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CAYLEY GRAPHS OF ORDER 8pq ARE HAMILTONIAN

FATEME ABEDI, DAVE WITTE MORRIS, JAVANSHIR REZAEE,
AND M. REZA SALARIAN

Abstract. We give a computer-assisted proof that if G is a finite group
of order 8pq, where p and q are distinct primes, then every connected
Cayley graph on G has a hamiltonian cycle.

1. Introduction

Numerous papers show that all connected Cayley graphs of certain orders
are hamiltonian. (See Eq. (2.2) for a definition of the term “Cayley graph.”)
Several of these results are collected in the following theorem, which is an
updated version of [12, Thm. 1.2].

Theorem 1.1 (cf. [14, Thm. 1.2]). If G is a finite group with |G| > 2, and
|G| has any of the following forms (where p, q, r and s are distinct primes,
and k is a positive integer), then every connected Cayley graph on G has a
hamiltonian cycle:

(1) kp, where k ≤ 47,
(2) kpq, where k ≤ 7 or k = 9,
(3) pqr,
(4) pqrs if p, q, r and s are odd,

(5) kp2, where k ≤ 4,
(6) kp3, where k ≤ 2,
(7) pk.

Remark 1.2. The introduction of [14] provides a list of the papers that were
combined to make Eq. (1.1), except that it does not have references for the
two parts of the equation that do not appear in [14]’s statement of the result:
see [16, Cor. 1.5] for the case k = 9 of part (2), and see [18] for part (4). A
more detailed (but outdated, and therefore incomplete) explanation of the
contribution from each paper is in [12, §2A].

The purpose of this paper is to add the case k = 8 to part (2) of the
equation:
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Theorem 1.3. If p and q are distinct primes, then every connected Cayley
graph of order 8pq has a hamiltonian cycle.

Remark 1.4. This means that part (2) of Eq. (1.1) can be replaced with:

(2′) kpq, where k ≤ 9.

The proof of Eq. (1.3) relies on an exhaustive case-by-case analysis, like
most other parts of Eq. (1.1). However, although almost all parts of that
equation were proved by hand (so some of the papers are long and compli-
cated — see, for example, the proof of the case k = 6 of part (2) of the
equation in [14]), we will use a computer-assisted approach that is adapted
from the method that was used to complete part (1) of the equation in [19].
Equation (2.11) is the main tool. See Section 3A for an explanation of the
technique.

Here is an outline of the paper.

• Section 2 consists of preliminaries on several topics: hamiltonian cy-
cles in Cayley graphs, the Factor Group Lemma, generalized dihedral
groups, elementary number theory, and group theory.

• Section 3 describes how we use a computer to find hamiltonian cycles.
• Section 4 spells out assumptions and notation that will be in effect
for all later sections of the paper.

• Sections 5 and 6 deal with two cases that cannot be handled by
our computer programs. (However, Section 5 does use a computer
program in the final subsubcase of the proof of Eq. (5.1).)

• Section 7 proves Eq. (1.3).

2. Preliminaries

Notation 2.1. G is always a finite group.

2A. Some basic results on hamiltonian cycles in Cayley graphs.

Definition 2.2 (cf. [5, p. 34]). Let S be a subset of G. The Cayley graph
Cay(G;S) is the graph whose vertices are the elements of G, such that there
is an edge joining two vertices g and h if and only if h = gs for some
s ∈ S ∪ S−1 (where S−1 = { s−1 | s ∈ S }.

Remark 2.3 ([19, Rem. 2.2]). Unlike most authors, we do not require
S to be symmetric (i.e., closed under inverses). Instead, in our notation,
Cay(G;S) = Cay(G;S ∪ S−1).

Theorem 2.4 ([13, Problem 12.17, pp. 89 and 505–506], [11], [17]). Assume
|G| > 2. Every connected Cayley graph on G has a hamiltonian cycle if any
of the following are true:

(1) G is abelian (in other words, the commutator subgroup of G is triv-
ial), or

(2) the commutator subgroup of G is a cyclic p-group, for some prime p,
or
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(3) the commutator subgroup of G has order 2p, where p is an odd prime.

The following elementary observation is well-known (and was used in the
proofs of almost all parts of Eq. (1.1)). (A generating set S of a group G
is irredundant if no proper subset of S generates G, so the result follows
easily from the fact that every hamiltonian cycle of a spanning subgraph is
a hamiltonian cycle of the ambient graph.) When proving that all connected
Cayley graphs on a group G are hamiltonian, it allows us to consider only
the Cayley graphs of generating sets that are irredundant.

Lemma 2.5. If there is a hamiltonian cycle in the Cayley graph of every
irredundant generating set of G, then every connected Cayley graph on G
has a hamiltonian cycle.

The following observation is also well-known.

Lemma 2.6 ([12, Lem. 2.27]). Let S generate G and let s ∈ S, such that
⟨s⟩ ⊴ G. If

• Cay(G/⟨s⟩;S) has a hamiltonian cycle, and
• either

(1) s ∈ Z(G), or
(2) Z(G) ∩ ⟨s⟩ = 1, or
(3) |s| is prime,

then Cay(G;S) has a hamiltonian cycle.

A slight modification of the proof of part (2) of the equation establishes
the following generalization:

Lemma 2.7. Let S generate G and let s ∈ S, such that ⟨s⟩ ⊴ G. If

• Cay(G/⟨s⟩;S) has a hamiltonian cycle,
• Z(G) ∩ ⟨s⟩ is a direct factor of ⟨s⟩, and
• |Z(G) ∩ ⟨s⟩| is a divisor of |G : ⟨s⟩|,

then Cay(G;S) has a hamiltonian cycle.

2B. Factor Group Lemma. Because of the following equation, it is very
useful to be able to lift hamiltonian cycles from a quotient graph to the
original Cayley graph. Equation (2.11) is a fundamental result that often
makes this possible.

Remark 2.8. Suppose N is any nontrivial, proper, normal subgroup of G,
such that |G/N | > 2. By Eq. (1.1)(1,2), we know that every connected
Cayley graph on G/N has a hamiltonian cycle.

Notation 2.9 (cf., e.g., [14, §2.1]). For s1, s2, ..., sn ∈ S ∪ S−1:

• (s1, s2, s3, ..., sn) denotes the walk in Cay(G;S) that visits (in order)
the vertices

1, s1, s1s2, s1s2s3, ..., s1s2...sn.
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• (s1, s2, s3, ..., sn)
k denotes the walk that is obtained from the con-

catenation of k copies of (s1, s2, s3, ..., sn), and
• (s1, s2, s3, ..., sn)# denotes the walk (s1, s2, s3..., sn−1) that is ob-
tained by deleting the last term of the sequence.

Definition 2.10 (cf. [6, §2.1.3, p. 61]). Suppose N is a normal subgroup of
a group G and let C = (s1, s2, ..., sn) be a walk in Cay(G;S). If the walk
(s1N, s2N, ..., snN) in Cay(G/N ;SN/N) is closed, then its voltage is the
product V(C) = s1s2...sn. This is an element of N .

Lemma 2.11 (Factor Group Lemma [21, §2.2]). Suppose that

• S is a generating set of G,
• N is a cyclic normal subgroup of G,
• (s1N, ..., snN) is a hamiltonian cycle in Cay(G/N ;S), and
• the product s1s2...sn generates N .

Then (s1, ..., sn)
|N | is a hamiltonian cycle in Cay(G;S).

Corollary 2.12 ([12, Cor. 2.11]). Suppose that

• N is a cyclic, normal subgroup of G, such that |N | is prime,
• S is an irredundant generating set of G,
• there is a hamiltonian cycle in Cay(G/N ;S), and
• s ≡ t (mod N) for some s, t ∈ S ∪ S−1 with s ̸= t.

Then there is a hamiltonian cycle in Cay(G;S).

Notation 2.13.

(1) [g, h] = g−1h−1gh is the commutator of two elements g and h of G.
(2) G′ = ⟨ [g, h] | g, h ∈ G ⟩ is the commutator subgroup of G.
(3) We use Cn to denote a (multiplicative) cyclic group of order n.

