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COMBINATORICS OF CERTAIN CLASSES OF PLANE

PARTITIONS

RACHNA SACHDEVA

Abstract. In this paper, we study new restricted plane partitions and
connect them with associated lattice paths by using n-color partitions.
We also obtain generating functions and recurrence relations for certain
classes of plane partitions.

1. Introduction

The theory of partitions can be seen as one of the most beautiful branches
of combinatorics. Euler was the first person to make a real development in
the area of partitions by giving many important properties of the parti-
tion function in his book “Introduction in Analysin Infinitorium”. Since
partitions are sequences of positive integers, one can see them as “one di-
mensional” objects. Plane partitions are defined by MacMahon [17] as a
natural generalization of partitions to two dimensions. Presently, plane par-
titions are studied in connection with many diverse areas of mathematics.
Interested readers are referred to [15, 16] for an extensive and detailed study
of this field. First, we recall the following definitions:

Definition 1.1 (Euler [14]). A partition of a positive integer n is a finite
nonincreasing sequence of positive integers whose sum is n.

Example 1.2. The partitions of 3 are 3, 2 + 1, 1 + 1 + 1.

Definition 1.3 (MacMahon [17]). A plane partition of a positive integer ν
is an array of nonnegative integers

m11 m12 m13 . . .
m21 m22 m23 . . .
...

...
...

for which
∑

i,j mij = ν and rows and columns are in nonincreasing order.
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Example 1.4. There are six plane partitions of 3, viz.,

3, 2 1,
2
1
, 1 1 1,

1 1
1

,
1
1
1
.

Remark: The entries mij are called the parts of a plane partition. A plane
partition is called symmetric if mij = mji for all i and j.

MacMahon in his book [18] showed that if PP (ν) denotes the number of
plane partitions of a positive integer ν, then

(1.1) 1 +
∞∑
ν=1

PP (ν)qν =
∞∏
n=1

(1− qn)−n.

Partitions with “n copies of n” referred to as n-color partitions were ini-
tially defined by Agarwal and Andrews [9] for the purpose of interpreting
several q-series combinatorially. However, these partitions had been used
indirectly in many studies of plane partitions before Andrews and Agarwal
began studying them (see, for instance, Chaundy [19], Cheema and Gor-
don [20], and Sagan [21]). Now a full-fledged theory (almost parallel to the
theory of the classical partitions) is being developed for them. For exam-
ple, analogous to MacMahon’s combinatorial interpretations of the Rogers–
Ramanujan identities given in [18], several q-series identities have been in-
terpreted combinatorially using n-color partitions in [1, 2, 3, 6, 7, 10, 12].
Conjugate and self-conjugate n-color partitions have been studied in [11],
n-color perfect partitions were introduced in [13].

Definition 1.6 (Agarwal and Andrews [9]). An n-color partition (or, a
partition with “n copies of n”) is a partition in which a part of size n,
n ≥ 1, can come in n different colors denoted by subscripts n1, n2, . . . , nn

and the parts satisfy the order

11 < 21 < 22 < 31 < 32 < 33 < 41 < 42 < 43 < 44 < 51 < 52 < . . . .

Example 1.7. There are 13 n-color partitions of 4, viz.,

41, 42, 43, 44,

31 + 11, 32 + 11, 33 + 11,

21 + 21, 21 + 22, 22 + 22,

21 + 11 + 11, 22 + 11 + 11, 11 + 11 + 11 + 11.

Definition 1.8 (Agarwal and Balasubramanian [11]). Let π = (a1)b1 +
(a2)b2 + · · ·+ (ar)br be an n-color partition. The n-color partition obtained
by replacing each part (ai)bi of π by its conjugate (ai)ai−bi+1, is known as
the conjugate of π and is denoted by πc. An n-color partition is said to be
self-conjugate if it is identical with its conjugate.

Example 1.9. 21 + 22 + 11 is a self-conjugate n-color partition of 5.
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Agarwal and Bressoud have introduced lattice paths in [10] to give a
combinatorial interpretation of multiple basic hypergeometric series. In [22],
Anand and Agarwal defined a new class of lattice paths which they called
associated lattice paths. The authors in [22] gave a graphical representation
of n-color partitions in terms of associated lattice paths. First we recall the
description of lattice paths as follows:

All paths are of finite length and lie in the first quadrant. They will begin
on the y-axis or x-axis and terminate on the x-axis. Only three moves are
allowed at each step.

