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APPLICATIONS VIA SERIES ACCELERATIONS OF NEW

IDENTITIES INVOLVING CATALAN-TYPE NUMBERS

JOHN M. CAMPBELL AND EMRAH KILIÇ

Abstract. We introduce infinite families of terminating hypergeomet-
ric identities involving generalizations of Catalan numbers, generalizing
results introduced by Chu and Kılıç, and we apply Wilf–Zeilberger (WZ)
pairs associated with our new identities via a series acceleration method.
We apply a WZ pair introduced in our article to prove an identity for
accelerating the convergence for a family of 3F2(1)-series with three
real parameters from 1 to 1

4
, and we apply this identity to generalize

Ramanujan-like series for 1
π
,

√
2

π
,

√
3

π
, and

√
2±

√
2

π
that are due to Chu et

al. A fast-converging series for π2 due to Guillera is also a special case
of our acceleration identity. We also apply another WZ pair introduced
in this article to prove an identity for accelerating the convergence of
a 3F2(1)-family with three real parameters from 1 to 1

16
, and we apply

this result, via a series bisection, to formulate a new WZ proof of Ra-
manujan’s series for 1

π
of convergence rate 1

4
. A number of our finite

sums involving Catalan-type numbers are such that up-to-date versions
of the Maple Computer Algebra System cannot compute WZ pairs for
such sums, which is representative of the computationally challenging
nature of our results.

1. Introduction

The kth Catalan number may be defined so that Ck =
(
2k
k

)
1

k+1 . The
Catalan numbers are famously ubiquitous in combinatorics, and a popular
way of illustrating this is with the many different combinatorial interpre-
tations of Ck recorded in Stanley’s classic Enumerative combinatorics text
[24]. The purpose of this article is to build on the results from the recent
article [11] by introducing infinite families of summation identities involving
generalizations of Catalan numbers and by applying such identities via an
acceleration method that had been formulated by Guillera in [13] (cf. [15])
and by Campbell in [2, 3, 4] and that is based on the Wilf–Zeilberger (WZ)
method [19]. In addition to [11], our work is inspired by a number of past

Received by the editors Mar 17, 2023, and in revised form Jan 4 2024.
2000 Mathematics Subject Classification. 05A10, 33F10.
Key words and phrases. Catalan number, hypergeometric identity, WZ method, Ra-

manujan series.

This work is licensed under a Creative Commons “Attribution-
NoDerivatives 4.0 International” license.

219

https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en


220 JOHN M. CAMPBELL AND EMRAH KILIÇ

articles concerning finite sums involving Catalan or Catalan-type numbers,
including [6, 7, 10, 16, 17, 18, 23, 25, 26].

An advantage of proving our identities involving generalized Catalan num-
bers using the WZ method, compared to bijective or classically oriented ap-
proaches, is given by the series accelerations that we apply in Sections 2 and
3 and that are based on WZ pairs involved in our proofs. We highlight the
following new formulas that are introduced in this article via our accelera-
tion method and that are closely related to and heavily inspired by the work
of Ramanujan [21], Chu and Zhang [12], and Chu [9], referring to Section
1.1 for preliminaries on our notation concerning hypergeometric series:

15

π
=

∞∑
n=0

(
1

4

)n
[
−5

6 ,−
5
6 ,

5
6 ,

5
6

1
2 , 1, 1, 1

]
n

(25− 108n2),(1.1)

2
√
2

π
=

∞∑
n=0

(
1

4

)n
[
−3

4 ,−
3
4 ,

3
4 ,

3
4

1
2 , 1, 1, 1

]
n

(3− 16n2),(1.2)

3
√
3

π
=

∞∑
n=0

(
1

4

)n
[
−2

3 ,−
2
3 ,

2
3 ,

2
3

1
2 , 1, 1, 1

]
n

(4− 27n2),(1.3)

3
√
3

2π
=

∞∑
n=0

(
1

4

)n
[
−1

3 ,−
1
3 ,

1
3 ,

1
3

1
2 , 1, 1, 1

]
n

(1− 27n2),(1.4)

28
√
2−

√
2

π
=

∞∑
n=0

(
1

4

)n
[
−7

8 ,−
7
8 ,

7
8 ,

7
8

1
2 , 1, 1, 1

]
n

(49− 192n2),(1.5)

20
√

2 +
√
2

π
=

∞∑
n=0

(
1

4

)n
[
−5

8 ,−
5
8 ,

5
8 ,

5
8

1
2 , 1, 1, 1

]
n

(25− 192n2).(1.6)

In Section 2, we introduce an infinite family of generalizations of the
Catalan sum identity

(1.7)
n∑

k=0

(
2n− 2k

n− k

)(
2n

2k

)
Ck = (2n+ 1)C2

n

from [11], and our WZ pair associated with our proof of (1.7) is used to
obtain our identity for accelerating the convergence of a family of 3F2(1)-
series with three real parameters from 1 to 1

4 (cf. [2, 4]). We apply this
series acceleration to prove closed forms as in the motivating results shown
in (1.1)–(1.6). We also apply this series acceleration to obtain a new proof
of Guillera’s formula

(1.8)
π2

4
=

∞∑
n=0

24n(3n+ 2)

(2n+ 1)3
(
2n
n

)3
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introduced in [15]. Furthermore, a WZ pair that we have computed to
generalize the Catalan sum identity

(1.9)

n∑
k=0

(
2n

2k

)
CkCn−k = CnCn+1

given by Chu and Kiliç in [11] may be applied, via our acceleration method,
to formulate a new WZ proof of the famous formula

(1.10)
4

π
=

∞∑
n=0

(
1

4

)n
[
1
2 ,

1
2 ,

1
2

1, 1, 1

]
n

(6n+ 1)

due to Ramanujan [21]. Our WZ proof of Ramanujan’s formula in (1.10) is
inequivalent to and dramatically different from previously known WZ proofs
of (1.10) [5, 14].

1.1. Preliminaries. We recall that the Γ-function [20, §2] may be defined
so that Γ(x) =

∫∞
0 ux−1e−u du for ℜ(x) > 0, and that the Pochhammer

symbol is such that (x)n = Γ(n+x)
Γ(x) , with (x)n = x(x + 1) · · · (x + n − 1) for

n ∈ N. Classical properties concerning the Γ-function such as the Legendre
duplication formula

(1.11) Γ(2z) = (2π)−1/222z−1/2Γ(z)Γ

(
z +

1

2

)
are to be later involved in our work. We also adopt the notational conven-
tions such that

(1.12)

[
α, β, . . . , γ

A,B, . . . , C

]
n

=
(α)n(β)n · · · (γ)n
(A)n(B)n · · · (C)n

and such that

Γ

[
α, β, . . . , γ

A,B, . . . , C

]
=

Γ(α)Γ(β) · · ·Γ(γ)
Γ(A)Γ(B) · · ·Γ(C)

.

In regard to the notation in (1.12), we let generalized hypergeometric series
be denoted in a manner that agrees with classic texts such as [1, 22], writing

pFq

[
a1, a2, . . . , ap

b1, b2, . . . , bq

∣∣∣∣∣ x
]
=

∞∑
k=0

xk

k!

[
a1, a2, . . . , ap

b1, b2, . . . , bq

]
k

.

Given an identity of the form

(1.13)
∑
k

summand(n, k) = closed(n),

where the summand in (1.13) is hypergeometric and vanishes for all integers
n outside of a bounded interval, and where the closed-form evaluation on
the right-hand side of (1.13) is hypergeometric and nonzero, by writing

(1.14) F (n, k) :=
summand(n, k)

closed(n)
,
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and by employing the WZ method [19], we may determine a hypergeometric
function G(n, k) so that the discrete difference equation

(1.15) F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k)

is satisfied, with G(n, 0) = 0 and limk→∞G(n, k) = 0. So, by summing
both sides of (1.15) with respect to k, a telescoping phenomenon allows us
to prove an equivalent form of (1.13). The companion function G may be
written as G(n, k) = F (n, k)R(n, k) for a rational function R(n, k) referred
to as a WZ proof certificate, so it remains to evaluate R(n, k) to prove (1.14).

