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A GENERALIZATION OF THE BERAHA–KAHANE–WEISS

THEOREM WITH GRAPH POLYNOMIAL APPLICATIONS

JASON BROWN AND PETER T. OTTO

Abstract. The beautiful Beraha–Kahane–Weiss (BKW) theorem has
found many applications within graph theory, allowing for the deter-
mination of the limits of zeros of graph polynomials in a wide range of
settings such as chromatic polynomials, network reliability, and generat-
ing polynomials related to independence and domination. However, the
proof only provides solutions for linear recurrence relations of polynomi-
als whose characteristic polynomials have simple zeros. Here we extend
the class of functions to which the BKW theorem can be applied, and
provide some applications in combinatorics.

1. Introduction

There are many instances where graph polynomials arise. For example,
the well-known chromatic polynomial χpG, xq (see, for example, [9]) counts
the number of proper x-colourings of the vertex set of G, when x is a non-
negative integer. The (all-terminal) reliability polynomial RelpG, pq is the
function whose value at p P r0, 1s is the probability that the graph is con-
nected, given that the vertices are always operational, but the edges are
independently operational with probability p (this model of reliability mod-
els the robustness of the network to random failures [7]). There are many
other related polynomials, including two-terminal [7] and strongly connected
[3] reliability polynomials (the latter for directed graphs). Moreover, there
are polynomials that are used in various graphical sequences. For exam-
ple, the independence polynomial ipG, xq, is the generating function for the
number of independent sets of each cardinality in the graph G; likewise,
the domination polynomial serves a similar function for dominating sets of
a graph. In all cases, there has been a significant amount of interest in the
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zeros (or roots) of such polynomials. The addiction of the Four Colour Prob-
lem (which can be succinctly stated that 4 is never the zero of a chromatic
polynomial of a planar graph) led Tutte and others (in both the mathe-
matics and theoretical physics arenas) to investigate the location of zeros of
chromatic polynomials in the complex plane. An initial study of the zeros
of reliability polynomials led to the conjecture in 1992 [2] that they all lie in
the closed unit disk centered at z � 1, and although the conjecture is now
known to be false, the counterexamples found in [13] have reliability zeros
lying outside the unit disk by the slimmest of margins. The zeros of each of
chromatic, independence and domination polynomials have each been shown
to be dense in the complex plane [5, 6, 14] (while, of course, this has not
been shown for reliability polynomials).

Many graph polynomials for a family of graphs satisfy a fixed-term recur-
rence

Pn�kpxq � �
ķ

i�1

fipxqPn�k�ipxq,(1.1)

where the fi’s are polynomials in x. Such a recurrence can be solved using
the usual method for linear recurrences to derive an explicit formula,

Pnpxq �
ķ

i�1

αipxqpλipxqqn,(1.2)

where the λi’s are the zeros of the characteristic equation of the recursive
relation (1.1). Beraha, Kahane and Weiss proved a beautiful result concern-
ing the limits of the zeros of such polynomials. To be more precise, z is a
limit of zeros of the sequence of polynomials P1, P2, . . . if there is a sequence
z1, z2, . . . of complex numbers such that Pnpznq � 0 and limnÑ8 zn � z.
Then the Beraha–Kahane–Weiss (BKW) Theorem is stated as follows:

Theorem 1.1. Suppose that P1, P2, . . . satisfies (1.1) and the following two
nondegeneracy conditions:


 the polynomials Pn do not satisfy a lower order recurrence than that
in (1.1), and


 there are no distinct i and j for which λi � ωλj for some ω of unit
modulus.

Then z P C is a limit of zeros of the Pn if and only if the λi can be reordered
such that one of the following holds:

i. |λkpzq| ¡ |λipzq| for all i � k and αkpzq � 0, or
ii. for some l ¥ 2, |λ1pzq| � |λ2pzq| � � � � � |λlpzq| ¡ |λjpzq| for all j ¡ l.