Northeast (↗): from (i, j) to (i+ 1, j + 1),
Southeast (↘): from (i, j) to (i+ 1, j − 1), only allowed if j > 0,
Horizontal (→): from (i, 0) to (i+ 1, 0), only allowed along x-axis.

Associated lattice paths are those paths of finite length in the first quadrant
which begin on the x-axis and terminate on the x-axis. The northeast
and southeast steps are the same as in the case of lattice paths. However,
the horizontal step is a step from (i, j) to (i + 1, j), only allowed when
the preceding step is a northeast step and the following step is a southeast
step. Next, we will be using the following terminology to describe associated
lattice paths:

(1) Truncated Isosceles Trapezoidal Section (TITS): A section of path
which starts on the x-axis with northeast steps followed by horizontal
steps and then followed by southeast steps ending on the x-axis forms
what we call a Truncated Isosceles Trapezoidal Section. Since the
lower base of the trapezoid lies on the x-axis and is not a part of the
path, the term truncated is used.

(2) Weight of a TITS: To define this, we shall represent every TITS by
an ordered pair {a, b} where a denotes its altitude and b the length
of the upper base. The weight of the TITS with ordered pair {a, b}
is a units.

(3) Weight of an associated lattice path: It is the sum of weights of its
TITSs.

Example 1.10. The following associated lattice path has three TITS with
{1, 2}, {2, 4} and {1, 1} as corresponding ordered pairs.

Figure 1. An associated lattice path having weight 4

The following Theorem from [22] gives a one-to-one correspondence between
a class of associated lattice paths of weight ν and n-color partitions of a
positive integer ν:
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Theorem 1.11. Let χ(ν) denote the number of associated lattice paths of
weight ν such that for any TITS with ordered pair {a, b}, b does not exceed a
and TITSs are arranged in order of nondecreasing altitudes and the TITSs
with the same altitude are ordered by the length of their upper base. Let
P (ν) denote the number of n-color partitions of ν. Then

χ(ν) = P (ν), for all ν ≥ 0.

Using generating functions, Agarwal and Andrews [9] proved that the
number of n-color partitions of ν equals the number of plane partitions of ν.
Agarwal [4] established a bijection between the set of plane partitions of ν
and the set of n-color partitions of ν via infinite matrices defined by Bender
and Knuth in [23] and referred to as Bender–Knuth matrices. However, a
new bijective correspondence between n-color partitions and plane partitions
is constructed in [24] that exhibits very beautiful properties. First we give
an outline of the procedure used in [24] to obtain a plane partition from a
given n-color partition.

Consider an n-color partition π = (m1)n1 + (m2)n2 + · · · + (mk)nk
. We

associate each part (mi)ni of π to a point (ni,mi − ni + 1), 1 ≤ i ≤ k. In
this way, the partition π corresponds to a multiset S = {(n1,m1 − n1 +
1), (n2,m2 − n2 + 1), . . . , (nk,mk − nk + 1)}. Conversely such a multiset S
corresponds to a unique n-color partition. The product order is defined on
multiset S as (a, b) ≥ (c, d) if and only if a ≥ b and c ≥ d which is clearly
a partial order on S. Recall that a chain on a multiset is defined to be a
sub-multiset such that every distinct pair of elements is comparable. Let ct
denote the cardinality of the largest sub-multiset, say Ct, of S obtained by
taking the union of t chains. By convention, we define c0 = 0. The sequence
(λt)t≥1 = (ct−ct−1)t≥1 is nonincreasing and thus a partition of k. We denote
λ(π) = (λ1, λ2, . . . ) and call it as the shape of partition π.

We now obtain a multiset S(i,j) from the multiset S by deleting all those
points whose first coordinate is less than i or the second coordinate is less
than j. Let π(i,j) denote the corresponding n-color partition. Further,

c
(i,j)
t will denote the cardinality of the corresponding sub-multiset C(i,j)

t . Let

λ(i,j) = (λ
(i,j)
1 , λ

(i,j)
2 , . . . ) be the shape of the n-color partition π(i,j), where

λ
(i,j)
t = c

(i,j)
t − c

(i,j)
t−1 , t ≥ 1. Next we construct a plane partition with (i, j)th

part as nij by writing these shapes diagonally as follows:

(1.2) nij =

{
λ
(i−j+1,1)
j if i ≥ j

λ
(1,j−i+1)
i if i ≤ j.