2. Series of convergence rate 1
4

Part (d) of Theorem 1 in [11] is as in (1.7). In the below Theorem, we
provide an infinite family of generalizations of (1.7), with the c = 1 case
of the below Theorem being equivalent to (1.7). We are to later apply a
WZ pair associated with the binomial identity in (2.1), to obtain the series
acceleration identity highlighted in Theorem 2.2.

Theorem 2.1. The identity

(2.1)

n∑
k=0

(
2n

2k

)(
2n− 2k

n− k

)(
2k

k

)
1

(k + 1)c
=

(
2n
n

)
(c+ 2n)!

((c+ n)!)2

holds for all n ∈ N0 and for a parameter c that is not a negative integer.

Proof. Setting

(2.2) F (n, k) :=

(
2k
k

)
((c+ n)!)2

(
2n
2k

)(
2n−2k
n−k

)(
2n
n

)
(c+ 2n)!(k + 1)c

,

it remains to prove that
∑

k F (n, k) constantly equals 1, for c as specified.
The Maple Computer Algebra System is able to compute the desired WZ
proof certificate, yielding

(2.3) R(n, k) =
k(k + c)

(
kc+ 2kn+ 2k − 2cn− 2c− 3n2 − 6n− 3

)
(k − n− 1)2(c+ 2n+ 1)(c+ 2n+ 2)

,

so as to form a WZ pair (F,G), with G(n, k) = F (n, k)R(n, k). □

Observe that the WZ pair (F,G) specified in the proof of Theorem 2.1 is
such that, according to the WZ method, the arguments n and k of F and
G are nonnegative integers. However, by rewriting F and G in terms of the
Γ-function, with

(2.4) F (n, k) = Γ

[
n+ 1, n+ 1, c+ n+ 1, c+ n+ 1

k + 1, c+ k + 1, n− k + 1, n− k + 1, c+ 2n+ 1

]
,

we find that the same difference equation in (1.15) holds for real n, k, and
c such that n + 1 and c + n + 1 are not in Z≤0 and such that the lower

Γ-arguments in (2.4) are not in Z≤0. We may thus define F (p)(n, k) =
F (n+ p, k) for a real parameter p such that the Γ-arguments of F (n+ p, k),



SERIES ACCELERATIONS AND CATALAN-TYPE NUMBERS 223

according to (2.4), are not in Z≤0. This leads us to the difference equation
in (2.5), following a similar approach as in [2].

As in [2], we may rewrite the difference equation in (1.15) as

(2.5) F (n+ p+ 1, k)− F (n+ p, k) = G(n+ p, k + 1)−G(n+ p, k)

for a real parameter p. This leads us toward the following acceleration
formula based on the WZ pair given in the proof of Theorem 2.1. The recent
paper [2] also concerned accelerations derived fromWZ pairs associated with
generalizations of the Catalan sums from [11], but the series accelerations
from [2] cannot be used to obtain series for constants involving 1

π , which are
a main object of study in our work.

Theorem 2.2. Let k, p, and c be parameters such that c is a real number
distinct from negative integers and p + 1 and p + c + 1 and 2p + c + 1 are
distinct from zero and negative integers, and we again set G(n, k) as the
product of (2.2) and (2.3). Then

Γ

[
p+ 1, p+ 1, p+ c+ 1, p+ c+ 1

k + 1, k + c+ 1, p− k + 1, p− k + 1, 2p+ c+ 1

]
×

3F2

[
1, k − p, k − p

k + 1, k + c+ 1

∣∣∣∣∣ 1
](2.6)

equals

∞∑
n=0

Γ

[
n+ p+ 1, n+ p+ 1, c+ n+ p+ 1, c+ n+ p+ 1

k + 1, c+ k + 1, n− k + p+ 2, n− k + p+ 2, c+ 2n+ 2p+ 3

]
×

k(c+ k)
(
ck − 2cn− 2cp− 2c+ 2kn+ 2kp+ 2k − 3n2 − 6np−

6n− 3p2 − 6p− 3
)
+ 1,

if the above series are convergent.

Proof. Summing both sides of the difference equation in (2.5) with respect
to n, a telescoping phenomenon then gives us that

F (m+ p+ 1, k)− F (p, k) =
m∑

n=0

(G(n+ p, k + 1)−G(n+ p, k))

for m ∈ N0. Setting m → ∞, the vanishing of F (m+ p+ 1, k) is immediate
from the Γ-evaluation in (2.4). So, we obtain that

−F (p, k) =

∞∑
n=0

(G(n+ p, k + 1)−G(n+ p, k)).

A telescoping argument then gives us that

(2.7)

ℓ−1∑
n=0

−F (p, k + n) =

∞∑
n=0

(G(n+ p, k + ℓ)−G(n+ p, k))
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for ℓ ∈ N0. The given constraints on k, p, and c allow us to set ℓ → ∞, and,
by writing

∞∑
n=0

−F (p, k + n) = lim
ℓ→∞

∞∑
n=0

G(n+ p, k + ℓ)−
∞∑
n=0

G(n+ p, k),

we find that the above limit involving ℓ reduces to −1 by following an iden-
tical argument from [2, 4]. Evaluating

(2.8)
∞∑
n=0

−F (p, k + n)

in terms of the 3F2(1)-series in (2.6) then gives us the desired result. □

Adopting notation from [2], by setting the tuple (k, p, c) in Theorem 2.2
with specific rational values, this often gives us fast-converging series that
are closely related to the work of Chu and Zhang in [12]. We refer the
interested reader to [2] for details as to how we may obtain closed forms
from the WZ identity in (2.7); as below, we specify values for the entries of
the tuple (k, p, c) for a given closed form.

Following a similar approach as in [2], to generate and prove evaluations
for series of convergence rate 1

4 , we apply the following steps:

(1) Systematically search for tuples (k, p, c) of rational numbers such
that the F (p, k + n)-series in (2.8) evaluates in closed form;

(2) Evaluate
∑∞

n=0G(n+p, k) as a scalar multiple of a single pFq-series;
and

(3) If possible, use contiguity relations to reduce the pFq-series to an
affine combination involving a p′Fq′-series derived from the original

pFq-series, for p
′ < p and q′ < q.

Built-in Maple algorithms are able to complete the second step in an
automatic way, and built-in Mathematica algorithms are able to complete
the final step in an automatic way. With regard to our below applications
of the new result in Theorem 2.2, we refer to [2] for background on the term
Chu-style series.

2.1. Chu-style series for 1
π . In addition to the famous Ramanujan formula

in (1.10), the following closely related formulas introduced by Chu and Zhang
in [12] and reproved by Chu in [9] using a different approach relative to [12]
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are main sources of motivation in regard to our research:

18

π
=

∞∑
n=0

(
1

4

)n
[
1
6 ,

1
6 ,

5
6 ,

5
6

1, 1, 1, 32

]
n

(108n2 + 72n+ 5),(2.9)

8
√
2

π
=

∞∑
n=0

(
1

4

)n
[
1
4 ,

1
4 ,

3
4 ,

3
4

1, 1, 1, 32

]
n

(48n2 + 32n+ 3),(2.10)

9
√
3

2π
=

∞∑
n=0

(
1

4

)n
[
1
3 ,

1
3 ,

2
3 ,

2
3

1, 1, 1, 32

]
n

(27n2 + 18n+ 2).(2.11)

Setting

(2.12) (k, p, c) =

(
1

6
,
1

6
,
2

3

)
in Theorem 2.2, this gives us a new and WZ-based proof of the result in-
cluded as Example 83 in [12] and reproved in [9] and reproduced in (2.9).
Explicitly, setting k and p and c to be as in (2.12), Theorem 2.2 gives us
that

72π − 20π2 =
∞∑
n=0

(
108n2 + 288n+ 185

) ((
n+ 1

6

)
!
)2 ((

n+ 5
6

)
!
)2

((n+ 1)!)2(2n+ 3)!
,

and we proceed to rewrite the right-hand side as

185

6

((
1

6

)
!

)2((5

6

)
!