Lemma 2.14 ([14, Cor. 2.14]). If G = ⟨s, t⟩, G′ is cyclic, and gcd
(
k, |G|

)
=

1, then G′ = ⟨[sk, t]⟩.
Corollary 2.15. Assume G′ is cyclic and G/G′ ∼= C2 × C2. If S is any
2-element generating set of G, then Cay(G;S) has a hamiltonian cycle.

Proof. Write S = {s, t}. Then (s−1, t−1, s, t) is a hamiltonian cycle in
Cay(G/G′;S) whose voltage is s−1t−1st = [s, t]. This generates G′ (by
Eq. (2.14) with k = 1), so Eq. (2.11) applies. □

2C. Generalized dihedral groups.

Notation 2.16 (cf. [1, Defn. 1.2]). We use D2n to denote the dihedral group
of order 2n. That is,

D2n =
〈
f, x | f2 = xn = 1, fxf = x−1

〉
.

(In [1], this group is called Dn, instead of D2n, but that is not consistent
with the notation used in GAP [7].)

Definition 2.17 ([1, Defn. 1.3]). A group G is a generalized dihedral group
if it has
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• an abelian subgroup A of index 2, and
• an element f of order 2 (with f /∈ A),

such that f inverts every element of A (i.e., faf = a−1 for all a ∈ A).

Thus, dihedral groups are the generalized dihedral groups in which A is
cyclic.

Theorem 2.18 (Alspach, Chen, and Dean [1, Thm. 1.8]). If G is a gener-
alized dihedral group, and |G| is divisible by 4, then every connected Cayley
graph on G has a hamiltonian cycle.

Remark 2.19.

(1) We only need the special case of Eq. (2.18) in which the valency of
the graph is 3, which is much easier (cf. [3]).

(2) Alspach, Chen, and Dean [1] actually proved not only that there
is a hamiltonian cycle, but that the Cayley graph is hamiltonian
connected (or hamiltonian laceable if it is bipartite), if the valency
is at least 3.

2D. Elementary number theory. We will use the following two very easy
and elementary observations:

Lemma 2.20. If p and q are prime numbers, and there exist i, j ∈ {0, 1, 2},
such that

2ip− 1 ≡ 0 (mod q) and 2jq − 1 ≡ 0 (mod p),

then min(p, q) ≤ 5.

Proof. Write 2ip− 1 = kq and 2jq − 1 = ℓp. Then

0 ≡ ℓkq = ℓ(2ip− 1) = 2iℓp− ℓ = 2i(2jq − 1)− ℓ ≡ −(2i + ℓ) (mod q) .

(2.21)

Assuming, without loss of generality, that q < p, we also have

ℓp = 2jq − 1 < 2jp ≤ 4p,

so ℓ ≤ 4. Since i ≤ 2, we also have 2i ≤ 4, so 2i + ℓ ≤ 8. So (2.21) implies
q ≤ 7.

This obviously implies

p ≤ 22q − 1 ≤ 22 · 7− 1 = 27.

Therefore, it is easy to see by exhaustive search that

(p, q) ∈ {(3, 2), (7, 2), (5, 3), (11, 3), (19, 5)}.
By inspection, we conclude that min(p, q) ≤ 5, as desired. □

Lemma 2.22. Assume p, q > 3 are distinct prime numbers. If x, a1, a2, a3 ∈
Z, such that gcd(ai, pq) = 1 for all i, then there is a subset I of {1, 2, 3}
(possibly empty), such that x+

∑
i∈I ai is relatively prime to pq.

Proof. Note that:
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• If gcd(x, pq) = 1, then we may let I = ∅.
• If x ≡ 0 (mod pq), then we may let I = {1}.

Therefore, we may assume (after interchanging p and q, if necessary) that
gcd(x, pq) = p.

Now, for all i, we have

x+ ai ≡ 0 + ai = ai ̸≡ 0 (mod p) .

Therefore, if there is some i, such that x+ ai ̸≡ 0 (mod q), then we may let
I = {i}. So we may assume, for all i, that

ai ≡ −x (mod q) .

Since a3 ̸≡ 0 (mod p), we have

x+ a1 + a2 ̸≡ x+ a1 + a2 + a3 (mod p) ,

so, by letting I be either {1, 2} or {1, 2, 3}, we may arrange that

x+
∑
i∈I

ai ̸≡ 0 (mod p) .

Note that we also have

x+ a1 + a2 ≡ x+ (−x) + (−x) = −x ̸≡ 0 (mod q)

and

x+ a1 + a2 + a3 ≡ x+ (−x) + (−x) + (−x) = −2x ̸≡ 0 (mod q) .

Therefore x+
∑

i∈I ai is relatively prime to pq, as desired. □

Equation (2.12) requires |N | to be prime, but Eq. (2.22) yields the fol-
lowing analogous result that allows the cyclic normal subgroup N to have
order pq, which is usually the case in the proof of the main theorem.

Corollary 2.23. Suppose that

• p, q > 3 are two distinct prime numbers,
• N is a cyclic, normal subgroup of G, such that |N | = pq,
• S is a generating set of G,
• C = (s1, s2, . . . , sn) is a hamiltonian cycle in Cay(G/N ;S),
• ⟨s−1t⟩ = N for some s, t ∈ S ∪ S−1, and
• |

{
i | si ∈ {s±1}

}
| ≥ 3.

Then there is a hamiltonian cycle in Cay(G;S).

Proof. We have t = sa, for some a ∈ N , such that ⟨a⟩ = N . Let J =
{
i |

si ∈ {s±1}
}
. For each subset I of J , let CI be the hamiltonian cycle in

Cay(G/N ;S) that is obtained by replacing si with t, if si = s (or by t−1, if
si = s−1), for each i ∈ I. For each i ∈ J , let

ai = V(C{i})V(C−1) =

{
s1s2 · · · sia(s1s2 · · · si)−1 if si = s,

s1s2 · · · si−1a
−1(s1s2 · · · si−1)

−1 if si = s−1.

In either case, ai is a conjugate of a or a−1, and therefore generates N .
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We claim that if j ∈ J and I ⊆ J , such that j /∈ I, then

V(CI∪{j}) = aj · V(CI).

In fact, we only need this fact in the special case where j < I (i.e., j < i, for
all i ∈ I), so let us prove only this special case. (The general case uses the
fact that N is abelian, because it is a cyclic group, but we will not rely on
this fact.) For definiteness, let us assume sj = s. (The other case is similar.)
Letting CI = (s′1, s

′
2, . . . , s

′
n), we have

V(CI∪{j}) = s′1s
′
2 · · · s′jas′j+1 · · · s′n

= s′1s
′
2 · · · s′ja(s′1s′2 · · · s′j)−1 · (s′1s′2 · · · s′n)

= s1s2 · · · sja(s1s2 · · · sj)−1 · (s′1s′2 · · · s′n) (j < I)

= aj · V(CI).

This completes the proof of the claim.
Letting x = V(C), repeated application of the claim implies V(CI) =

x
∏

i∈I ai. By identifying N with Zpq in the natural way, we can now con-
clude from Eq. (2.22) that there is a subset I of J , such that V(CI) gener-
ates N . So Eq. (2.11) provides a hamiltonian cycle in Cay(G;S). □

2E. Some facts from group theory.

Proposition 2.24 (Hall’s Theorem on solvable groups [8, Thm. 9.3.1(1),
p. 141]). If G is a solvable group of order mn, and gcd(m,n) = 1, then G
has at least one subgroup of order m.

Lemma 2.25 (well-known). If p, q > 5 are distinct primes, then every group
of order 8pq is solvable.

Proof. Equivalently, we wish to show that no divisor of 8pq is the order of a
nonabelian simple group. Burnside’s 2-prime theorem [8, Thm. 9.3.2, p. 143]
tells us that the order of every nonabelian finite simple group is divisible by
at least three distinct primes, so it suffices to show that the order of a simple
group cannot be 2pq, 4pq, or 8pq. Here are two different ways to establish
this.
First proof. It was proved by J.G.Thompson [20, Cor. 4, p. 388] that if
the order of a simple group G is divisible by precisely three distinct primes,
then |G| is divisible by 2 and 3 (and one other prime). (In fact, there are
only eight nonabelian simple groups whose order is divisible by only three
distinct primes, and they are listed in [10, Table I, p. 3].) Since 3 /∈ {p, q},
this implies that |G| is not a divisor of 8pq.
Second proof. The conclusion can easily be derived from facts that appear in
standard textbooks on group theory. Suppose G is a simple group of order
2mpq, with m ∈ {1, 2, 3}.