The BKW theorem has been applied to great effect for a number of graph
polynomials (including Sokal’s proof of the surprising result that chromatic
zeros are dense in the complex plane [14]). Moreover, often, instead of a
recurrence, the BKW Theorem can be applied to any family of polynomials
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that has an expression of the form in (1.2) and reverse the process and un-
cover the underlying recurrence (see [4]). In fact, Beraha, Kahane andWeiss’
proof of their result is really of limits of zeros of sequences of polynomials
whose form is given in (1.2).

However, the statement of the BKW theorem is not quite accurate. Specif-
ically, the zeros λi of the characteristic polynomial of the recurrence (1.1)
may be repeated. Indeed, Beraha, Kahane and Weiss note this [1], stating
that in such a case (1.2) “is modified in the usual way, e.g., if λ1pzq � λ2pzq �
λjpzq for j ¡ 2, the term α1λ

n
1 �α2λ

n
2 is replaced by α1λ

n
1 �nα2λ

n�1
2 .” And

yet, despite the explicit mention in [1], a closer look reveals that repeated
λi’s are not covered by the theorem and proof. There are a number of
instances of formulas for graph polynomials that satisfy a recurrence with
exactly such repeated zeros — equivalently, the explicit formula (1.2) has
the αi a polynomial function of both z and n. For example, in [3], the limits
of zeros of the family of polynomials

fn � p2npp3�4p2�3p�1qn�2np2p1�pq3pp3�p4�p5qn�1�p2n�pp3�p4�p5qn

play a key role in proving that the zeros of strongly connected reliability
polynomials (a natural generalization of all-terminal reliability to directed
graphs) are dense in the complex plane. The BKW theorem was applied
there, under the understanding that it held for recursive families of poly-
nomials where the zeros of the associated characteristic polynomial had re-
peated roots (as indicated by the presence of n in one of the coefficients).

It is exactly the omission of the general repeated zeros case that motivated
this work, where we revisit the statement and proof of the BKW theorem and
extend it to such cases. Subsequently, we shall apply the result to a variety
of graph polynomials (and justify the use of the BKW theorem in previous
applications, including the density of roots of strongly connected reliability).
We expect that our generalization will have applications elsewhere.

2. Extending the Beraha–Kahane–Weiss Theorem

In [1] there is no hint at what the extension might be when the roots of
the characteristic equation are repeated. In the next theorem, we state our
extension to the BKW Theorem that includes the case where the zeros of the
characteristic equation λi’s of the recursive relation (1.1) are not necessarily
distinct but can be repeated zeros of arbitrary order. It is straightforward
to see that this is equivalent to the condition that the coefficients αi’s in
(1.2) can be functions of both n and x.

Theorem 2.1. Let tPnpxqu be a sequence of analytic functions of the form

(2.1) Pnpxq �
ķ

i�1

αipn;xqpλipxqqn,
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where λipxq are analytic and nonzero, λipxq � ωλjpxq for any ω P C of unit
modulus, and αipn;xq have the form

(2.2) αipn;xq � ndipi,dipxq � ndi�1pi,di�1
pxq � � � � � npi,1pxq � pi,0pxq

where di is the degree of αipn;xq, the coefficient functions pi,j are analytic,
and pi,di are nonzero.

Then z P C is a limit of zeros of the family tPnpxqu if λipxq can be
reordered such that either of the following conditions hold.

i. |λkpzq| ¡ |λipzq| for all i � k and pk,dkpzq � 0.
ii. for some l ¥ 2, |λ1pzq| � |λ2pzq| � � � � � |λlpzq| ¡ |λjpzq| for all j ¡ l

and there exists at least one i such that 1 ¤ i ¤ l and pi,dipzq � 0.

Remark: In the generalization Theorem 2.1 stated above, the sufficient con-
dition for z to be a limit of zeros is not that the full coefficient function
αkpn;xq must equal zero at x � z as in the original Beraha–Kahane–Weiss
Theorem, but only the leading term pk,dkpzq of αkpn;xq be 0 at x � z.