)2

7F6

[
1, 76 ,

7
6 ,

11
6 ,

11
6 ,

7
3 −

√
21
18 , 73 +

√
21
18

2, 2, 2, 52 ,
4
3 +

√
21
18 , 43 −

√
21
18

∣∣∣∣∣ 14
]
,

and contiguity relations (see [2] for details) give us that the above 7F6-series
may be rewritten so as to obtain

47952
(√

21− 6
) (

6 +
√
21
) ((

1
6

)
!
)2 ((5

6

)
!
)2

5
(√

21− 24
) (

24 +
√
21
) × 6F5

1
6 ,

1
6 ,

5
6 ,

5
6 ,

4
3 −

√
7
3

6 , 43 +

√
7
3

6

1, 1, 32 ,
1
3 −

√
7
3

6 , 13 +

√
7
3

6

∣∣∣∣∣ 14
− 1

 ,

which gives us that

18

5π
= 6F5

1
6 ,

1
6 ,

5
6 ,

5
6 ,

4
3 −

√
7
3

6 , 43 +

√
7
3

6

1, 1, 32 ,
1
3 −

√
7
3

6 , 13 +

√
7
3

6

∣∣∣∣∣ 14
 ,

which is equivalent to (2.9). Our WZ proof of the series for 1
π in (2.9) related

to the work of Ramanujan, together with the large amount of past litera-
ture related to Ramanujan’s seminal article [21] on fast-converging series for
1
π , inspires us to further apply Theorem 2.2 in the determination of new,

Ramanujan-inspired series for 1
π .
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Example 2.3. Setting (k, p, c) =
(
− 5

6 ,−
5
6 ,

5
3

)
in Theorem 2.2, we obtain

the motivating example highlighted in (1.1).

Example 2.4. Setting (k, p, c) =
(
− 5

6 ,
1
6 ,−

1
3

)
in Theorem 2.2, we may

obtain that:

108

35π
=

∞∑
n=0

(
1

4

)n
[
−1

6 ,−
1
6 ,

1
6 ,

1
6

1
2 , 1, 2, 2

]
n

(1− 72n− 108n2).

Example 2.5. Setting (k, p, c) =
(
− 5

6 ,
1
6 ,

2
3

)
in Theorem 2.2, we may obtain

that:

648

5π
=

∞∑
n=0

(
1

4

)n
[
1
6 ,

1
6 ,

5
6 ,

5
6

1, 32 , 2, 2

]
n

(108n2 + 144n+ 41).

Example 2.6. Setting (k, p, c) =
(
− 1

6 ,
11
6 ,

4
3

)
in Theorem 2.2, we may

obtain that:

18

π
=

∞∑
n=0

(
1

4

)n
[
−1

6 ,−
1
6 ,

7
6 ,

7
6

1, 1, 1, 32

]
n

(7− 72n− 108n2).

2.2. Chu-style series for
√
2

π . Setting (k, p, c) =
(
1
4 ,

1
4 ,

1
2

)
in Theorem 2.2,

we obtain that

128
√
2− 48π =

∞∑
n=0

2−4n
(
48n2 + 128n+ 83

) ((
2n+ 3

2

)
!
)2

((n+ 1)!)2(2n+ 3)!
,

and we may rewrite the right-hand side as

83

6

((
3

2

)
!

)2

7F6

[
1, 54 ,

5
4 ,

7
4 ,

7
4 ,

7
3 −

√
7

12 ,
7
3 +

√
7

12

2, 2, 2, 52 ,
4
3 +

√
7

12 ,
4
3 −

√
7

12

∣∣∣∣∣ 14
]
,

and we may apply contiguity relations to obtain

1328
(
−4 +

√
7
) (

4 +
√
7
)
π(

−16 +
√
7
) (

16 +
√
7
)(

−1 + 6F5

[
1
4 ,

1
4 ,

3
4 ,

3
4 ,

4
3 −

√
7

12 ,
4
3 +

√
7

12

1, 1, 32 ,
1
3 −

√
7

12 ,
1
3 +

√
7

12

∣∣∣∣∣ 14
])

,

which gives us the equality

8
√
2

3π
= 6F5

[
1
4 ,

1
4 ,

3
4 ,

3
4 ,

4
3 −

√
7

12 ,
4
3 +

√
7

12

1, 1, 32 ,
1
3 −

√
7

12 ,
1
3 +

√
7

12

∣∣∣∣∣ 14
]
,

and this is equivalent to the formula given as Example 82 in [12] and reproved
in [9] and reproduced in (2.10). Our WZ proof for this formula motivates

our further applying Theorem 2.2 in the determination of new series for
√
2

π
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of convergence rate 1
4 . This is also inspired by the remarkable result

2
√
2

π
=

∞∑
n=0

(
−1

8

)n
[
1
2 ,

1
2 ,

1
2

1, 1, 1

]
n

(6n+ 1)

proved by Guillera in [14] and lated proved by Chu in [8].

Example 2.7. Setting (k, p, c) =
(
− 3

4 ,−
3
4 ,

3
2

)
in Theorem 2.2, we obtain

the motivating example highlighted in (1.2).

Example 2.8. Setting (k, p, c) =
(
− 3

4 ,
1
4 ,−

1
2

)
in Theorem 2.2, we may

obtain that:

32
√
2

15π
=

∞∑
n=0

(
1

4

)n
[
−1

4 ,−
1
4 ,

1
4 ,

1
4

1
2 , 1, 2, 2

]
n

(1− 32n− 48n2).

Example 2.9. Setting (k, p, c) =
(
− 3

4 ,
1
4 ,

1
2

)
in Theorem 2.2, we may obtain

that:
128

√
2

3π
=

∞∑
n=0

(
1

4

)n
[
1
4 ,

1
4 ,

3
4 ,

3
4

1, 32 , 2, 2

]
n

(48n2 + 64n+ 19).

Example 2.10. Setting (k, p, c) =
(
− 1

4 ,
7
4 ,

3
2

)
in Theorem 2.2, we may

obtain that:

8
√
2

π
=

∞∑
n=0

(
1

4

)n
[
−1

4 ,−
1
4 ,

5
4 ,

5
4

1, 1, 1, 32

]
n

(5− 32n− 48n2).

2.3. Chu-style series for
√
3
π . Setting

(2.13) (k, p, c) =

(
1

3
,
1

3
,
1

3

)
in Theorem 2.2, this gives us a new and WZ-based proof of the result in-
cluded as Example 81 in [12] and reproved by Chu in [9] and reproduced in
(2.11). Explicitly, setting the parameters k, p, and c in Theorem 2.2 to be
as in (2.13), this gives us that

729
√
3

2π
− 162 =

∞∑
n=0

3−6n
(
27n2 + 72n+ 47

)
((3n+ 2)!)2

(n+ 1)2(n!)4(2n+ 3)!
,

and we may rewrite the right-hand side as

(2.14)
94

3
7F6

[
1, 43 ,

4
3 ,

5
3 ,

5
3 ,

7
3 +

√
3
9 , 73 −

√
3
9

2, 2, 2, 52 ,
4
3 −

√
3
9 , 43 +

√
3
9

∣∣∣∣∣ 14
]
,

and we may apply contiguity relations to reduce the 7F6-expression in (2.14)
in the manner indicated as follows:

3807
(√

3− 3
) (

3 +
√
3
)(

6F5

[1
3 ,

1
3 ,

2
3 ,

2
3 ,

4
3 − 1

3
√
3
, 43 + 1

3
√
3

1, 1, 32 ,
1
3 − 1

3
√
3
, 13 + 1

3
√
3

∣∣∣∣∣ 1
4

]
− 1

)
(√

3− 12
) (

12 +
√
3
) .
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This gives us that

729
√
3

2π
=

3807
(√

3− 3
) (

3 +
√
3
)

6F5

[1
3 ,

1
3 ,

2
3 ,

2
3 ,

4
3 − 1

3
√
3
, 43 + 1

3
√
3

1, 1, 32 ,
1
3 − 1

3
√
3
, 13 + 1

3
√
3

∣∣∣∣∣ 1
4

]
(√

3− 12
) (

12 +
√
3
) ,

which is equivalent to the Chu–Zhang formula in (2.11). Our new WZ proof
of this formula motivates our further applications of the WZ method in the

determination of new series for
√
3

π . This is also inspired by series formulas

for
√
3

π due to Chu as in the following result from [8]:

15
√
3

π
=

∞∑
n=0

(
1

16

)n
[

1
2 ,

1
3 ,

1
3 ,

2
3 ,

2
3

1, 1, 1, 1112 ,
17
12

]
n

(135n2 + 75n+ 8).