Let P be a Sylow p-subgroup of G. We know from Sylow’s Theorem that

• |G : NG(P )| ≡ 1 (mod p), and
• |G : NG(P )| is a divisor of |G : P | = 2mq.
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Furthermore, P is abelian (indeed, it is cyclic of prime order), and Sylow
subgroups of a nonabelian simple group cannot be in the centre of their
normalizer [8, Thm. 14.3.1, p. 203], so NG(P ) ̸= P , which means |G :
NG(P )| ̸= 2mq.

Suppose |G : NG(P )| = 8. (This will lead to a contradiction.) Since
p > 5 and |G : NG(P )| ≡ 1 (mod p), this implies p = 7. Also, since
|G : NG(P )| = 8, we have |NG(P )| = pq. However, since p, q > 5 are
distinct primes, and p = 7, we know that q > p. Therefore, any group of
order pq that has a normal subgroup of order p must be abelian; thus, we
conclude that NG(P ) is abelian. This contradicts the above-mentioned fact
that Sylow subgroups of a nonabelian simple group cannot be in the centre
of their normalizer.

We can now conclude that

2iq ≡ 1 (mod p), for some i ∈ {0, 1, 2}.
By the same argument, we also have 2jp ≡ 1 (mod q), for some j ∈ {0, 1, 2}.
So we see from Eq. (2.20) that min(p, q) ≤ 5, which contradicts the assump-
tion that p, q > 5. □

Remark 2.26. The hypothesis that p, q > 5 in Eq. (2.25) can be weakened,
because the first proof only requires p, q > 3. However, Eq. (4.3) easily han-
dles the case where one of the primes is 5, so this strengthening of Eq. (2.25)
would not shorten the proof of our main theorem.

We will use the following fact in the proof of Eq. (2.28), and also in
Section 4.

Lemma 2.27 (cf. [8, Thm. 9.4.2, p. 146]). If G is a finite group, and |G′|
is square-free, then G′ is cyclic.

Equation (4.7) will place restrictive conditions on G. We conclude our
discussion of group theory with a two-part elementary observation about
such groups:

Lemma 2.28. Assume

• G is a group of order 8pq, where p and q are distinct odd primes,
and

• G = P2 ⋉ Cpq, where |P2| = 8 and Cpq is a cyclic, normal subgroup
of order pq that is contained in G′.

Then:

(1) Cpq ∩ Z(G) is trivial, and
(2) if S is a generating set of G, such that S ∩G′ ̸= ∅, then Cay(G;S)

has a hamiltonian cycle.

Proof. (1) This is a standard fact about relatively prime actions, but we
provide a short proof. Suppose Cpq ∩ Z(G) is nontrivial. We may write
Cpq = Cp × Cq (uniquely) where Cp and Cq are cyclic subgroups of order p
and q, respectively. (Note that Cp and Cq are normal subgroups of G, because
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every subgroup of a cyclic, normal subgroup is normal.) For definiteness,

let us assume that the subgroup Cq is contained in Z(G). Let Ĝ = G/Cp ∼=
P2 × Cq. It is obvious from this direct-product decomposition that Cq ⊈ G′,
which contradicts the assumption that Cpq is contained in G′.

(2) Let s ∈ S ∩G′. Since |P2| = 8, we know that |P ′
2| ∈ {1, 2}. Therefore

|G′| is a divisor of 2pq, so |G′| is square-free, which implies that G′ is cyclic
(see Eq. (2.27)). Then ⟨s⟩ is a subgroup of a cyclic, normal subgroup, so it
is normal.

Also note that |⟨s⟩|, like |G′|, must be a divisor of 2pq. This immediately
implies that |G : ⟨s⟩| is even (in fact, it is a multiple of 4). By (1), it also
implies that |⟨s⟩∩Z(G)| ≤ 2. Therefore, |⟨s⟩∩Z(G)| is a divisor of |G : ⟨s⟩|.
So, by Eq. (2.8), Eq. (2.7) applies. □

3. Using a computer to find hamiltonian cycles

3A. Using a computer to apply the Factor Group Lemma. In the
proof of the main theorem (1.3), we are given a group G of order 8pq, and we
wish to show that Cay(G;S) has a hamiltonian cycle, for every irredundant
generating set S of G. This is accomplished by an extensive case-by-case
analysis. However, as in [15, 19], we will use a computer to do the vast
majority of the work.

Remark 3.1. Our computer programs are written in GAP [7]. The source
code is available online at

https://arxiv.org/src/2304.03348/anc/

but this code relies on some of the programs of Morris–Wilk [19] that are
available at

https://arxiv.org/src/1805.00149/anc/

So a reader who wishes to reproduce our results should combine all of the
.gap files from both locations into a single directory.

In most cases, the group G is a semidirect product. More precisely, G =
G ⋉ (Cp × Cq), where G is a subgroup of order 8, and Cp and Cq are cyclic,
normal subgroups of order p and q, respectively (see Eq. (4.7)). The quotient
G/(Cp × Cq) can be naturally identified with G. By Eq. (2.11), it suffices to

find a hamiltonian cycle C in Cay(G;S) whose voltage generates Cp × Cq.
The graph Cay(G;S) has only 8 vertices, so it is easy to have a computer
find all of its hamiltonian cycles, calculate their voltages, and determine
whether there is a good one.

The key difficulty is that there are infinitely many possibilities for the
primes p and q, but a computer can only do finitely many calculations.
A method that addresses this issue can be found in [19, Lem. 3.3]. The
idea is to let Z be the subring of C that is generated by the roots of unity
and let µ be the group of all roots of unity. Any semidirect product G ⋉
(Cp × Cq) arises from a pair of twist homomorphisms ζp : G → Aut Cp and

https://arxiv.org/src/2304.03348/anc/
https://arxiv.org/src/1805.00149/anc/
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ζq : G → Aut Cq. Since Aut Cp and Aut Cq are cyclic, they can be identified
with subgroups of µ. Therefore, ζp and ζq correspond to homomorphisms

ζ̂p : G → µ and ζ̂q : G → µ. After constructing the corresponding semidirect

products Gp = G⋉
ζ̂p
Z and Gq = G⋉

ζ̂q
Z, a computer program can calculate

the voltages πp and πq of any hamiltonian cycle C in both of these groups.
These voltages are algebraic integers, so they have a “norm,” which is an
element of Z. It is not difficult to see that if Normπp ̸≡ 0 (mod p) and
Normπq ̸≡ 0 (mod q), then V(C) generates Cp × Cq (see the proof of [19,
Lem. 3.3], with n = 1). Therefore, it suffices to show, for every pair of
distinct primes p and q, that there exists a hamiltonian cycle in Cay(G;S),
such that lcm(Normπp,Normπq) is relatively prime to pq. Actually, by
Eq. (4.4), we will only need to consider primes that are greater than 5.

Here is a bit more explanation of how the computer programs work. Write
S = {s1, . . . , sk}, and fix generators xp and xq of Cp and Cq, respectively.
Each element s of S can be written uniquely in the form s xip x

j
q, with s ∈ G.

Let us say that s involves xp if xip ̸= 0; similarly, s involves xq if xjq ̸= 0.

Case 1. The simplest case for computation is when we know that only one
element sm involves xp, and only one element sn involves xq. (It is possible
that m = n.) Every nontrivial element of a cyclic group of prime order is
a generator, so we may assume sm = sm xp and sn = sn xq (unless m = n,
in which case we have sm = sn = smxpxq). To consider all possibilities, we
have the computer:

• loop through all groups G of order 8,
• loop through all generating sets S of G,
• loop through all hamiltonian cycles C in Cay(G;S), and
• loop through all homomorphisms ζp : G → µ and ζq : G → µ (these

homomorphisms are called abelian characters of G).