Proof of Theorem 2.1. We in general follow the proof of [1], but with the
additional wrinkles afforded by the two-variable generality of the coefficients.
The Beraha–Kahane–Weiss Theorem was proved using Rouché’s Theorem,
and we shall make repeated use of this well-known result in the following
form: Suppose that two functions fpzq and gpzq are analytic inside and on
a simple closed curve C. If |fpzq| ¡ |gpzq| at each point z on C, then fpzq
and fpzq � gpzq have the same number of zeros inside C.

Part (i): By assumption |λkpzq| ¡ |λipzq| for i � k and pk,dkpzq � 0; we
prove that z is a limit of zeros. To do so, we base our proof on the approach
taken for the corresponding case in [1]. We will show that for every ϵ ¡ 0
there is a sufficiently large N such that for all n ¥ N , Pnpznq � 0 for some
zn P Dϵpzq � tx : |x� z|   ϵu. Let C denote the boundary of Dϵpzq.

Since the zeros of the nonzero analytic function pk,dk are isolated, by
taking ϵ sufficiently small, we can assume that |pk,dkpxq| ¡ 0 for x P C;
moreover, by the dominant condition on λkpzq, we can assume as well that
for all i � k, |λipzq{λkpzq| ¤ ρ   1 on C as well. Define

pk,dkpn;xq �
ndk�1pk,dk�1pxq � � � � � npk,1pxq � pk,0pxq

ndk
.

Then �
pk,dkpxq � pk,dkpn;xq

�
ndk � αkpn;xq.

Next define

wnpxq � �
�
pk,dkpn;xq �

α1pn;xqλ1pxqn
ndkλkpxqn � α2pn;xqλ2pxqn

ndkλkpxqn

� � � � � αk�1pn;xqλk�1pxqn
ndkλkpxqn



;

this yields the relationship

Pnpxq � ppk,dkpxq � wnpxqqndkλkpxqn.
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For x on the boundary C and for all i � k, we have (i) |pk,dkpn;xq| Ñ 0
as n Ñ 8, (ii) |λipxq|{|λkpxq|   1 and (iii) αipn;xq is polynomial in n.
Therefore, we conclude that |wnpxq| can be made sufficiently small on C
for n large. Specifically, there exists N ¡ 0 such that for all n ¥ N ,
|wnpxq|   |pk,dkpxq| for x P C.

By Rouché’s Theorem, for n ¥ N , pk,dkpxq�wnpxq and pk,dkpxq have the
same number of zeros in Dϵpzq. Finally, since pk,dkpzq � 0, for all n ¥ N ,
there exists at least one zn P Dϵpzq such that pk,dkpznq �wnpznq � 0, which
implies that Pnpznq � 0.

Part (ii): For this part, we present the general construction of the proof
which is a winding number argument. We include the justification for the
winding number along two of the four boundaries and refer the reader to
the proof of the original BKW theorem [1] for the technical details (which
applies for our extended case) for the winding number of the remaining two
boundaries.

As in [1], in order to help with the exposition, we present the proof for
l � 3 which is sufficiently general.

Let U be a disk about z and define µpxq � λ1pxq{λ2pxq. The assumption
that λ1pxq � ωλ2pxq for any ω P C of unit modulus implies that µ is not
constant and that µ1pzq � 0 (since the derivative of a quotient of functions
being zero would imply λ1pxq would be proportional to λ2pxq and |µpzq| � 1
would imply the modulus of the proportionality constant violates the as-
sumption). Thus, for U sufficiently small, µ is invertible from U onto a
neighborhood V of ω � µpzq. By the assumption that |λ1pzq| � |λ2pzq|, we
have |ω| � 1.