Example 2.11. Setting (k, p, c) =
(
− 2

3 ,−
2
3 ,

4
3

)
in Theorem 2.2, we obtain

the motivating example highlighted in (1.3).

Example 2.12. Setting (k, p, c) =
(
− 2

3 ,
1
3 ,−

2
3

)
in Theorem 2.2, we may

obtain that:

27
√
3

16π
=

∞∑
n=0

(
1

4

)n
[
−1

3 ,−
1
3 ,

1
3 ,

1
3

1
2 , 1, 2, 2

]
n

(1− 18n− 27n2).

Example 2.13. Setting (k, p, c) =
(
− 2

3 ,
1
3 ,

1
3

)
in Theorem 2.2, we may

obtain that:

81
√
3

4π
=

∞∑
n=0

(
1

4

)n
[
1
3 ,

1
3 ,

2
3 ,

2
3

1, 32 , 2, 2

]
n

(27n2 + 36n+ 11).

Example 2.14. Setting (k, p, c) =
(
− 1

3 ,
5
3 ,

2
3

)
in Theorem 2.2, we obtain

the motivating example highlighted in (1.4).

2.4. Chu-style series for

√
2−

√
2

π . Setting

(2.15) (k, p, c) =

(
1

8
,
1

8
,
3

4

)
in Theorem 2.2, this can be used to obtain a new WZ proof of Chu’s formula
in

(2.16)
32
√

2−
√
2

π
=

∞∑
n=0

(
1

4

)n
[
1
8 ,

1
8 ,

7
8 ,

7
8

1, 1, 1, 32

]
n

(192n2 + 128n+ 7),
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which was highlighted as a main result in [9]. Explicitly, setting (k, p, c) to
be as in (2.15), Theorem 2.2 gives us that

−
4
(
32
√

2−
√
2− 7π

)
π

√
2− 2

=

∞∑
n=0

(
192n2 + 512n+ 327

) ((
n+ 1

8

)
!
)2 ((

n+ 7
8

)
!
)2

((n+ 1)!)2(2n+ 3)!
,

and we may rewrite the right-hand side as

109

2

((
1

8

)
!

)2((7

8

)
!

)2

7F6

[
1, 98 ,

9
8 ,

15
8 ,

15
8 ,

7
3 +

√
43
24 , 73 −

√
43
24

2, 2, 2, 52 ,
4
3 +

√
43
24 , 43 −

√
43
24

∣∣∣∣∣ 14
]
,

and contiguity relations then give us that this is equivalent to

1339392
(√

43− 8
) (

8 +
√
43
) ((

1
8

)
!
)2 ((7

8

)
!
)2

49
(√

43− 32
) (

32 +
√
43
)(

6F5

[
1
8 ,

1
8 ,

7
8 ,

7
8 ,

4
3 −

√
43
24 , 43 +

√
43
24

1, 1, 32 ,
1
3 −

√
43
24 , 13 +

√
43
24

∣∣∣∣∣ 14
]
− 1

)
,

which leads us to the formula

32
√

2−
√
2

7π
= 6F5

[
1
8 ,

1
8 ,

7
8 ,

7
8 ,

4
3 −

√
43
24 , 43 +

√
43
24

1, 1, 32 ,
1
3 −

√
43
24 , 13 +

√
43
24

∣∣∣∣∣ 14
]
,

which is equivalent to the formula in (2.16) introduced in [9].

Example 2.15. Setting (k, p, c) =
(
− 7

8 ,−
7
8 ,

7
4

)
in Theorem 2.2, we obtain

the motivating example highlighted in (1.5).

Example 2.16. Setting (k, p, c) =
(
− 7

8 ,
1
8 ,−

1
4

)
in Theorem 2.2, we may

obtain that:

256
√

2−
√
2

63π
=

∞∑
n=0

(
1

4

)n
[
−1

8 ,−
1
8 ,

1
8 ,

1
8

1
2 , 1, 2, 2

]
n

(1− 128n− 192n2).

Example 2.17. Setting (k, p, c) =
(
− 7

8 ,
1
8 ,

3
4

)
in Theorem 2.2, we may

obtain that:

2048
√
2−

√
2

7π
=

∞∑
n=0

(
1

4

)n
[
1
8 ,

1
8 ,

7
8 ,

7
8

1, 32 , 2, 2

]
n

(192n2 + 256n+ 71).

Example 2.18. Setting (k, p, c) =
(
− 1

8 ,
15
8 ,

5
4

)
in Theorem 2.2, we may

obtain that:

32
√
2−

√
2

π
=

∞∑
n=0

(
1

4

)n
[
−1

8 ,−
1
8 ,

9
8 ,

9
8

1, 1, 1, 32

]
n

(9− 128n− 192n2).
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2.5. Chu-style series for

√
2+

√
2

π . Setting (k, p, c) =
(
3
8 ,

3
8 ,

1
4

)
in Theorem

2.2, this gives us the equality

128π

(
1− 15π

32
√

2+
√
2

)
√
2 +

√
2

=

∞∑
n=0

(
335 + 512n+ 192n2

) ((
n+ 3

8

)
!
)2 ((

n+ 5
8

)
!
)2

((n+ 1)!)2(2n+ 3)!
,

and we rewrite the right-hand side as

335

6

((
3

8

)
!

)2((5

8

)
!

)2

7F6

[
1, 118 ,

11
8 ,

13
8 ,

13
8 ,

7
3 +

√
19
24 , 73 −

√
19
24

2, 2, 2, 52 ,
4
3 −

√
19
24 , 43 +

√
19
24

∣∣∣∣∣ 14
]
,

which we may reduce, via contiguity relations, to

274432
(√

19− 8
) (√

19 + 8
) ((

3
8

)
!
)2 ((5

8

)
!
)2

45
(√

19− 32
) (√

19 + 32
)(

−1 + 6F5

[
3
8 ,

3
8 ,

5
8 ,

5
8 ,

4
3 −

√
19
24 , 43 +

√
19
24

1, 1, 32 ,
1
3 −

√
19
24 , 13 +

√
19
24

∣∣∣∣∣ 14
])

,

which gives us the equality

32
√

2 +
√
2

15π
= 6F5

[
3
8 ,

3
8 ,

5
8 ,

5
8 ,

4
3 −

√
19
24 , 43 +

√
19
24

1, 1, 32 ,
1
3 −

√
19
24 , 13 +

√
19
24

∣∣∣∣∣ 14
]
,

giving us a new WZ proof of the formula due to Chu from [9] such that

32
√

2 +
√
2

π
=

∞∑
n=0

(
1

4

)n
[
3
8 ,

3
8 ,

5
8 ,

5
8

1, 1, 1, 32

]
n

(192n2 + 128n+ 15).

Example 2.19. Setting (k, p, c) =
(
− 5

8 ,−
5
8 ,

5
4

)
in Theorem 2.2, we obtain

the motivating example highlighted in (1.6).

Example 2.20. Setting (k, p, c) =
(
− 5

8 ,
3
8 ,−

3
4

)
in Theorem 2.2, we obtain

that:

768
√

2 +
√
2

55π
=

∞∑
n=0

(
1

4

)n
[
−3

8 ,−
3
8 ,

3
8 ,

3
8

1
2 , 1, 2, 2

]
n

(9− 128n− 192n2).

Example 2.21. Setting (k, p, c) =
(
− 5

8 ,
3
8 ,

1
4

)
in Theorem 2.2, we may

obtain that:

2048
√
2 +

√
2

15π
=

∞∑
n=0

(
1

4

)n
[
3
8 ,

3
8 ,

5
8 ,

5
8

1, 32 , 2, 2

]
n

(192n2 + 256n+ 79).