Actually, the program must allow S to be a multiset, because two different
elements of S may have the same image in G. (However, we will see in
Eq. (7.2) that the cardinality of S is at most 5, so this is still a finite
problem.) Then each hamiltonian cycle C in Cay(G;S) may have many
different possible lifts to a walk in Cay(G;S). We refer to these walks as
“coded” hamiltonian cycles, because we encode each walk as a sequence of
numbers, by making a list of the elements of S ∪ S−1, and specifying each
edge of the walk by recording the index of the corresponding element of the
list.

Now, for each coded hamiltonian cycle C in Cay(G;S), the computer
calculates the voltages πp and πq of the corresponding walks in Cay(G ⋉

ζ̂p

Z;Sp) and Cay(G⋉
ζ̂q
Z;Sq), where

• Sp is obtained from S by replacing sm with smxp, and

• Sq is obtained from S by replacing sn with snxq.



CAYLEY GRAPHS OF ORDER 8pq ARE HAMILTONIAN 321

(Here, xp and xq are represented by the element (0, 1) of G⋉
ζ̂p
Z or G⋉

ζ̂q
Z.

However, in order to be consistent with the conventions used in the Morris–
Wilk programs, the order of the factors needs to be reversed: to be precise,
the programs compute in the groups Z ⋊ζp G and Z ⋊ζq G, so xp and xq are
actually represented by the element (1, 0).)

If the computer finds a hamiltonian cycle, such that the least common
multiple of Norm(πp) and Norm(πq) has no prime divisors greater than 5,
then we know that Cay(G;S) has a hamiltonian cycle for all p and q (greater
than 5), so the computer can move on to the next iteration of the loop. On
the other hand, the program will raise an error if there is no such hamiltonian
cycle. It is important to note that this never happens in our calculations, be-
cause all cases where the computer search would fail are handled separately
(see Sections 5 and 6).

Case 2. The situation is more complicated when xp or xq may be involved
in more than one element of S. In all cases of the proof, we are able to use
theoretical arguments to reduce to a situation where xp and xq are not both
involved in more than one element of S. Therefore, let us assume that

• xp is involved in only one element of S, but
• xq is involved in s1, and may (or may not) be involved in s2 (and is
certainly not involved in any other element of S).

For each coded hamiltonian cycle C, we calculate the voltage πp of C

in G ⋉
ζ̂p

Z, exactly as in Case 1. If no prime divisor of Normπp is greater

than 5, then we know that the voltage of C generates Cp, so checking whether
the voltage generates Cq is the only remaining issue. (On the other hand, if
some prime divisor is greater than 5, then we discard this hamiltonian cycle
as being useless.)

We deal with the prime q by a different approach that was introduced in
[19, Lem. 3.3]. Namely, we calculate the voltage of C in G⋉

ζ̂q
Z with respect

to two different connection sets S′
q = {s′1, . . . , s′k} and S′′

q = {s′′1, . . . , s′′k}. In
S′
q, the generator s′1 is the only element that involves xq; in S′′

q , it is s′′2
that involves xq. Let us use π′

q(C) and π′′
q (C) to denote the corresponding

voltages (in G⋉
ζ̂q
Z).

A key observation in the proof of [19, Lem. 3.3] is that there is a ho-
momorphism Φ: Z → Cq, such that if we write s1 = s1xq and s2 = s2x

i
q

(modulo Cp), and let πq(C) be the voltage of C in G⋉ζq Cq, then

πq(C) = Φ
(
π′
q(C)

)
+ iΦ

(
π′′
q (C)

)
.

In particular, if it happens to be the case that π′′
q (C) = 0, then πq(C) =

π′
q(C). Therefore, if it is also true that Norm

(
π′
q(C)

)
does not have any

prime divisors greater than 5, then πq(C) generates Cq. Since we already
know from above that πp(C) generates Cp, this implies that Cay(G;S) has
a hamiltonian cycle. So we can pass to the next iteration of the loop. The
program refers to this as finding a “single” hamiltonian cycle.
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Another key observation in the proof of [19, Lem. 3.3] is a consequence of
undergraduate-level linear algebra: if C1 and C2 are two coded hamiltonian
cycles, and the norm of

det

[
π′
q(C1) π′′

q (C1)
π′
q(C2) π′′

q (C2)

]
is not divisible by q, then C1 and C2 cannot both have trivial voltage in
G⋉

ζ̂q
Z. Hence, Eq. (2.11) applies to at least one of them, so Cay(G;S) has

a hamiltonian cycle. Therefore, when a “single” is not found, the program
searches through all pairs of hamiltonian cycles C1 and C2, to find a case
where the norm of the determinant is not divisible by any prime greater
than 5.

Remark 3.2.

(1) We said above that the computer loops through all groups, all gen-
erating sets, and all abelian characters, but that is not actually true.
Slightly different computer programs were written for different cases
of the proof, and each case puts restrictions on the groups, generat-
ing sets, or abelian characters that need to be considered.

(2) The programs in 8pq-Prop-4-1.gap, 8pq-Prop-7-4.gap, and 8pq-Prop-
7-7.gap use the method of Case 1, but the program in 8pq-Prop-7-
9.gap deals with Case 2.

3B. An anomalous case with q = 7. The programs described in Sec-
tion 3A assume that G is a semidirect product G⋉ (Cp×Cq), but this is not
always the case. In this section, we deal with a situation where that assump-
tion is not true, by using some of the computer programs that accompany
the Morris–Wilk paper [19]. As was already mentioned in Eq. (3.1), these
programs are online at

https://arxiv.org/src/1805.00149/anc/

The programs that are used in this section make extensive use of K.Helsgaun’s
program LKH [9], which implements a very effective heuristic for finding
hamiltonian cycles. (So LKH must also be installed.)

Lemma 3.3 (cf. [19, Rem. 1.4(4)]). If H is the unique nonabelian semidirect
product of the form C7 ⋉ (C2)3, then every connected Cayley graph on G is
hamiltonian connected.

Proof. The Morris–Wilk program 1-3-HamConnOrLaceable.gap verifies that
every connected Cayley graph of order less than 64 (and valency at least 3)
is either hamiltonian connected or hamiltonian laceable. However, it takes
a long time to run, and the official report in [19, Prop. 1.3] only states the
result for orders less than 48.

The program loops through all orders from 3 to 63, and loops through
all groups of each order. (See [19, §2C] for more explanation.) To quickly
prove the case we need, change two lines in the program:

https://arxiv.org/src/1805.00149/anc/
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• change for k in [3..63] do

to for k in [56] do

• change for GapId in [1..NumberSmallGroups(k)] do

to for GapId in [11] do

This modified program will print
G = SmallGroup(56,11) = (C2 x C2 x C2) : C7

which confirms that the correct group is being considered, then will print a
few lines of progress reports, followed by a statement that all of the Cayley
graphs are hamiltonian connected or hamiltonian laceable.

However, the groupH has no subgroup of index 2, so none of its connected
Cayley graphs are bipartite; therefore, none of its connected Cayley graphs
are hamiltonian laceable. Hence, all of them must be hamiltonian connected.

□

Proposition 3.4. Let H be the unique nonabelian semidirect product of the
form C7⋉ (C2)3. If G = H⋉Cp, for some prime p > 5, then every connected
Cayley graph on G has a hamiltonian cycle.

Proof. In [19], it is proved that every connected Cayley graph of order kp
is hamiltonian when 1 ≤ k < 48 (and p is prime). In the current situation,
we have k = 56, but it is easy to adapt the argument. Actually, we do not
need the entire argument, just two short parts of it.

Let S be a generating set of G; we wish to show Cay(G;S) has a hamil-
tonian cycle. By Eq. (2.5), we may assume that S is irredundant. Let
G = G/Cp ∼= H.

Case 1. Assume S is a redundant generating set of G. This case follows
from the proof of [19, Lem. 4.2]. For the reader’s convenience, we sketch the
argument.

