−1 and consider the following homothetic copies of Kd. Kd

1 = λKd +[
2

2d−1 , 0, 0, . . . , 0
]T

, Kd
2 = λKd +

[
0, 2

2d−1 , 0, . . . , 0
]T

, . . ., Kd
d = λKd +[

0, . . . , 0, 2
2d−1

]T
, Kd

d+1 = λKd +
[
− 2

2d−1 , 0, 0, . . . , 0
]T

, . . ., Kd
2d = λKd +[

0, . . . , 0,− 2
2d−1

]T
,Kd

2d+1 = λKd+
[

1.5
2d−1 ,

1.5
2d−1 , 0, 0 . . . , 0

]T
,Kd

2d+2 = λKd+[
− 1.5

2d−1 ,
1.5

2d−1 , 0, 0 . . . , 0
]T

, Kd
2d+3 = λKd +

[
− 1.5

2d−1 ,−
1.5

2d−1 , 0, 0 . . . , 0
]T

,

Kd
2d+4 = λKd +

[
1.5

2d−1 ,−
1.5

2d−1 , 0, 0 . . . , 0
]T

. Now it will be proved that the

surface of Kd is covered by the homothetic copies Kd
1 , . . . ,K

d
2d+4. Consider

a facet F of Kd. Without loss of generality it can be assumed that F lies
on the hyperplane x1 + . . . + xd = 1. The homothetic image of F with
ratio λ and centre (1, 0, 0 . . . , 0) ((0, 1, 0 . . . , 0), . . . , (0, . . . , 0, 1), resp.) is

covered by Kd
1 (Kd

2 , . . . ,K
d
d , resp.). Let n1 =

(
1

2d−1 ,
2

2d−1 ,
2

2d−1 , . . . ,
2

2d−1

)
,

n2 =
(

2
2d−1 ,

1
2d−1 ,

2
2d−1 , . . . ,

2
2d−1

)
,. . . , nd =

(
2

2d−1 , . . . ,
2

2d−1 ,
1

2d−1

)
. The

convex hull of the points n1, . . . , nd is uncovered by Kd
1 , . . . ,K

d
d . Since∣∣∣∣∣∣∣∣( 1.5

2d− 1
,

1.5

2d− 1
, 0, 0 . . . , 0

)
− ni

∣∣∣∣∣∣∣∣
1

≤ max

(
2

0.5

2d− 1
+ (d− 2)

2

2d− 1
, 2

0.5

2d− 1
+ (d− 3)

2

2d− 1
+

1

2d− 1

)
=

2d− 3

2d− 1
= λ

for i = 1, . . . , d, the points n1, . . . , nd are covered by Kd
2d+1. Since Kd

2d+1

and the convex hull of the points n1, . . . , nd are convex bodies, Kd
2d+1 cov-

ers the convex hull of the points n1, . . . , nd. Thus the facet F is cov-
ered by Kd

1 , . . . ,K
d
d , K

d
2d+1. Similarly any other facet of Kd is covered by
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Kd
1 , . . . ,K

d
2d+4. Since the origin lies in each homothetic copy Kd

1 , . . . ,K
d
2d+4,

Kd is covered by Kd
1 , . . . ,K

d
2d+4 and γd2d+4(K

d) ≤ 2d−3
2d−1 for d ≥ 4.

Now consider the case d = 4. Let it be assumed that γ412(K
d) = µ < 5

7 .
Let n1,1 = (1/7, 2/7, 2/7, 2/7), n1,2 = (2/7, 1/7, 2/7, 2/7), n1,3 = (2/7, 2/7,
1/7, 2/7), n1,4 = (2/7, 2/7, 2/7, 1/7), n2,1 = (−1/7, 2/7, 2/7, 2/7), . . .,
n10,3 = (2/7,−2/7, 1/7,−2/7), . . ., n12,3 = (−2/7,−2/7,−1/7, 2/7), . . .,
n14,1 = (−1/7, 2/7,−2/7,−2/7) . . ., n16,4 = (−2/7,−2/7,−2/7,−1/7). By
Lemma 1, the 8 homothetic copies of K4 with ratio µ cover the 8 vertices of
K4 and the points n1,1, . . . , n16,4 are uncovered by these homothetic copies.
It will be proved that four homothetic copies of K4 with ratio µ does not
cover the points n1,1, . . . , n16,4. Since ||n1,1 − n10,3||1 = ||n1,1 − n12,3||1 =
||n1,1−n14,1||1 = ||n10,3−n12,3||1 = ||n10,3−n14,1||1 = ||n12,3−n14,1||1 = 10

7 =
2λ, the points n1,1, n10,3, n12,3 and n14,1 are not covered by four homothetic
copies of K4 with ratio µ, a contradiction. □

Conjecture 3. If m = 2d+ 4, then γdm(Kd) = 2d−3
2d−1 for d ≥ 5.
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