Example 1.12. Let π = 53 + 43 + 43 + 43 + 33 + 33 + 42 + 32 + 22 + 31 +
31 + 21 + 21 + 11 + 11 + 11 be an n-color partition of 45. Then the multiset
S is given by

S ={(3, 3), (3, 2), (3, 2), (3, 2), (3, 1), (3, 1), (2, 3), (2, 2), (2, 1), (1, 3), (1, 3),
(1, 2), (1, 2), (1, 1), (1, 1), (1, 1)}.
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Now we obtain the shape λ(π) as follows:
We obtain C1 by only 1 chain

{(3, 3), (3, 2), (3, 2), (3, 2), (3, 1), (3, 1), (2, 1), (1, 1), (1, 1), (1, 1)}.
Hence,

C1 = {(3, 3), (3, 2), (3, 2), (3, 2), (3, 1), (3, 1), (2, 1), (1, 1), (1, 1), (1, 1)}.
In this way, c1 = |C1| = 10. Now, C2 is obtained by taking a union of 2
chains

{(3, 3), (3, 2), (3, 2), (3, 2), (3, 1), (3, 1), (2, 1), (1, 1), (1, 1), (1, 1)}
∪ {(2, 3), (1, 3), (1, 3), (1, 2), (1, 2)}.

Thus,

C2 ={3, 3), (3, 2), (3, 2), (3, 2), (3, 1), (3, 1), (2, 3), (2, 1), (1, 3), (1, 3), (1, 2),
(1, 2), (1, 1), (1, 1), (1, 1)}.

This gives c2 = |C2| = 15. Next, C3 is obtained by taking a union of 3 chains

{(3, 3), (3, 2), (3, 2), (3, 2), (3, 1), (3, 1), (2, 1), (1, 1), (1, 1), (1, 1)}
∪ {(2, 3), (1, 3), (1, 3), (1, 2), (1, 2)} ∪ {(2, 2)}.

Hence,

C3 ={(3, 3), (3, 2), (3, 2), (3, 2), (3, 1), (3, 1), (2, 3), (2, 2), (2, 1), (1, 3), (1, 3),
(1, 2), (1, 2), (1, 1), (1, 1), (1, 1)}.

This shows c3 = |C3| = 16.
Hence λ(π) = (λ1, λ2, λ3) = (10, 5, 1).

Also note that λ(1,1) = λ(π) = (10, 5, 1).

Next, we obtain λ(1,2) by using S(1,2) = {(3, 3), (3, 2), (3, 2), (3, 2), (2, 3),
(2, 2), (1, 3), (1, 3), (1, 2), (1, 2)}. In this case, C(1,2)

i s are given as follows:
We have only 1 chain

{(3, 3), (3, 2), (3, 2), (3, 2), (2, 2), (1, 2), (1, 2)}
to get

C(1,2)
1 = {(3, 3), (3, 2), (3, 2), (3, 2), (2, 2), (1, 2), (1, 2)}.

Hence c
(1,2)
1 = |C(1,2)

1 | = 7. Next, the union of 2 chains

{(3, 3), (3, 2), (3, 2), (3, 2), (2, 2), (1, 2), (1, 2)} ∪ {(2, 3), (1, 3), (1, 3)}
gives us

C(1,2)
2 = {(3, 3), (3, 2), (3, 2), (3, 2), (2, 3), (2, 2), (1, 3), (1, 3), (1, 2), (1, 2)}.

This shows c
(1,2)
2 = |C(1,2)

2 | = 10. Thus

λ(1,2) = (λ
(1,2)
1 , λ

(1,2)
2 ) = (7, 3).

Similarly

λ(2,1) = (7, 2); λ(1,3) = 4; λ(3,1) = 6.
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Now, using equation (1.2), we get the following plane partition:

10 7 4
7 5 3
6 2 1.