By symmetry, we can assume that p1,d1pzq � 0, and hence for all suffi-
ciently large n, α1pn;xq � 0 on U . If ν denotes the inverse of µ, then

Πnpxq � Pnpνpxqq
α1pn; νpxqqλ2pνpxqqn

� xn � α2pn; νpxqq
α1pn; νpxqq �

α3pn; νpxqq
α1pn; νpxqq

�
λ3pνpxqq
λ2pνpxqq


n

�
ķ

j�4

αjpn; νpxqq
α1pn; νpxqq

�
λjpνpxqq
λ2pνpxqq


n

By taking a smaller (noncircular) neighborhood in U , we can assume that
for some r0 ¡ 1 and θ0 ¡ 0, the image of

V � Nr0,θ0pωq � treiθω : r�1
0   r   r0,�θ0   θ   θ0u

under ν is a subset of U . Let C � C1 � C2 � C3 � C4 denote the boundary
curve of Nr0,θ0pωq (see Figure 1), where |x| � r0 on C1, |x| � r�1

0 on C3,

x � reiθ0ω on C2, and x � re�iθ0ω on C4. We traverse around C in the
counterclockwise direction.
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Figure 1. The set Nr0,θ0pωq with counterclockwise oriented
boundary C � C1 � C2 � C3 � C4

Since αi are all polynomial in n, the relationship of the λi, and the mod-
ulus of x on C1 is greater than 1, the xn term dominates Πn for large n on
C1 and the image of Πn of C1 winds around 0 on the order of nθ0 times. On

the other hand, along C3 the modulus is less than 1 and thus the α2pn;vpxqq
α1pn;vpxqq

term dominates and since α2pn;vpxqq
α1pn;vpxqq

is close to α2pn;zq
α1pn;zq

, for n large, the image

of Πn of C3 does not wind around 0.
Lastly, along C2 and C4, the argument of x is fixed and it was shown in

[1] that the winding numbers of Πn along C2 and C4 are bounded below by a
constant. Therefore, we conclude that, for all n sufficiently large, the image
of Πn of the boundary C of the set V winds around 0 a positive number of
times. This implies that for all n sufficiently large, Πn has a zero in V which
implies that Pn has a zero in U . □

We next prove a partial converse of Theorem 2.1 for the case k � 3 which
again is sufficiently general. The proof of this result applies Lemma 4.1 in
[1] which we state below for reference.

Lemma 2.3. Suppose that γn, δn, µn, σn, λj ¡ 0, γn, δn ¤ M,n � 1, 2, . . .,
j � 1, 2 and that µn Ñ λ1, σn Ñ λ2. Then

lim sup
nÑ8

pγnµn
n � δnσ

n
nq1{n ¤ maxpλ1, λ2q.

Theorem 2.4. Suppose that z P C is a limit of zeros zn of

(2.3) Pnpxq �
3̧

i�1

αipn;xqpλipxqqn,
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where λipxq are analytic and nonzero, λipxq � ωλjpxq for any ω P C of unit
modulus, and αipn;xq have the form

αipn;xq � ndipi,dipxq � ndi�1pi,di�1
pxq � � � � � npi,1pxq � pi,0pxq

where di is the degree of αipn;xq and the coefficient functions pi,j are ana-
lytic.

If |λ3pzq| ¡ |λ1pzq|, |λ2pzq|, then p3,d3pzq � 0.

Proof. The dominant root assumption implies that

(2.4) |α3pn; znq|1{n|λ3pznq| � |α1pn; znqλ1pznqn � α2pn; znqλn
2 |1{n.

If p3,d3pzq � 0 then the left hand side of the above equation converges to
|λ3pzq| when n Ñ 8. The application of Lemma 2.3 to (2.4) requires that
|α1pn; znq|, |α2pn; znq| ¤ M for n � 1, 2, . . .. This is satisfied in the original
case where αi does not depend on n but our generalization assumes αi are
polynomials in n. In order to apply Lemma 2.3 to the generalized case, we
rewrite

|α1pn; znq||λ1pznq|n �

nd1

����p1,d1pznq � 1

n
p1,d1�1pznq � � � � � 1

nd1
p1,0pznq

���� |λ1pznq|n

and we bound nd1 by ϵn1 where ϵ1 ¡ 1 for n sufficiently large. We do
the same for the α2pn; znq term and now since