Choose a (proper) subset S0 of S, such that S0 is an irredundant gener-
ating set of G. Since S0 generates G, we know that |⟨S0⟩| is divisible by
|G| = 56. However, we also know ⟨S0⟩ ̸= G, since the generating set S is
irredundant. We conclude that |⟨S0⟩| = 56, so, after passing to a conjugate,
⟨S0⟩ = H.

Since |G|/|G = p is prime, it is easy to see that |S| = |S0| + 1; hence,
we have S = S0 ∪ {a} for some a ∈ S. By Eq. (2.6)(3), we may assume a
is nontrivial. Therefore Eq. (3.3) provides a hamiltonian path (s1, . . . , s55)

from 1 to a−1 in Cay(G;S0). Then

C = (s1, . . . , s55, a)

is a hamiltonian cycle in Cay(G;S).
Write a = hz with h ∈ H and z ∈ Cp. Since ⟨S0, h⟩ = H ̸= G, it must be

the case that z is nontrivial. Since Cp has prime order, this implies that z
generates Cp. The voltage of the hamiltonian cycle is

V(C) = s1s2 · · · s55a = s1s2 · · · s55hz.
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However, since
s1s2 · · · s55h = s1s2 · · · s55a = 1

and s1s2 · · · s55h ∈ H, we must have s1s2 · · · s55h = 1. Therefore V(C) = z
generates Cp. So Eq. (2.11) applies.

Case 2. Assume S is an irredundant generating set of G. For every
nontrivial group H of order less than 48, the Morris–Wilk program 3-4-
IrredundantSBar.gap verifies that if

• p is a prime number,
• G is any semidirect product H ⋉ Cp, and
• S is any irredundant generating set of G, such that the projection
of S to H is an irredundant generating set,

then Cay(G;S) has a hamiltonian cycle. It does this by looping through all
orders from 1 to 47, then looping through all possible groups of each order.

This computer program can easily be modified to consider the case here.
Instead of looping through all groups of many different orders, we just want
to look at a single group of order 56. As in the proof of Eq. (3.3), it suffices
to change two lines in the program. Specifically:

• change for k in [1..47] do

to for k in [56] do

• change for GapId in [1..NumberSmallGroups(k)] do

to for GapId in [11] do

The modified program should take less than a minute to run. Since it com-
pletes successfully, rather than raising an error, we conclude that Cay(G;S)
has a hamiltonian cycle. □

4. Assumptions and notation

This short section establishes that we may make some simplifying assump-
tions when proving the main theorem (1.3). All later sections will make use
of the assumptions and notation that are introduced here.

Notation 4.1. Let G be a finite group, such that

|G| = 8pq where p and q are distinct prime numbers,

and let S be a generating set of G.

To prove Eq. (1.3), we wish to show that Cay(G;S) has a hamiltonian
cycle. By Eq. (2.5), the following causes no loss of generality:

Assumption 4.2. The generating set S is irredundant.

We first consider the case where (at least) one of the primes is small:

Lemma 4.3. If min(p, q) ≤ 5, then every connected Cayley graph on G has
a hamiltonian cycle.

Proof. Assume, without loss of generality, that min(p, q) = q, so q ≤ 5.
Then 8q < 48, so Eq. (1.1)(1) applies with k = 8q. □
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In view of this equation, we henceforth make the following assumption:

Assumption 4.4. min(p, q) > 5.

With these assumptions, the following result is an easy (but crucial!)
consequence of Eq. (2.25).

Proposition 4.5. One of the following is true: either

(1) G = P2 ⋉H, where P2 is a Sylow 2-subgroup (so |P2| = 8) and H is
a normal subgroup of order pq, or

(2) the assumptions of Eq. (3.4) are satisfied (perhaps after interchang-
ing p and q), so every connected Cayley graph on G has a hamilton-
ian cycle.

Proof. This is a standard argument. Let P2 be a Sylow 2-subgroup of G.
The group G is solvable (see Eq. (2.25)), so Eq. (2.24) tells us there is a
subgroup H of order pq. Assume, without loss of generality, that p > q,
and let P be a Sylow p-subgroup of H. Then it is easy to see from Sylow’s
Theorem (and is well-known [8, p. 49]) that P is a normal subgroup of H,
so H ⊆ NG(P ). Hence, if we let np be the number of Sylow p-subgroups
of G, then (by Sylow’s Theorem) we see that

np = |G : NG(P )| is a divisor of |G : H| = 8, so np ∈ {1, 2, 4, 8}.
However, we also know from Sylow’s Theorem that np ≡ 1 (mod p). Since
p > q > 5, we have p > 7, so we can conclude that np = 1. This means that
P is the unique Sylow p-subgroup of G, so P is a normal subgroup of G.

Now H/P is a Sylow q-subgroup of G/P . If H/P ◁ G/P , then H ◁ G, so
conclusion (1) holds.

We may therefore assume H/P is not normal, so G/P has more than one
Sylow q-subgroup. By Eq. (2.24), we may let K be a subgroup of order 8q
in G, so G = K ⋉P . Then K ∼= G/P has more than one Sylow q-subgroup.
Thus, if we let Cq be a Sylow q-subgroup of K, then |K : NK(Cq)| > 1. Since
|K : NK(Cq)| ≤ |K : Cq| = 8 (and we know |K : NK(Cq)| ≡ 1 (mod q) by
Sylow’s Theorem), we conclude that q = 7 and NK(Cq) = Cq. So K has a
normal q-complement [8, Thm. 14.3.1, p. 203]: K = Cq ⋉P2 (after replacing
P2 by a conjugate, so it is contained in K).

The orders of the automorphism groups of C8, C4 ×C2, (C2)3, D8, and Q8

are 4, 8, 168, 8, and 24 respectively. Thus, (C2)3 is the only group of order 8
that has an automorphism group whose order is divisible by 7. Hence,
C7 ⋉ (C2)3 is the only semidirect product of the form C7 ⋉ P2, such that P2

has order 8 and is not centralized by C7. So G is as described in Eq. (3.4). □

We may assume it is the condition in part (1) of the equation that is
satisfied. Now, |G/H| = 8, so |(G/H)′| ∈ {1, 2}. Therefore

|G′| is a divisor of 2pq.(4.6)

We may assume |G′| is divisible by pq, for otherwise |G′| is either 1 or
prime or twice an odd prime, so Eq. (2.4) applies. This implies H ⊆ G′.
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On the other hand, (4.6) implies that |G′| is square-free. So G′ is cyclic (see
Eq. (2.27)). Since subgroups of cyclic groups are cyclic, we conclude that H
is cyclic. Hence, the following condition is satisfied:

Assumption 4.7. We have

G = P2 ⋉ Cpq,

where |P2| = 8, and Cpq is a cyclic, normal subgroup of order pq that is
contained in G′.

Notation 4.8. Let:

• G = G/Cpq ∼= P2,
• Cp be the subgroup of Cpq that has order p,
• Cq be the subgroup of Cpq that has order q,
• xp be a generator of Cp, and
• xq be a generator of Cq.

Then

Cpq = Cp × Cq = ⟨xp⟩ × ⟨xq⟩.

5. Some cases where G ∼= (C2)3

Proposition 5.1. The assumptions and notation of Section 4 are in effect.
Also assume G ∼= (C2)3, and either

(1) |S| = 3, or
(2) |S| = 4 and there does not exist a subset S0 of S, such that |⟨S0⟩| = 8.

Then every connected Cayley graph on G has a hamiltonian cycle.

Proof. For convenience, let us recall some terminology from Section 3A for

use in this proof. Every element g of G can be written in the form gxipx
j
q,

where g ∈ P2 and i, j ∈ Z. If xip is nontrivial, we say that g involves xp;

similarly, if xjq is nontrivial, we say that g involves xq.
Now, we consider each of the two possibilities for |S| as a separate case.

Case 1. Assume |S| = 3. Write S = {a, b, c}. We have the following
hamiltonian cycle in Cay(G/Cpq;S):

Ca,b,c = (a−1, b−1, a, c−1, a−1, b, a, c).

Its voltage is

V(Ca,b,c) = a−1b−1ac−1a−1bac = (ba)−1c−1bac = [ba, c],

where ba = a−1ba denotes the conjugate of b by a.