Let P(U, V ; ν) denote the set of all n-color partitions of ν of the form∑
i(mi)ni such that mi ∈ U, ni ∈ V and P (U, V ; ν) = |P(U, V ; ν)|. We shall

denote the set of all even positive integers and the set of all odd positive
integers by E and O, respectively. Let R(ν) denote the number of n-color
partitions of ν such that even parts appear with even subscripts and odd
parts appear with odd subscripts. Further, we denote the number of self-
conjugate n-color partitions of a positive integer ν by SC(ν). Next, if A(ν)
denotes the set of a particular type of partitions of ν, then A(ν) will denote
the number of partitions in A(ν) and GA(q) will denote the generating func-
tion for A(ν). Using standard techniques of partition theory, the following
generating functions are proved in [8]:

(1.3) 1 +
∞∑
ν=1

P (O,O; ν)qν =
∞∏
n=1

1

(1− q2n−1)n

(1.4) 1 +

∞∑
ν=1

P (E,E; ν)qν =

∞∏
n=1

1

(1− q2n)n

(1.5) 1 +
∞∑
ν=1

P (E,O; ν)qν =
∞∏
n=1

1

(1− q2n)n

(1.6) 1 +

∞∑
ν=1

P (O,E; ν)qν =

∞∏
n=1

1

(1− q2n−1)n−1

(1.7) 1 +
∞∑
ν=1

R(ν)qν =

∞∏
n=1

1

(1− qn)[
n+1
2

]

where [ ] denotes the greatest integer function.
It was proved in [5] that the number of self-conjugate n-color partitions

of a positive integer ν has the following generating function:

(1.8) 1 +
∞∑
ν=1

SC(ν)qν =
∞∏
n=1

1

(1− q2n−1)(1− q2n)[
n
2
]
.

The main results of this paper are contained in Section 2 and 3. Section 2
consists of results related to new restricted plane partitions which include
generating functions and recurrence relations. In Section 3, a connection
between certain classes of plane partitions and restricted associated lattice
paths is established. In Section 4, we provide the first few values of all
new restricted plane partition functions. These values are obtained on a
computer using the results of Section 2.
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2. Restricted plane partitions

In this section, we give generating functions and recurrence relations for
new restricted plane partitions.

Throughout the section, we denote

π =

l11 l12 . . .
l21 l22 . . .
...

...

to be a plane partition of ν. Recall that σk(n) denotes the sum of kth powers
of divisors of n.

Theorem 2.1. Let A1(ν) denote the number of plane partitions π of ν such
that

(1) the number of columns as well as the number of rows of π is odd,
(2) if i and j are of opposite parity then

lij =

{
l(i+1)j if i > j

li(j+1) if i < j
.

Then

(2.1) GA1(q) = 1 +
∞∑
ν=1

A1(ν)q
ν =

∞∏
n=1

1

(1− q2n−1)n
,

A1(0) = 1, A1(1) = 1,

and for ν ≥ 2, we have

A1(ν) =
1

ν

{
ν∑

m=1

1

2
(σ2(m) + σ1(m))A1(ν −m)(2.2)

−
[ν/2]∑
k=1

(2σ2(k) + σ1(k))A1(ν − 2k)

 .

Theorem 2.2. Let A2(ν) denote the number of plane partitions π of ν such
that

(1) the number of columns as well as the number of rows of π is even,
(2) if i and j are of same parity then

lij = l(i+1)j if i ≥ j,

(3) if i and j are of opposite parity then

lij = li(j+1) if i < j.

Then

(2.3) GA2(q) = 1 +

∞∑
ν=1

A2(ν)q
ν =

∞∏
n=1

1

(1− q2n)n
,

A2(0) = 1, A2(1) = 0,



116 RACHNA SACHDEVA

(2.4) A2(ν) =
1

ν


[ν/2]∑
k=1

(σ2(k))A2(ν − 2k)

 for ν ≥ 2.

Theorem 2.3. Let A3(ν) denote the number of plane partitions π of ν such
that

(1) the number of columns of π is even and the number of rows of π is
odd,

(2) if i and j are of opposite parity then

lij = l(i+1)j if i > j,

(3) if i and j are of same parity then

lij = li(j+1) if i ≤ j.

Then

(2.5) GA3(q) = 1 +

∞∑
ν=1

A3(ν)q
ν =

∞∏
n=1

1

(1− q2n)n
,

A3(0) = 1, A3(1) = 0,

(2.6) A3(ν) =
1

ν


[ν/2]∑
k=1

(σ2(k))A3(ν − 2k)

 for ν ≥ 2.

Theorem 2.4. Let A4(ν) denote the number of plane partitions π of ν such
that

(1) the number of columns of π is even and the number of rows of π is
odd,

(2) if i and j are of opposite parity then

lij =

{
l(i+1)j if i > j

li(j+1) if i < j
.