Example 2.22. Setting (k, p, c) =
(
− 3

8 ,
13
8 ,

7
4

)
in Theorem 2.2, we may

obtain that:

32
√

2 +
√
2

π
=

∞∑
n=0

(
1

4

)n
[
−3

8 ,−
3
8 ,

11
8 ,

11
8

1, 1, 1, 32

]
n

(33− 128n− 192n2).
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2.6. A new proof of Guillera’s formula. The formula in (1.8) due to
Guillera in [15] may be written in so that

(2.17)
π2

4
=

∞∑
n=0

(
1

4

)n
[
1, 1, 1
3
2 ,

3
2 ,

3
2

]
n

(3n+ 2),

and this equivalent formulation was later proved in [12]. Guillera proved
(2.17) by setting

F (n, k) = 8B(n, k)n

and
G(n, k) = B(n, k)(6n+ 4k + 1),

where

B(n, k) =
1

28n24k
((2k)!)2((2n)!)3

((n+ k)!)2(k!)2(n!)4
,

so as to obtain the acceleration formula

8a

∞∑
n=0

(
1
2

)2
n

(a+ 1)2n
=

∞∑
n=0

1

22n

(
a+ 1

2

)3
n

(a+ 1)3n
(6(n+ a) + 1)

for a parameter a [15].

Theorem 2.23. Guillera’s formula for π2 holds.

Proof. In Theorem 2.2, we set (k, p, c) as
(
1
2 , 1,−1

)
. This directly gives us

the formula

81− 27π2

4
=

∞∑
n=0

(
1

4

)n
[
1, 1, 2
5
2 ,

5
2 ,

5
2

]
n

(6n2 + 18n+ 13).

So, it remains to prove that

(2.18) 3 =

∞∑
n=0

(
4−n(1)2n(2)n

(
13 + 18n+ 6n2

)(
5
2

)3
n
27

+
4−n(1)2n(1)n(3n+ 2)(

3
2

)3
n

)
.

Taking the finite sum corresponding to the above series, and letting the
upper parameter be denoted as m, this finite sum may be evaluated as
in with the following Mathematica output, and this may easily be verified
inductively.

(2^(-8 - 2*m)*(-32375*Pi^(3/2)*Gamma[2 + m]^2*Gamma[3 + m]*

Gamma[(5 + 2*m)/2]^3 - 83600*m*Pi^(3/2)*Gamma[2 + m]^2*

Gamma[3 + m]*Gamma[(5 + 2*m)/2]^3 - 89490*m^2*Pi^(3/2)*

Gamma[2 + m]^2*Gamma[3 + m]*Gamma[(5 + 2*m)/2]^3 - 50852*m^3*

Pi^(3/2)*Gamma[2 + m]^2*Gamma[3 + m]*Gamma[(5 + 2*m)/2]^3 -

16184*m^4*Pi^(3/2)*Gamma[2 + m]^2*Gamma[3 + m]*Gamma[(5 + 2*

m)/2]^3 - 2736*m^5*Pi^(3/2)*Gamma[2 + m]^2*Gamma[3 + m]*

Gamma[(5 + 2*m)/2]^3 - 192*m^6*Pi^(3/2)*Gamma[2 + m]^2*

Gamma[3 + m]*Gamma[(5 + 2*m)/2]^3 - 35000*Pi^(3/2)*Gamma[2 +

m]^3*Gamma[(7 + 2*m)/2]^3 - 83000*m*Pi^(3/2)*Gamma[2 + m]^3*
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Gamma[(7 + 2*m)/2]^3 - 78000*m^2*Pi^(3/2)*Gamma[2 + m]^3*

Gamma[(7 + 2*m)/2]^3 - 36320*m^3*Pi^(3/2)*Gamma[2 + m]^3*

Gamma[(7 + 2*m)/2]^3 - 8384*m^4*Pi^(3/2)*Gamma[2 + m]^3*

Gamma[(7 + 2*m)/2]^3 - 768*m^5*Pi^(3/2)*Gamma[2 + m]^3*

Gamma[(7 + 2*m)/2]^3 + 2097*2^(8 + 2*m)*Gamma[(5 + 2*m)/2]^3*

Gamma[(7 + 2*m)/2]^3 + 1833*2^(9 + 2*m)*m*Gamma[(5 + 2*

m)/2]^3*Gamma[(7 + 2*m)/2]^3 + 297*2^(11 + 2*m)*m^2*

Gamma[(5 + 2*m)/2]^3*Gamma[(7 + 2*m)/2]^3 + 339*2^(9 + 2*m)*

m^3*Gamma[(5 + 2*m)/2]^3*Gamma[(7 + 2*m)/2]^3 + 9*2^(11 + 2*

m)*m^4*Gamma[(5 + 2*m)/2]^3*Gamma[(7 + 2*m)/2]^3))/((699 +

1222*m + 792*m^2 + 226*m^3 + 24*m^4)*Gamma[(5 + 2*m)/2]^3*

Gamma[(7 + 2*m)/2]^3)

Setting m → ∞, we may evaluate the resultant limit as in the left-hand side
of (2.18). □

By mimicking the uses of contiguity relations as above, special cases of
Theorem 2.2 can also be applied to obtain new WZ proofs of Ramanujan’s
formula in (1.10), in much the same way as in Section 3 below. For example,
the (k, p, c) =

(
1
2 ,

1
2 , 1
)
case of Theorem 2.2 can be used to establish that

16

π
=

∞∑
n=0

(
1

4

)n
[
1
2 ,

1
2 ,

3
2

1, 1, 2

]
n

(12n2 + 16n+ 3),

and, by taking a vanishing linear combination with both sides of Ramanu-
jan’s formula in (1.10), the partial sums of the vanishing series we obtain
are evaluable in closed form via Gosper’s algorithm. A somewhat different
approach, without the use of contiguity relations, is applied in Section 3
below to obtain a new WZ proof of Ramanujan’s series for 1

π of convergence

rate 1
4 .

3. Series of convergence rate 1
16

We proceed to consider the new generalization given below of a Catalan
sum identity introduced in [11], letting m ∈ N:

n∑
k=0

(
2n

2k

)(
2n− 2k

n− k

)(
2k

k

) m∏
t=1

1

(k + t) (n− k + t)

=

(
2n

n

)2 m∏
t=1

(2n+ 2t− 1)

(n/2 + t) (n+ t) (n+ 2t− 1)
.

(3.1)

The special case for m = 1 agrees with the summation identity in (1.9) given
as part (a) of Theorem 1 in [11]. Our generalization of the Chu–Kiliç formula
in (1.9) is of particular interest because of how we apply our WZ proof for
(3.1) to obtain a series acceleration formula that we apply to obtain a new
proof of Ramanujan’s formula in (1.10). By rewriting the discrete products
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in (3.1) using the Γ-function, and by rewriting the parameter m as a real
variable c, this leads us to the reformulation in Theorem 3.1 below.

Theorem 3.1. The identity

(3.2)
n∑

k=0

(
2n
2k

)(
2n−2k
n−k

)(
2k
k

)
(1 + k)c(1− k + n)c

=

(
2n
n

)2 (
n+ 1

2

)
c(

n
2 + 1

)
c

(
n+1
2

)
c
(n+ 1)c

holds for n ∈ N0 and a parameter c such that c is not a negative integer.

Proof. In order to obtain a bivariate, hypergeometric expression on the right-
hand side of (3.2), we need to consider the parity of n ∈ N0. For the even
case, we apply the mapping n 7→ 2n, and then divide the resultant summand
of (3.2) by the corresponding hypergeometric evaluations, and we denote the
resultant expression as F (n, k), which is given by the following Maple input.

binomial(2*k,k)*binomial(4*n,2*k)*binomial(-2*k+4*n,-k+2*n)*

pochhammer(1+n,c)*pochhammer(1/2+n,c)*pochhammer(1+2*

n,c)/binomial(4*n,2*n)^2/pochhammer(1+k,c)/pochhammer(1/2+2*

n,c)/pochhammer(1-k+2*n,c)

So, by the WZ method, it remains to compute a WZ proof certificate R(n, k)
corresponding to F (n, k). Such a proof certificate is as given by the following
Maple output.