Subcase 1.1. Assume some element of S centralizes Cpq. For definite-
ness, assume that a centralizes Cpq.

• If |a| = 2, then a ∈ Z(G), so Eq. (2.6)(1) applies with s = a.
• If |a| ∈ {2p, 2q}, then Eq. (2.12) applies with s = a, t = s−1, and
N = ⟨a2⟩.
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So we may assume |a| = 2pq. The hamiltonian cycle Ca,b,c has 4 occurrences
of a or a−1. (In fact, 3 occurrences would be enough.) Therefore, we see
from Eq. (2.23) that there is a hamiltonian cycle in Cay(G;S).

Subcase 1.2. Assume every element of S inverts Cpq. This implies that
G ∼= (C2)2 ×D2pq is a generalized dihedral group (with A = (C2)2 × Cpq), so
a hamiltonian cycle is provided by Eq. (2.18).

Subcase 1.3. Assume two elements of S invert Cpq. For definiteness,
let us say that b and c invert Cpq (but a does not, for otherwise Subcase 1.2
applies). We may assume a does not centralize all of Cpq (for otherwise
Subcase 1.1 applies), so a inverts Cp and centralizes Cq (perhaps after inter-
changing p and q). Since c has trivial centralizer in Cpq, we may conjugate by
an element of Cpq to assume c is in (C2)3. (So c does not involve xp or xq.)
We may also assume that a does not involve xq, for otherwise |a| = 2q,
so Eq. (2.12) applies with s = a, t = a−1, and N = Cq. Write a = e1x

i
p

and b = e2x
j
pxq, with e1, e2 ∈ (C2)3. Note that e1, like a, inverts xp and

centralizes xq, whereas e2 inverts both xp and xq. Therefore

ba = a−1ba = x−i
p e1 · e2xjpxq · e1xip = e2x

2i−j
p xq,

so

V(Ca,b,c) = [ba, c] generates Cpq if and only if 2i ̸≡ j (mod p).

Therefore, we may assume i = 1 and j = 2, so a = e1xp and b = e2x
2
pxq.

Let Ĝ = G/Cp ∼= C2 ×D4q, where ⟨â⟩ = C2 × {1} and ⟨̂b, ĉ⟩ = {1} ×D4q.
Then

C1 =
(
(b, c)2q#, a

)2
is a hamiltonian cycle in Cay(Ĝ; a, b, c). Its voltage is

V(C1) =
(
(bc)2q ca

)2
=

(
(e2x

2
pxq · c)2q · c · e1xp

)2
=

(
(e2c · x−2

p x−1
q )2q · ce1 · xp

)2
=

(
x−4q
p xp

)2(
ce1

)2
= x2(1−4q)

p .

Therefore, if V(C1) is trivial, then

4q ≡ 1 (mod p) .

Now, let qG = G/Cq ∼= C2 ×D4p. We claim that the following is a hamil-

tonian cycle in Cay( qG; a, b, c):

C2 =
(
(b, c)p#, a, (c, b)p#, a

)2
.

In fact, qG is a generalized dihedral group, with A = Z2 ×Z2p, and C2 is the
hamiltonian cycle that is constructed in the proof of [3, Cor. 2.3] for this
particular group. However, we provide a short proof for completeness. First,
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note that the length 8p of this walk is correct for a hamiltonian cycle. Also

note that the walk is closed, because, by using the fact that (qbqc)p = (qcqb)p is

an element of order 2 in the centre of qG, we see that

(bc)pc · a · (cb)pb · a ≡ c · a · b · a ≡ c · e1xp · e2x2p · e1xp = e2c ≡ (qbqc)p (mod Cq)
has order 2, modulo Cq. It therefore suffices to show that this cycle passes
through all of the vertices of the Cayley graph. Let

V = { (qbqc)iqbj | 0 ≤ i < p, 0 ≤ j ≤ 1 }

and

W = { (qcqb)i qcj | 0 ≤ i < p, 0 ≤ j ≤ 1 }.
Then C2 passes through the vertices in

V ∪ (qbqc)p qcqaW ∪ (qbqc)p V ∪ qcqaW = ⟨qb,qc⟩ ∪ qcqa⟨qb,qc⟩ = qG.

This completes the proof of the claim.
The voltage of this hamiltonian cycle is

V(C2) =
(
(bc)pc · a · (cb)pb · a

)2
≡

(
(e2xqc)

pc · e1 · (ce2xq)pe2xq · e1
)2

(mod Cp)

=
(
(e2cx

−p
q )c · e1 · (ce2xpq)e2xq · e1

)2
= (x1−2p

q e2c)
2

= x2(1−2p)
q .

If this voltage is trivial, then 2p ≡ 1 (mod q).
By Eq. (2.20), we know that either 4q ̸≡ 1 (mod p) or 2p ̸≡ 1 (mod q).

So the above calculations show that either V(C1) or V(C2) is nontrivial.
Hence, Eq. (2.11) applies.

Subcase 1.4. Assume that precisely one element of S inverts Cpq. We
may assume it is c that inverts Cpq and (after conjugating by an element
of Cpq) that c does not involve xp or xq. Then a and b each have a nontrivial
centralizer in Cpq. Note that if a and b both centralize Cp, then we can
assume that neither of them involves xp (otherwise Eq. (2.12) applies with
s ∈ {a, b}, t = s−1, and N = Cp), so no element of S involves xp, which
contradicts the fact that S generates G. Similarly, we can assume that a
and b do not both centralize Cq. Hence, we may assume that a centralizes Cq
and b centralizes Cp.

Then we have

a = e1xp, b = e2xq, c = e3,

where ⟨e1, e2, e3⟩ = (C2)3, and:
• e1 inverts Cp and centralizes Cq,
• e2 centralizes Cp and inverts Cq, and
• e3 inverts Cp and Cq.
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As in Subcase 1.3, let Ĝ = G/Cp ∼= C2 × D4q, where ⟨â⟩ = C2 × {1} and

⟨̂b, ĉ⟩ = D4q. Then

C1 =
(
(b, c)2q#, a

)2
is again a hamiltonian cycle in Cay(Ĝ; a, b, c). Its voltage is

V(C) =
(
(bc)2q ca

)2
=

(
1 · ca

)2
= (ca)2 = (e3 · e1xp)2 = (e3e1)

2x2p = x2p ̸= 1.

So Eq. (2.11) applies.

Subcase 1.5. Assume no element of S inverts Cpq. This means that
every element of S has a nontrivial centralizer in Cpq. However, we also know
that Cpq ∩ Z(G) = {1} (see Eq. (2.28)(1)), which means that no nontrivial
subgroup of Cpq is centralized by every element of S. We may also assume
that no element of S centralizes all of Cpq (for otherwise Subcase 1.1 applies).
Therefore, we may assume a and b centralize Cp, and c centralizes Cq. Then
we may also assume that a and b do not involve xp (otherwise Eq. (2.12)
applies with s ∈ {a, b}, t = s−1, and N = Cp). Conjugating by an element
of Cp, we may assume that c also does not involve xp. Then no element of S
involves xp, which contradicts the fact that S generates G.

Case 2. Assume |S| = 4. Let S0 be a 3-element subset of S that generates
G/Cpq. By Assumption (2) in the statement of the equation, we know that
|⟨S0⟩| ̸= 8; therefore |⟨S0⟩| = 8p (perhaps after interchanging p and q). After
conjugating, we may assume ⟨S0⟩ = (C2)3 ⋉ Cp.

Let a be the fourth element of S, so a is the only element that involves xq.
Also choose b ∈ S0, such that b does not centralize Cq.

Let Ĝ = G/Cp = (C2)3⋉Cq. Then b̂ ∈ (C2)3, and â = gxq, where g ∈ (C2)3.
Note that ⟨â, b̂⟩ is nonabelian, because b̂ commutes with g, but does not

commute with xq. So the commutator subgroup of ⟨â, b̂⟩ is nontrivial, and

must therefore be all of Cq. This implies that ⟨â, b̂⟩ contains Cq, so |⟨a, b⟩| is
divisible by q.