Then

(2.7) GA4(q) = 1 +
∞∑
ν=1

A4(ν)q
ν =

∞∏
n=1

1

(1− q2n)n−1
,

A4(0) = 1, A4(1) = 0,

and for ν ≥ 2, we have

A4(ν) =
1

ν

{
ν∑

m=1

1

2
(σ2(m) + σ1(m))A4(ν −m)(2.8)

−
[ν/2]∑
k=1

(2σ2(k)− σ1(k))A4(ν − 2k)

 .

Theorem 2.5. Let A5(ν) denote the number of plane partitions π of ν such
that
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(1) the number of columns of π is odd,
(2) if i and j are of opposite parity then lij = li(j+1) for i < j.

Then

(2.9) GA5(q) = 1 +

∞∑
ν=1

A5(ν)q
ν =

∞∏
n=1

1

(1− qn)[
n+1
2

]
,

A5(0) = 1, A5(1) = 0,

and for ν ≥ 2, we have
(2.10)

A5(ν) =
1

ν


ν∑

m=1

1

2
(σ2(m) + σ1(m))A5(ν −m)−

[ν/2]∑
k=1

(σ1(k))A5(ν − 2k)

 .

Theorem 2.6. Let A6(ν) denote the number of symmetric plane partitions
of ν, then

(2.11) GA6(q) = 1 +

∞∑
ν=1

A6(ν)q
ν =

∞∏
n=1

1

(1− q2n−1)(1− q2n)[
n
2
]
,

A6(0) = 1, A6(1) = 1, A6(2) = 1, A6(3) = 2,

and for ν ≥ 4, we have

A6(ν) =
1

ν

{ ν∑
m=1

(σ1(m))A6(ν −m)−
[ν/2]∑
k=1

(σ2(k)− 3σ1(k))A6(ν − 2k)

(2.12)

+

[ν/4]∑
ℓ=1

(2σ1(ℓ))A6(ν − 4ℓ)

}
.

Since the proofs of Theorems 2.1–2.6 are similar, we give the details of
the proof of Theorem 2.1 and omit the proofs of the remaining theorems.

Bijective proof of Theorem 2.1. First we show that A1(ν) = P (O,O; ν). Let
ω = (a1)b1+(a2)b2+. . . (ar)br be an n-color partition in P(O,O; ν) or we can
say that ai and bi are odd ∀ 1 ≤ i ≤ r. Now we obtain a plane partition, say π
corresponding to the n-color partition ω using the procedure given in Section
1. In the multiset S = {(b1, a1−b1+1), (b2, a2−b2+1), . . . , (br, ar−br+1)}
corresponding to the partition ω, all points have odd coordinates. Note that
the number of columns and the number of rows in the corresponding plane
partition π are the largest ai − bi + 1 and bi, respectively. This proves part
1.

Further, since there is no even ordinate in the points of S, the correspond-
ing multiset S(i,j) will be the same as S(i,j+1), for j even. Hence we obtain
the relation

λ(1,j) = λ(1,j+1), j even.
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Now using equation (1.2), we get that for i < j, lij = li(j+1) where i and j
are of opposite parity. Similarly, using the fact that there is no even abscissa
in the points of S, we obtain

λ(i,1) = λ(i+1,1), i even.

Hence for i > j, we get lij = l(i+1)j where i and j are of opposite parity. In
this way, we get that the plane partition π is in A1(ν). Now using equation
(1.3), we get (2.1). To prove (2.2), we differentiate (2.1) logarithmically
both sides with respect to q.

qGA′
1(q)

GA1(q)
=

∞∑
n=1

n(2n− 1)q2n−1

1− q2n−1

=
∞∑
n=1

(
n(n+ 1)

2

qn

1− qn
− 2n(2n+ 1)

2

q2n

1− q2n

)
.

Using
∑∞

n=1 σk(n)q
n =

∑∞
n=1

nkqn

1−qn , we get

qGA′
1(q)

GA1(q)
=

1

2

∞∑
n=1

(σ2(n) + σ1(n))q
n −

∞∑
n=1

(2σ2(n) + σ1(n))q
2n,

and hence

∞∑
ν=0

νA1(ν)q
ν =

( ∞∑
ν=0

A1(ν)q
ν

)(
1

2

∞∑
n=1

(σ2(n) + σ1(n))q
n−

∞∑
n=1

(2σ2(n) + σ1(n))q
2n

)
.