1/2*(4*c^3*k-12*c^3*n-8*c^2*k^2+48*c^2*k*n-80*c^2*n^2+4*c*k^3-

44*c*k^2*n+148*c*k*n^2-172*c*n^3+8*k^3*n-56*k^2*n^2+136*k*n^3-

120*n^4-10*c^3+38*c^2*k-126*c^2*n-34*c*k^2+230*c*k*n-400*c*

n^2+6*k^3-86*k^2*n+316*k*n^2-372*n^3-49*c^2+88*c*k-305*c*n-33*

k^2+242*k*n-426*n^2-76*c+61*k-213*n-39)*k*(k+c)/(1-k+2*n+

c)/(2-k+2*n+c)/(1+4*n+2*c)/(3+4*n+2*c)/(-1+k-2*n)/(-2+k-2*n)

For the odd case for (3.2), we apply the mapping n 7→ 2n+ 1 to both sides
of (3.2). In this case, we set F (n, k) as in the Maple input below.

binomial(2*k,k)*binomial(2+4*n,2*k)*binomial(-2*k+4*n+2,1-k+2*

n)*pochhammer(1+n,c)*pochhammer(3/2+n,c)*pochhammer(2+2*

n,c)/binomial(2+4*n,1+2*n)^2/pochhammer(1+k,c)/pochhammer(3/2+

2*n,c)/pochhammer(-k+2+2*n,c)

In this case, the corresponding proof certificate is as below.

(2*c^3*k-6*c^3*n-4*c^2*k^2+24*c^2*k*n-40*c^2*n^2+2*c*k^3-22*c*

k^2*n+74*c*k*n^2-86*c*n^3+4*k^3*n-28*k^2*n^2+68*k*n^3-60*n^4-

8*c^3+31*c^2*k-103*c^2*n-28*c*k^2+189*c*k*n-329*c*n^2+5*k^3-

71*k^2*n+260*k*n^2-306*n^3-66*c^2+120*c*k-417*c*n-45*k^2+330*

k*n-582*n^2-175*c+139*k-489*n-153)*k*(k+c)/(2-k+2*n+c)/(3-k+2*

n+c)/(3+4*n+2*c)/(5+4*n+2*c)/(k-2*n-3)/(-2+k-2*n)

□
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We apply the WZ pair associated with the even case of the above Theorem
to prove the following transform, following a similar approach relative to
[4]. As before, we may let F (n, k) and G(n, k) have non-integer arguments,
writing

F (n, k) =

2−2c−4n√πΓ

[
2n+ 1, c+ 2n+ 1, 2c+ 2n+ 1

k + 1, c+ k + 1, c+ 2n+ 1
2 , 2n− k + 1, c+ 2n− k + 1

]
.

Theorem 3.2. For real parameters k, p, and c such that 2p+1 and c+2p+1
and k + 1 and c + k + 1 and c + 2p + 1

2 and 2p − k + 1 and c − k + 2p + 1
are not in Z≤0,

Γ

[
2p+ 1, c+ 2p+ 1, 2c+ 2p+ 1

k + 1, c+ k + 1, c+ 2p+ 1
2 , 2p− k + 1, c− k + 2p+ 1

]
×

3F2

[
1, k − 2p, k − 2p− c

k + 1, c+ k + 1

∣∣∣∣∣ 1
]
=

22c+4p

√
π

+
1

Γ(k + 1)Γ(c+ k + 1)
×

∞∑
n=0

Γ

[
2n+ 2p+ 1, c+ 2n+ 2p+ 1, 2c+ 2n+ 2p+ 1

c+ 2n+ 2p+ 1
2 , 2n− k + 2p+ 1, c− k + 2n+ 2p+ 1

]
×

R(n+ p, k)

24n

if the above series converge, where R denotes the WZ proof certificate cor-
responding to the even case in the proof of Theorem 3.1.

Proof. We rewrite the difference equation in (1.15) so as to obtain that

(3.3) F (n+ p+ 1, k)− F (n+ p, k) = G(n+ p, k + 1)−G(n+ p, k)

for a real parameter p. Summing with respect to n ∈ N0, a telescoping sum
obtained from the left-hand side of (3.3) gives us that

F (m+ p+ 1, k)− F (p, k) =
m∑

n=0

(G(n+ p, k + 1)−G(n+ p, k))

for m ∈ N0. Setting m → ∞, we obtain that

−F (p, k) =

∞∑
n=0

(G(n+ p, k + 1)−G(n+ p, k)).

A telescoping phenomenon described in [3, 4, 13] then gives us that

m−1∑
n=0

−F (p, k + n) =
∞∑
n=0

(G(n+ p, k +m)−G(n+ p, k))

for m ∈ N0. Evaluating the infinite series
∑∞

n=0−F (p, k + n) in terms of
the above indicated 3F2(1)-series then gives us the desired result. We may
obtain that limm→∞

∑∞
n=0G(n + p, k +m) = −1 for real parameters k, p,

and c, letting G be as in Theorem 3.2 as in our proof of Theorem 2.2. □
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3.1. A new proof of Ramanujan’s formula. Our new WZ proof of Ra-
manujan’s formula for 1

π is of combinatorial interest in terms of how it is
derived, via Theorem 3.2, using a family of finite sums involving Catalan-
type numbers and generalizing the Catalan sum given by Chu and Kılıç and
reproduced in (1.9).

Theorem 3.3. Ramanujan’s formula in (1.10) holds.

Proof. In Theorem 3.2, we set (k, p, c) =
(
1
2 ,

1
4 , 1
)
. From a vanishing upper

parameter in the above 3F2-series, this series reduces to 1, so that

1− 15π

64
=

1

213
√
π

∞∑
n=0

(
1

16

)n

Γ

[
2n+ 3

2 , 2n+ 3
2 , 2n+ 3

2

2n+ 4, 2n+ 4, 2n+ 4

]
×

(2n+ 3)(4n+ 3)2(4n+ 5)
(
3840n4 + 19072n3+

34880n2 + 27784n+ 8121
)
.

According to the Legendre duplication formula in (1.11), the infinite series
evaluation shown above is equivalent to

524288

π
− 122880 =

∞∑
n=0

(
1

2

)16n(4n
2n

)3 1

(n+ 1)3(2n+ 1)3(2n+ 3)2
×

(4n+ 1)3(4n+ 3)2(4n+ 5)
(
3840n4 + 19072n3+

34880n2 + 27784n+ 8121
)
,

which, in turn, we rewrite as

4

π
− 15

16
=

∞∑
n=0

(
1

2

)16n(4n
2n

)3 1

131072(n+ 1)3(2n+ 1)3(2n+ 3)2
×

(4n+ 1)3(4n+ 3)2(4n+ 5)
(
3840n4 + 19072n3+

34880n2 + 27784n+ 8121
)
.

(3.4)

Applying a series bisection to the Ramanujan series in (1.10), we find that
the series in (1.10) is equivalent to

(3.5)

∞∑
n=0

(
1

2

)16n(4n
2n

)3 3840n4 + 5888n3 + 3168n2 + 672n+ 39

32(2n+ 1)3
,
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so it remains to prove an evaluation for (3.5). So, since we have proved the
equality in (3.4), it remains to prove that the expression

∞∑
n=0

(
1

2

)16n(4n
2n

)3

×(
3840n4 + 5888n3 + 3168n2 + 672n+ 39

32(2n+ 1)3
−

1

131072(n+ 1)3(2n+ 1)3(2n+ 3)2
×

(4n+ 1)3(4n+ 3)2(4n+ 5)
(
3840n4 + 19072n3 + 34880n2+

27784n+ 8121
))

reduces to 15
16 . The corresponding finite sum

m∑
n=0

(
1

2

)16n(4n
2n

)3

×(
3840n4 + 5888n3 + 3168n2 + 672n+ 39

32(2n+ 1)3
−

1

131072(n+ 1)3(2n+ 1)3(2n+ 3)2
×

(4n+ 1)3(4n+ 3)2(4n+ 5)
(
3840n4 + 19072n3 + 34880n2+

27784n+ 8121
))

for m ∈ N0 admits the closed form for m ∈ N0 given by the following
Mathematica output, and this may be checked using induction, noting that
the above summand is univariate.