Subcase 2.1. Assume a ≡ b (mod Cpq). We may assume |ab−1| = pq, for
otherwise Eq. (2.12) applies with s = a, t = b, and N = ⟨a−1b⟩ ∈ {Cp, Cq}. If
we write S = {a, b, c, d}, then the hamiltonian cycle Ca,c,d has 4 occurrences
of a or a−1. Therefore, we see from Eq. (2.23) that there is a hamiltonian
cycle in Cay(G;S).

Subcase 2.2. Assume a ̸≡ b (mod Cpq). Then we may choose an ele-
ment c of S0, such that {a, b, c} generates G/Cpq. So |⟨a, b, c⟩| = 8q. (Re-
call that |⟨a, b⟩| is divisible by q.) Since |⟨S0⟩| = 8p, we conclude that
|⟨S0⟩ ∩ ⟨a, b, c⟩| = 8. Since b, c ∈ S0, then |⟨b, c⟩| is a divisor of 8, so, after
conjugating by an element of Cp, we may assume ⟨b, c⟩ ⊆ P2, which means
that b and c do not involve xp (and we already know that they do not
involve xq).

Subsubcase 2.2.1. Assume a involves xp. Since |⟨a, b, c⟩| = 8q, this
implies that b and c centralize Cp. Let d be the other element of S0. Then
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d cannot centralize Cp, so, after conjugating by an element of Cp, we may
assume that d ∈ P2. (This conjugation does not affect b and c, since they
centralize Cp.) Now b, c, and d all belong to P2, so |⟨S0⟩| ≤ 8. This contra-
dicts the fact that |⟨S0⟩| = 8p.

Subsubcase 2.2.2. Assume a does not involve xp. This implies
that S = {e1xq, e2, e3, gxp}, where ⟨e1, e2, e3⟩ = (C2)3, and g is a nontrivial
element of (C2)3. In this situation, the GAP computer program in 8pq-Prop-
5-1.gap verifies that there is a hamiltonian cycle in Cay(G;S) whose voltage
generates Cpq, unless (up to isomorphism) the Cayley graph is described in
Eq. (5.2) below. □

Lemma 5.2. Assume

• G = (C2)3 ⋉ Cpq, and
• S = {e1xq, e2, e3, e1e2xp}, where ⟨e1, e2, e3⟩ = (C2)3, such that

◦ e1 inverts Cp and Cq, and
◦ e2 and e3 centralize Cp, and invert Cq.

Then Cay(G;S) has a hamiltonian cycle.

Proof. Since e2 and e3 have the same action on Cpq, we know that e2e
−1
3 ∈

Z(G). Therefore Eq. (2.12) applies with s = e2, t = e3, and N = ⟨e2e−1
3 ⟩ ∼=

C2. □

6. A case where G ∼= D8

Proposition 6.1. Assume:

(1) G = D8 ⋉ Cpq,
(2) |S| = 3,
(3) : G → D8 is the natural homomorphism with kernel Cpq,
(4) S = {f, fx4, fx−1

4 }, where f is a reflection, and x4 is a rotation of
order 4,

(5) f centralizes Cp and inverts Cq,
(6) x4 inverts Cp, and centralizes Cq, and
(7) there does not exist a subset S0 of S, such that |⟨S0⟩| = 8.

Then Cay(G;S) has a hamiltonian cycle.

Proof. Write S = {s, t, u} with s = f , t = fx4, and u = fx−1
4 . Note that:

• s centralizes Cp and inverts Cq, whereas
• t and u invert Cpq.

We have |t| = |u| = 2. Since |s| = 2, we may assume that s also has order 2
(otherwise Eq. (2.12) applies with t = s−1 and N = Cp), so we may assume

s = f ∈ D8.

Since s centralizes Cp, we know that |⟨s, t⟩| and |⟨s, u⟩| are not divisible by p.
So we must have |⟨s, t⟩| = |⟨s, u⟩| = 8q (by condition (7) in the statement
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of the equation). Conjugating by an element of Cp, we may then assume
⟨s, u⟩ = P2 ⋉ Cq. Thus, we have

t = fx4xpx
i
q and u = fx−1

4 xq for some i ∈ Z with i ̸≡ 0 (mod q).

Note that ⟨x24⟩ = Z(G).
Let

qG =
G

⟨x24⟩ × Cq
= ⟨qs⟩ × ⟨qt, qu⟩ ∼= C2 ×D2p,

so

C1 =
(
(t, u)2p#, s

)2
and C2 =

(
(u, t)2p#, s

)2
are hamiltonian cycles in Cay

(
qG;S

)
whose voltages are

V(C1) =
(
(tu)2pus

)2
=

(
(fx4xpx

i
q · fx−1

4 xq)
2p · fx−1

4 xq · f
)2

=
(
(x24 x

−1
p x1−i

q )2p x4x
−1
q

)2
= x24 x

2
(
2p(1−i)−1

)
q

and

V(C2) =
(
(ut)2pts

)2
=

(
(fx−1

4 xq · fx4xpxiq)2p · fx4xpxiq · f
)2

=
(
(x24 xp x

i−1
q )2p x−1

4 xpx
−i
q

)2
= x24 x

2
(
2p(i−1)−i

)
q .

This shows that ⟨V(C)⟩ contains ⟨x24⟩. Hence, we may assume

2p(1− i)− 1 ≡ 0 (mod q) and 2p(i− 1)− i ≡ 0 (mod q),

for otherwise either V(C1) or V(C2) generates ⟨x24⟩×Cq, so Eq. (2.11) applies.
Adding these two congruence’s yields −(1 + i) ≡ 0, so i ≡ −1, which means

t = fx4xpx
−1
q .

Also, substituting i = −1 into the first congruence tells us that

4p ≡ 1 (mod q) .

Now, let Ĝ = G/Cp. We have

tu = fx4xpx
−1
q · fx−1

4 xq = x24x
−1
p x2q ≡ x24x

2
q (mod Cp) ,

so |t̂ û| = 2q. Since |t| = |u| = 2, this implies that ⟨t̂, û⟩ is isomorphic to D4q,

and is a subgroup of index 2 in Ĝ. Hence, we have the following hamiltonian

cycle in Cay(Ĝ;S):

C =
(
(t, u)2q#, s, (u, t)2q#, s

)
.
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(It may not be obvious that the walk C is closed, but that follows from
the following calculation of its voltage, which establishes that the terminal
vertex of the walk is in Cp.) Its voltage is

V(C) = (tu)2qus(ut)2qts

= (fx4xpx
−1
q · fx−1

4 xq)
2q · fx−1

4 xq · f
· (fx−1

4 xq · fx4xpx−1
q )2q · fx4xpx−1

q · f
= (x24x

−1
p x2q)

2q · x4x−1
q · (x24xpx−2

q )2q · x−1
4 xpxq

= (x−2q
p ) · x4x−1

q · (x2qp ) · x−1
4 xpxq

= x1−4q
p .

We may assume this does not generate Cp (for otherwise Eq. (2.11) applies).
So 4q ≡ 1 (mod p).

We have shown that 4p ≡ 1 (mod q) and 4q ≡ 1 (mod p). This contra-
dicts Eq. (2.20). □

7. Proof of the main theorem

This section proves the main theorem (1.3). As described in Section 3A,
most cases are handled by using a computer to do exhaustive case-by-case
analysis that finds a hamiltonian cycle in a quotient group of order 8. How-
ever, some cases were handled in previous sections (especially Sections 5
and 6), and a small amount of additional work is done by hand in this
section.

The assumptions and notation of Section 4 are in effect.

Notation 7.1. Let d(G) be the cardinality of an irredundant generating
set of G. Since G has prime-power order, it is well-known that this is well-
defined, independent of the choice of the irredundant generating set (by the
Burnside Basis Theorem [8, Thm. 12.2.1, p. 176]). Specifically:

(1) d(C8) = 1,
(2) d(C4 × C2) = d(D8) = d(Q8) = 2, and
(3) d(C2 × C2 × C2) = 3

(where Q8 = {±1,±i,±j,±k} is the quaternion group of order 8).