��p1,d1pznq � 1
np1,d1�1pznq

� � � � � 1
nd1

p1,0pznq
��� (and the analogous term for α2pn; znq) is bounded, we

can apply Lemma 2.3 and we get

|λ3pzq| ¤ maxtϵ1|λ1pzq|, ϵ2|λ2pzq|u
for any ϵ1, ϵ2 ¡ 1, which contradicts the assumption that
|λ3pzq| ¡ |λ1pzq|, |λ2pzq|. □

For the k � 2 case, the above argument greatly simplifies to the following.
Without loss of generality, assume that |λ1pzq| ¡ |λ2pzq|. Then we have

α1pn; znqλ1pznqn � �α2pn; znqλ2pznqn.
which implies that

|α1pn; znq|1{n |λ1pznq| � |α2pn; znq|1{n |λ2pznq| .(2.5)

If p1,d1pzq � 0 and p2,d2pzq � 0 then close to z, both α1pn; znq and α2pn; znq
are bounded away from 0, and hence their n–th zeros go to 1. It follows by
taking limits in (2.5) that |λ1pzq| � |λ2pzq|, a contradiction.

Concerning Theorem 2.1, we remark that while the form of the coefficient
functions αi in (2.2) as polynomials in n cover the applications included in
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Figure 2. Zeros of fnpxq � xn�1 � 2xn � x2 � n2 for 2 ¤ n ¤ 30.

this work, they are sufficient but not necessary assumptions for the conclu-
sion of Theorem 2.1. For example, for part (i), the assumption on the αi

could be generalized to

|αipn;xq| � o

����� λipxq
λkpxq

����
n


(where o denotes the limit as n Ñ 8). For part (ii), the generalization
extends to ����αipn;xq

α1pn;xq
���� � op|x|nq.

We illustrate Theorem 2.1 with a couple of examples of sequences of
polynomials (in the next section, we give applications of Theorem 2.1 to
various graph polynomials). Consider the sequence of polynomials

fnpxq � xn�1 � 2xn � x2 � n2 � px� 2qxn � pn2 � x2q � 1n

By Theorem 2.1, the limits of zeros of fn are the unit circle |z| � 1 centred
at the origin and the isolated point z � 2 (see Figure 2). On the other hand,
for

gnpxq � xn�1 � 2xn � n2x2 � 5nx� 1 � px� 2qxn � pn2x2 � 5nx� 1q � 1n,
the limits of zeros of gn are the unit circle centred at the origin and the
isolated points z � 2 and z � 0 (see Figure 2). As stated in Remark 2.2,
the isolated limit of zeros z � 0 is derived from the zero of the leading term
n2x2 of n2x2 � 5nx� 1.
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Figure 3. Zeros of gnpxq � xn�1� 2xn�n2x2� 5nx� 1 for
2 ¤ n ¤ 30.

3. Graph Polynomial Applications

We return to the example from the opening section (and from [3]),

fn � p2npp3 � 4p2 � 3p� 1qn � 2np2p1� pq3pp3 � p4 � p5qn�1 � p2n

�pp3 � p4 � p5qn

�
3̧

i�1

αiλ
N
i ,

where N � n� 1,

α1 � p2pp3 � 4p2 � 3p� 1q, α2 � �pp3 � p4 � p5q � 2np2p1� pq3, α3 � p2,

and

λ1 � p2pp3 � 4p2 � 3p� 1q, λ2 � p3 � p4 � p5, λ3 � p2.