(2^(-20 - 16*m)*(135*2^(16 + 16*m) + 45*2^(18 + 16*m)*m + 15*

2^(18 + 16*m)*m^2 - 1247*Binomial[4*(1 + m), 2*(1 + m)]^3 -

2224*m*Binomial[4*(1 + m), 2*(1 + m)]^3 - 736*m^2*Binomial[4*

(1 + m), 2*(1 + m)]^3 + 512*m^3*Binomial[4*(1 + m), 2*(1 +

m)]^3 + 256*m^4*Binomial[4*(1 + m), 2*(1 + m)]^3))/(3 + 2*m)^2

Setting m → ∞, it is almost immediate that the limit of the above closed
form gives the desired evaluation as 15

16 . □

In contrast to the above WZ proof, Guillera’s WZ proof in [14] of Ra-
manujan’s formula in (1.10) was obtained via Zeilberger’s EKHAD package by
setting

G1(n, k) =
(−1)n(−1)k

26n22k

(
2n
n

)3(2k
k

)2
22k
(n−1/2

k

)(
n+k
n

)(4n+ 1)
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with 4n2

(4n+1)(2n−2k−1) as a rational certificate, so that by setting G2(n, k) =

F1(n + 1, n + k) + G1(n, n + k), a theorem due to Zeilberger allows us to
write

∑∞
n=0G2(n, k) =

∑∞
n=0G1(n, k) = constant, so that (1.10) may be

obtained by setting k = 0.

3.2. Another proof of Guillera’s formula. Theorem 3.2 may be applied
to formulate another new WZ proof of Guillera’s formula for π2, in addition
to the proof introduced in Section 2.6. In particular, by setting (k, p, c) =(
1
2 , 0, 0

)
in Theorem 3.2, we can show that π2 equals

8

27

∞∑
n=0

(
1

16

)n
[

1
2 ,

1
2 ,

1
2 , 1, 1, 1

5
4 ,

5
4 ,

5
4 ,

7
4 ,

7
4 ,

7
4

]
n

(240n4 + 608n3 + 564n2 + 225n+ 32),

and this is easily seen to be equivalent to a series bisection applied to
Guillera’s formula.

3.3. Further results. By setting p = k
2 − m

2 and c = −1 + 2m and k = 1
in Theorem 3.2, and by invoking Gauss’s 2F1(1)-identity, we can show that

1(
2m
m

) =
∞∑
n=0

m!
(
7m2 + 52mn+ 29m+ 60n2 + 62n+ 12

)
(3m+ 2n− 1)!

(3m− 1)!(m+ 2n+ 2)!
(
2m+4n+4
m+2n+2

) .

This may be of interest in the context of double sum identities as in

17π4

4860
=
∑
m≥1
n≥0

(
3m+2n−1

2m−2

)(
3m
m

)(
2m+4n+4
m+2n+2

) 7m2 + 52mn+ 29m+ 60n2 + 62n+ 12

m4(2m− 1)(m+ 2n+ 2)
.

Theorem 3.2 may also be applied to obtain series of convergence rate 1
16 that

are of a similar quality relative to results introduced in [12]. For example,
by setting (k, p, c) =

(
1
6 ,

1
6 ,

2
3

)
and (k, p, c) =

(
7
6 ,

1
6 ,

2
3

)
and by taking an

appropriate linear combination, we can show that

π√
3
=

16

1276275

∞∑
n=0

(
1

16

)n
[

2
3 , 1,

7
6 ,

4
3 ,

3
2 ,

11
6

19
12 ,

7
4 ,

23
12 ,

25
12 ,

9
4 ,

29
12

]
n

×

(155520n6 + 917568n5 + 2220048n4 +

2821680n3 + 1990500n2 + 741277n +

114432),

and this recalls the formula

π√
3
=

3

20

∞∑
n=0

(
1

16

)n
[
1, 13 ,

2
3 ,

1
4 ,

3
4

3
2 ,

3
2 ,

3
2 ,

7
6 ,

11
6

]
n

(5n+ 3)(12n2 + 15n+ 4)

introduced in [12].
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4. Further Catalan sums

In this concluding section, we introduce further summations that are ter-
minating and involve Catalan or Catalan-type numbers, inspired by the re-
sults from [11] and our above applications of the finite summation identities
generalizing (1.7) and (1.9).

4.1. Identities for which state-of-the-art implementations of the
WZ method do not apply. Let us consider the following natural-looking
summation identity involving even-indexed Catalan numbers:

(4.1)
n∑

k=0

(
4n− 4k

2n− 2k

)
C2k = 4n

(
2n

n

)
.

Given the simplicity of the above summand, which consists only of a factor
given by a hypergeometric binomial expression and an even-indexed Cata-
lan number, it is quite remarkable that the 2022 version of Maple is not
able to apply the WZ method to prove (4.1). This is representative of the
computationally challenging nature of our results. Without a WZ pair that
both satisfies the defining difference equation in (1.15) and corresponds to
the hypergeometric identity in (4.1), we cannot apply acceleration methods
as in Sections 2 and 3. So, we instead use Zeilberger’s algorithm [19, §6], as
opposed to the WZ method, to prove (4.1).

Theorem 4.1. The hypergeometric identity in (4.1) holds true.

Proof. We set F (n, k) as the summand of (4.1) divided by the right-hand
side of (4.1). We set R(n, k) as the rational function given by the expression

k(2k + 1)(n+ 1)(4n− 4k + 3)(4k − 4n− 1)
(
16k2 − 4k(4n+ 7) + 2n+ 1

)
16(2n+ 1)(2n+ 3)(2k − 2n− 3)(2k − 2n− 1)(k − n− 2)(k − n− 1)

,

and we set G(n, k) = F (n, k)R(n, k). We may then verify that the discrete
difference equation(

4n2 + 16n+ 15
)
F (n+ 2, k) +

(
−8n2 − 24n− 19

)
F (n+ 1, k)+(

4n2 + 8n+ 4
)
F (n, k) = G(n, k + 1)−G(n, k)

holds true. So, summing both sides with respect to k, a telescoping phe-
nomenon yields (

4n2 + 16n+ 15
) n−1∑
k=0

F (n+ 2, k)+

(
−8n2 − 24n− 19

) n−1∑
k=0

F (n+ 1, k)+

(
4n2 + 8n+ 4

) n−1∑
k=0

F (n, k) = G(n, n).
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By rewriting this difference equation to obtain a recursion for
∑n

k=0 F (n, k),
a routine induction argument then gives us the desired result. □

With regard to (4.1), identities of a similar nature are included as Theo-
rems below. Again, the Maple implementation of the WZ method cannot,
remarkably, be applied to obtain any WZ proof for the finite summation
identities shown below.

Theorem 4.2. The identity

(4.2)

n∑
k=0

Cn−k

(
2k+2m+1
k+2m+1

)
k + 2m+ 2

=
(2m+ 3)

(
2m+2n+2

n

)
(2m+ 2)(2m+ n+ 3)

holds true for n ∈ N0.

Proof. We let F (n, k) denote the hypergeometric function given by the sum-
mand of (4.2) divided by the right-hand side of (4.2). We let R(n, k) denote
the rational function

k(n+ 1)(k + 2m+ 2)(2k − 2n− 1)
(
2k + 2m2 + 3m− 3n− 4

)
(k − n− 2)(m+ n+ 2)(2m+ 2n+ 3)

and we write G(n, k) = R(n, k)F (n, k). We may verify that the difference
equation (

−2m2n− 4m2 − 3mn+ n2 − 6m+ 2n
)
F (n+ 1, k)+(

2m2n+ 2m2 + 3mn− n2 + 3m− 2n− 1
)
F (n, k)

G(n, k + 1)−G(n, k)

holds. Summing both sides of this discrete difference equation with respect
to k, a telescoping effect yields(

−2m2n− 4m2 − 3mn+ n2 − 6m+ 2n
) n−1∑
k=0

F (n+ 1, k)+

(
2m2n+ 2m2 + 3mn− n2 + 3m− 2n− 1

) n−1∑
k=0

F (n, k) =

G(n, n).

Rewriting this difference equation so as to obtain a recursion for∑n
k=0 F (n, k), a routine induction argument then gives us the desired re-

sult. □

As indicated above, the Maple implementation of the WZ method also
cannot be applied to the following.

Theorem 4.3. The identity

(4.3)
n∑

k=0

Cn−k

(
2k+2m
k+2m

)
k + 2m+ 1

=
(2m+ 2)

(
2n+2m+1

n

)
(2m+ 1)(n+ 2m+ 2)

holds true for n ∈ N0.
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Proof. We set F (n, k) as being given by the summand of (4.3) divided by the
right-hand side of (4.3), and we set R(n, k) as the below indicated rational
function:

k(n+ 1)(k + 2m+ 1)(2k − 2n− 1)
(
2k + 2m2 +m− 3n− 5

)
(k − n− 2)(m+ n+ 1)(2m+ 2n+ 3)

.