The following observation is elementary (and well-known):

Lemma 7.2. We have

d(G) ≤ |S| ≤ d(G) + 2.

Proof. Since S generates G, it must generate G/Cpq = G. Therefore, it

contains a subset S0 that is an irredundant generating set of G. Since
|S0| = d(G), this establishes that d(G) ≤ |S|.

To establish the other inequality, let s1, s2, . . . , sk be a list of the elements
of S that are not in S0, so |S| = d(G) + k. Since S is irredundant, we have

⟨S0⟩ ⊊ ⟨S0, s1⟩ ⊊ ⟨S0, s1, s2⟩ ⊊ · · · ⊊ ⟨S0, s1, s2, . . . , sk⟩.



CAYLEY GRAPHS OF ORDER 8pq ARE HAMILTONIAN 333

Thus, if we let

mi = |⟨S0, s1, s2, . . . , si⟩ : ⟨S0, s1, s2, . . . , si−1⟩| for i = 1, 2, . . . , k,

then mi > 1, and
m1m2 · · ·mk = |G : ⟨S0⟩|.

However, since S0 generates G, we know that |⟨S0⟩| is a multiple of |G| = 8.
Therefore, |G : ⟨S0⟩| is a divisor of |G|/8 = pq, so it cannot be written as a
product of more than two nontrivial factors. We conclude that k ≤ 2. □

We first handle the smallest value of |S| that is consistent with Eq. (7.2):

Proposition 7.3. If |S| = d(G), then Cay(G;S) has a hamiltonian cycle.

Proof. We know that |S| ̸= 1 (because Eq. (4.7) implies that G is non-
abelian), so d(G) ̸= 1. Also, Eq. (5.1)(1) applies if |S| = 3. Therefore, we
may assume d(G) = 2. We may also assume G is abelian, for otherwise
G/G′ ∼= C2 × C2, so Eq. (2.15) applies. Since the only abelian groups of
order 8 are C8, C4 × C2, and (C2)3, we conclude that

G ∼= C4 × C2 (and |S| = 2).

Let s ∈ S, such that |s| = 4, and let t be the other element of S. Then
(s−3, t−1, s3, t) is a hamiltonian cycle in Cay(G;S). Its voltage is [s3, t],
and, since gcd

(
3, |G|

)
= 1, we know from (see Eq. (2.14)) that ⟨[s3, t]⟩ = G′.

Therefore Eq. (2.11) applies. □

We now handle the largest possible value of |S|:

Proposition 7.4. If |S| = d(G) + 2, then Cay(G;S) has a hamiltonian
cycle.

Proof. Let S0 be an irredundant generating set of G that is contained in S,
so |S0| = d(G) and |⟨S0⟩| is divisible by 8. Then we may assume that the
Sylow 2-subgroup P2 is contained in |⟨S0⟩| (after replacing it by a conjugate).

We claim that ⟨S0⟩ = P2, and that we may write S = S0 ∪ {axp, bxq},
where a and b are elements of P2. To see this, we argue much as in the proof
of Eq. (7.2). Let s and t be the two elements of S that are not in S0. Since
S is irredundant, we know that

⟨S0⟩ ⊊ ⟨S0, s⟩ ⊊ G and ⟨S0⟩ ⊊ ⟨S0, t⟩ ⊊ G.

On the other hand, any subgroup whose order is divisible by p must con-
tain Cp (because, being normal, this is the only Sylow p-subgroup of G),
and, similarly, any subgroup whose order is divisible by q must contain Cq,
so it is easy to see that the only proper subgroups of G that contain P2 are

P2, P2 ⋉ Cp, and P2 ⋉ Cq.
We conclude (perhaps after interchanging p and q) that we have

⟨S0⟩ = P2, ⟨S0, s⟩ = P2 ⋉ Cp, and ⟨S0, t⟩ = P2 ⋉ Cq.
This completes the proof of the claim.
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Running the GAP computer program in 8pq-Prop-7-4.gap verifies in all
cases that there is a hamiltonian cycle in Cay(G;S) whose voltage gener-
ates Cpq, so Eq. (2.11) applies. □

The preceding three results allow us to make the following assumption:

Assumption 7.5. Assume |S| = d(G) + 1.

Let us now consider three additional special cases.

Lemma 7.6. Assume G = (C2)3 ⋉ Cpq, and S = {a, b, c, abxpxq}, where
⟨a, b, c⟩ = (C2)3, such that

• a inverts Cp and centralizes Cq, and
• b and c centralize Cp and invert Cq.

Then Cay(G;S) has a hamiltonian cycle.

Proof. Let N = ⟨b−1c⟩. Since b and c have the same action on G′, we know
that b−1c ∈ Z(G), so N is a normal subgroup. Then, since N has order 2
(because it is a nontrivial, cyclic subgroup of (C2)3), we see from Eq. (2.12)
(with s = a and t = b) that Cay(G;S) is hamiltonian. □

Proposition 7.7. If S contains a subset S0, such that |⟨S0⟩| = 8, then
Cay(G;S) has a hamiltonian cycle.

Proof. Let P2 = ⟨S0⟩, so P2 is a Sylow 2-subgroup of G. By Eq. (7.5), we
have S = S0 ∪ {gxpxq}, for some g ∈ P2. Also note that we may assume
g /∈ P ′

2, for otherwise Eq. (2.28)(2) applies. In this situation, the computer
program in 8pq-Prop-7-7.gap establishes that either Eq. (7.6) applies, or
there is a hamiltonian cycle in Cay(G/Cpq;S) whose voltage generates Cpq (so
Eq. (2.11) applies). In either case, there is a hamiltonian cycle in Cay(G;S).

□

Corollary 7.8. If d(G) = 1, then every connected Cayley graph on G has
a hamiltonian cycle.

Proof. Let S be an irredundant generating set of G, and let S0 ⊆ S, such
that S0 is an irredundant generating set of G. Then

|S0| = d(G) = 1,

so we may write S0 = {s}.
Note that s8 ∈ Cpq (because |G/Cpq| = 8), and also s ∈ ⟨s⟩. Since cyclic

groups are abelian, this implies that s8 is centralized by ⟨Cpq, s⟩ = G. Since
Z(G) ∩ Cpq is trivial, we conclude that s8 is trivial. On the other hand, we

know that |s| ≥ 8, since s generates G. So we must have |s| = 8. Therefore
Eq. (7.7) applies. □

Note that:

• if d(G) = 1, then Eq. (7.8) applies, and
• if d(G) = 3, then either Eq. (5.1)(2) or Eq. (7.7) applies.

Therefore, the following result completes the proof of the main theorem (1.3).



CAYLEY GRAPHS OF ORDER 8pq ARE HAMILTONIAN 335

Proposition 7.9. If d(G) = 2, then Cay(G;S) has a hamiltonian cycle.

Proof. Since d(G) = 2, we may let {a, b} be an irredundant generating set
of G that is contained in S. By Eq. (7.5), we know that S ̸= {a, b}, so the
fact that S is irredundant implies ⟨a, b⟩ ̸= G. Therefore, we may assume
|⟨a, b⟩| = 8q (perhaps after interchanging p and q), for otherwise Eq. (7.7)
applies. So ⟨a, b⟩ = P2 ⋉ Cq (after passing to a conjugate). Since Cq ⊈ Z(G)
(see Eq. (2.28)(1)), we may assume a does not centralize Cq (perhaps after
interchanging a and b). Then, after conjugating by an element of Cq, we
may assume a ∈ P2. Then b = bxq, for some b ∈ P2.

Let c be the third element of S. We may write c = cxpx
i
q, where c ∈ P2

and i ∈ Z, and we may assume c /∈ G′, for otherwise Eq. (2.28)(2) applies.
In this situation, the GAP computer program in 8pq-Prop-7-9.gap estab-

lishes that either Eq. (6.1) (or Eq. (7.7)) applies, or there is a hamiltonian
cycle in Cay(G/Cpq;S) whose voltage generates Cpq (so Eq. (2.11) applies).
(See Case 2 of Section 3A for an explanation of the basic logic of the pro-
gram.) In either case, there is a hamiltonian cycle in Cay(G;S). □
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