Equating coefficients of qν on both sides, we get the result. □

3. Graphical Representation

In view of Theorem 1.11 and the fact that the number of plane partitions
of a positive integer ν is the same as the number of n-color partitions of ν,
we conclude that

PP (ν) = P (ν) = χ(ν).

In this Section, we connect the restricted plane partitions introduced in
Section 2 with certain classes of associated lattice paths.

Theorem 3.1. Let B1(ν) denote the number of associated lattice paths of
weight ν such that for any TITS with ordered pair {a, b}, both a and b are
odd, b does not exceed a, where the TITSs are arranged as in Theorem 1.11.
Then

B1(ν) = A1(ν).
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Theorem 3.2. Let B2(ν) denote the number of associated lattice paths of
weight ν such that for any TITS with ordered pair {a, b}, both a and b are
even, b does not exceed a, where the TITSs are arranged as in Theorem 1.11.
Then

B2(ν) = A2(ν).

Theorem 3.3. Let B3(ν) denote the number of associated lattice paths of
weight ν such that for any TITS with ordered pair {a, b}, a is even and b is
odd, b does not exceed a, where the TITSs are arranged as in Theorem 1.11.
Then

B3(ν) = A3(ν).

Theorem 3.4. Let B4(ν) denote the number of associated lattice paths of
weight ν such that for any TITS with ordered pair {a, b}, a is odd and b
is even, b does not exceed a, where the TITSs are arranged as in Theorem
1.11. Then

B4(ν) = A4(ν).

Theorem 3.5. Let B5(ν) denote the number of associated lattice paths of
weight ν such that for any TITS with ordered pair {a, b}, a and b have same
parity, b does not exceed a, where the TITSs are arranged as in Theorem
1.11. Then

B5(ν) = A5(ν).

Theorem 3.6. Let B6(ν) denote the number of associated lattice paths of
weight ν such that either pairs of TITS occur with {a, b}, {a, a−b+1} as the
corresponding ordered pairs, b does not exceed a or any TITS has ordered
pair {2b− 1, b}, where the TITSs are arranged as in Theorem 1.11. Then

B6(ν) = A6(ν).

Here we give the details of the proof of Theorem 3.1. The proofs of the
Theorems 3.2-3.6 can be obtained on similar lines.

Proof of Theorem 3.1. Let B1(ν) denote the set of associated lattice paths
enumerated by B1(ν). Let α be an associated lattice path in B1(ν). Each
TITS with ordered pair {a, b} in α is mapped to an n-color part ab. Since
b does not exceed a and both a and b are odd, the corresponding n-color
partition will belong to P(O,O; ν). Reversing the steps, we get that each
n-color partition in P(O,O; ν) corresponds to an associated lattice path in
B1(ν). This correspondence along with Theorem 2.1 shows that there is a
one-to-one correspondence between A1(ν) and B1(ν). □

We illustrate the equality of A1(ν), B1(ν) and P (O,O; ν) for ν = 5 with
the help of Table 1.
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Table 1. Illustration in the proof of Theorem 2.1 and 3.1

n-color partitions in Plane partitions Associated lattice paths
P(O,O; 5) in A1(5) in B1(5)

51 1 1 1 1 1

53

1 1 1
1
1

55

1
1
1
1
1

331111

3
1
1

311111 3 1 1

1111111111 5

4. Integer sequences

In this section, we give values of restricted plane partition functions Ai(ν)
for 1 ≤ i ≤ 6 and 1 ≤ ν ≤ 10 obtained on a computer using the results of
Section 2.

A1(ν) : 1, 1, 3, 3, 6, 9, 13, 19, 28, 42, . . .
A2(ν) : 0, 1, 0, 3, 0, 6, 0, 13, 0, 24, . . .
A3(ν) : 0, 1, 0, 3, 0, 6, 0, 13, 0, 24, . . .
A4(ν) : 0, 0, 1, 0, 2, 1, 3, 2, 5, 6, . . .
A5(ν) : 1, 2, 4, 7, 12, 21, 34, 56, 90, 143, . . .
A6(ν) : 1, 1, 2, 3, 4, 6, 8, 12, 16, 22, . . .
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