We also set G(n, k) = F (n, k)R(n, k). We may verify that the following
difference equation holds:(

−2m2n− 4m2 −mn+ n2 − 2m+ 3n+ 2
)
F (n+ 1, k)+(

2m2n+ 2m2 +mn− n2 +m− 3n− 2
)
F (n, k) =

G(n, k + 1)−G(n, k).

Summing both sides with respect to k, we again find a telescoping phenom-
enon, and this gives us that:

(
−2m2n− 4m2 −mn+ n2 − 2m+ 3n+ 2

) n−1∑
k=0

F (n+ 1, k)+

(
2m2n+ 2m2 +mn− n2 +m− 3n− 2

) n−1∑
k=0

F (n, k) =

G(n, n).

By rewriting this difference equation so as to produce a recurrence relation
for
∑n

k=0 F (n, k), and again we may apply a routine inductive argument. □

4.2. Another generalization of Catalan numbers. Our computational
experiments based on further generalizations of Catalan numbers have led
us to discover the following result.

Theorem 4.4. The identity

(4.4)
n∑

k=0

(
2n− 2k

n− k

)(
2k + 2m− 1

k + 2m− 1

)
2m

2m+ k
=

(
2n+ 2m

n

)
holds for n ∈ N0.

Proof. Let F (n, k) denote the summand on the left of (4.4) divided by the
right-hand side of (4.4). The WZ method produces the proof certificate

R(n, k) =
k(−2c− k)(2k − 2n− 1)

(c+ n+ 1)(2c+ 2n+ 1)(k − n− 1)
,

with G(n, k) = R(n, k)F (n, k). □

By writing

F (m+ p+ 1, k)− F (p, k) =

m∑
n=0

(G(n+ p, k + 1)−G(n+ p, k))
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for the WZ pair (F,G) as in the proof of Theorem 4.4, we find that the
expression

lim
m→∞

F (m+ p+ 1, k)

is not, in general, vanishing, so that we cannot apply the same kinds of
WZ-based acceleration techniques as above. For the same WZ pair (F,G)
as in Theorem 4.4, we find that
(4.5)

2−1−2c−2k(1 + 2c)Γ(1 + 2c+ 2k)

Γ(1 + k)Γ(2 + 2c+ k)
−F (p, k) =

∞∑
n=0

(G(n+p, k+1)−G(n+p, k)).

We encourage the exploration as to how (4.5) may be applied for the pur-
poses of series accelerations.

4.3. On the convolution of even-indexed Catalan numbers.

Theorem 4.5. The identity

(4.6)

n∑
k=0

C2n−2kC2k = 4nCn

holds for n ∈ N0.

Proof. Let F (n, k) denote the summand on the left of (4.6) divded by the
right-hand side of (4.6). The WZ method yields the proof certificate

R(n, k) =
k(2k + 1)(4k − 4n− 3)(4k − 4n− 1)(2k − 3n− 4)

4(n+ 1)(2n+ 1)(2n+ 3)(2k − 2n− 3)(k − n− 1)
,

again with F (n, k) = R(n, k)G(n, k). □

In this case, we cannot apply the same kinds of acceleration methods from
the previous sections, since

(4.7)
2−

3
2
−4k
(
4k
2k

)
1 + 2k

− F (p, k) =

∞∑
n=0

(G(n+ p, k + 1)−G(n+ p, k)).

We encourage the exploration as to how (4.7) may be applied for the pur-
poses of series accelerations.

4.4. A generalization of an identity due to Mikić. In [18], Mikić
proved that

n∑
k=0

(−1)k
(
n

k

)
Cn−kCk =

1
n
2 + 1

(
n
n
2

)2

.

We generalize this as below for a real parameter m.
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Theorem 4.6. The identity
n∑

k=0

(−1)k
(
2n− 2k

n− k

)(
2k

k

)(
n

k

) m∏
t=1

1

(k + t) (n− k + t)

=


(

n
n/2

)2 m∏
t=1

(n+2t−1)
(n/2+t)(n+t)(2t−1) if n is even

0 if n is odd

holds for n ∈ N0.

Proof. We begin by rewriting the finite product
m∏
t=1

(n+2t−1)
(n/2+t)(n+t)(2t−1) with

the Pochhammer symbol. So, we may replace the integer parameter m with
a real parameter c. Now, we are to apply the mapping n 7→ 2n and then
set F (n, k) as the resultant summand divded by the resultant closed form.
We set R(n, k) as the rational function given by the following Mathematica
input.

(k*(c + k)*(1 - 2*k + 4*n)*(-5 - 2*c + c^2 + 5*k + 2*c*k -

k^2 - 23*n - 9*c*n + 16*k*n + 4*c*k*n - 2*k^2*n - 34*n^2 - 8*

c*n^2 + 12*k*n^2 - 16*n^3))/(2*(-2 + k - 2*n)*(-1 + k - 2*n)*

(1 + 2*n)*(1 + 2*c + 2*n)*(1 + c - k + 2*n)*(2 + c - k + 2*n))

Setting G(n, k) = F (n, k)R(n, k), this gives us a WZ pair. For the vanishing
case, we may again apply Zeilberger’s algorithm. Explicitly, we set F (n, k)
as

((-1)^k*Binomial[2*k, k]*Binomial[1 + 2*n, k]*Binomial[-2*k +

2*(1 + 2*n), 1 - k + 2*n])/(Pochhammer[1 + k, c]*

Pochhammer[2 - k + 2*n, c])

and R(n, k) as

(8*k*(c + k)*(-3 + 2*k - 4*n)*(1 + n)*(54 + 17*c - 2*c^2 - 32*

k - 8*c*k + 4*k^2 + 138*n + 34*c*n - 56*k*n - 8*c*k*n + 4*k^2*

n + 116*n^2 + 16*c*n^2 - 24*k*n^2 + 32*n^3))/((-3 + k - 2*n)*

(-2 + k - 2*n)*(-3 - c + k - 2*n)*(-2 - c + k - 2*n))

and G(n, k) = F (n, k)R(n, k) and we may verify that the difference equation
whereby

(-128 - 128*c - 384*n - 256*c*n - 384*n^2 - 128*c*n^2 - 128*

n^3)*F[n, k] + (18 + 27*c + 13*c^2 + 2*c^3 + 42*n + 42*c*n +

10*c^2*n + 32*n^2 + 16*c*n^2 + 8*n^3)*F[1 + n, k]

equals G(n, k + 1)−G(n, k) holds. □

For the WZ pair (F,G) involved in our proof of Theorem 4.6, the desired
vanishing condition for limn→∞ F (n, k) does not, in general, hold, so that
our acceleration methods cannot be applied directly.
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A result of a similar nature relative to Theorem 4.6 that we have discov-
ered experimentally is given below:

n∑
k=0

(−1)k
(

2n

n− k

)(
n+ k

2k

)(
2k

k

) m∏
t=1

1

(k + t) (n− k + t)

=

 (−1)(
n
2)
(

n
n/2

)(
2n
n

) m∏
t=1

1
(n+t)(n/2+t) if n is even,

0 if n is odd.

This may be proved in much the same way as in Theorem 4.6.

4.5. Accelerations yielding series of convergence rate 1
27 . For even

n,

2n∑
k=0

(−1)k
(
2n

k

)(
4n

2k

)(
2k

k

)(
4n− 2k

2n− k

) m∏
t=1

1

(k + t) (2n− k + t)

=
(−1)n (3n+m)! (4n)!

(n+m)! (2n+m)! (2n+m)!n!n!
,

which, by taking m = 1, generalizes the result of Theorem 3(a) in [11]:

n∑
k=0

(−1)k
(
n

k

)(
2n

2k

)
CkCn−k =

{
(−1)(

n
2)
(3n/2+1

n/2

)
CnCn/2 if n is even,

0 if n is odd.

In a separate article [2], a closely related generalization of Theorem 3(a) in
[11] was applied to obtain the series of convergence rate 1

27 . We may obtain

a similar series of convergence rate 1
27 using the WZ pair associated with

the above displayed generalization of Theorem 3(a) in [11]. For the sake of
brevity, we refer to [2] for details, and we leave it to a separate project to
further explore further generalizations of Theorem 3(a) in [11].
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