In [3], the solutions to

|λ1| � |λ2|
were solved for, yielding (in part) a curve C, given by

b �
d

16a� 15a2 � 8� 6a3 �?
532a2 � 408a3 � 292a� 112a4 � 57

7� 6a
.

where z � a � bi. The curve C does not contain 0, and runs from 1 to
7
6 �

b
19
18 i. On this curve (except at z � 1), it was shown that

|λ1| � |λ2| ¡ |λ3|.
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Using the notation of Theorem 2.1, note that for all points on C � t1u,
p2,α2 � 2p2p1�pq3 is nonzero, so by Theorem 2.1, all points on C�t1u (and
hence on C) are limits of zeros of fn. This justifies the claim in [3], and the
remainder of the proof in [3] showing that the zeros of strongly connected
reliability polynomials are dense in the complex plane proceeds exactly as
provided there.

Figure 4. Zeros of fn � p2npp3� 4p2� 3p� 1qn� 2np2p1�
pq3pp3 � p4 � p5qn�1 � p2n � pp3 � p4 � p5qn for 2 ¤ n ¤ 24.

Finally, the impetus for our extension of the BKW Theorem began with
a new graph polynomial stemming from the theory of minimal spanning
trees of graphs with random edge lengths. The topic of random minimal
spanning trees are well-studied (see [8] and the references therein) with the
first major result by Frieze [11] that proved the convergence of the mean
minimal spanning the of the complete graph with random edge weights
distributed uniformly over the unit interval r0, 1s as the number of vertices
tends to infinity. While most of the theory in the field are asymptotic results,
a significant preasymptotic exact formula was proved by Steele in [15].

In that work Steele derived an integral formula for the mean length of
minimal spanning trees of G. Specifically, each edge of G is assigned inde-
pendent random variables distributed uniformly over the unit interval r0, 1s.
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For each assignment of random edges, the total length of minimal spanning
trees is denoted by LpGq. The mean over all possible sets of random edge

lengths was proven to have the form ErLpGqs � ³1
0 SpG; tq dt where

(3.1) SpG; tq � p1� tq
t

TxpG; 1{t, 1{p1� tqq
T pG; 1{t, 1{p1� tqq

and T pG;x, yq is the well-known Tutte polynomial of the graph G. Here Tx

denotes the partial derivative of T pG;x, yq with respect to x. In [12], it was
shown that SpG; tq is a polynomial of degree at most equal to the number
of edges of G which we refer to as the Steele polynomial of the graph G.
Not only do the Steele polynomials yield the exact mean minimal spanning
tree, Steele’s result revealed another connection to the Tutte polynomial,
which has many applications in graph theory. See [10] for a recent survey
book on the Tutte polynomial. Additional properties of Steele polynomials,
including information on the coefficients of the polynomials, appear in [12].

Steele polynomials are trivial for trees and cycles, so the next most in-
teresting case is a theta graph θa,b,c, consisting of two vertices joined by
internally disjoint paths of lengths a, b and c. A straightforward calculation
of the Tutte polynomial of the theta graph using the deletion-contraction
algorithm (see [12]) yields the Steele polynomial for the graphs θn�2,2,1 as

(3.2) Spθn�2,2,1; tq � pn� 1q � pn� 1qt� t3 � tn�1 � tn � tn�1.

which satisfies the following recurrence relation

Pnptq � pt� 2qPn�1ptq � p2t� 1qPn�2ptq � tPn�3ptq.
The corresponding characteristic polynomial λ3 � pt � 2qλ2 � p2t � 1qλ � t
has a simple zero at λ1ptq � t and a repeated zero at λ2ptq � 1 which
(with appropriate initial conditions) yield the solution Spθn�2,2,1; tq above.
It is the repeated zero λ2ptq � 1 that forces the Steele polynomials of these
graphs beyond the scope of the original BKW Theorem (Theorem 1.1) and
the investigation into the limits of zeros of these polynomials that prompted
our work on the extension (Theorem 2.1).

However, the Steele polynomials Spθn�2,2,1; tq defined in (3.2) can be ex-
pressed as

(3.3) Spθn�2,2,1; tq � α1pn� 1; tqpλ1ptqqn�1 � α2pn� 1; tqpλ2ptqqn�1

where , λ1ptq � t, λ2ptq � 1, α1pn � 1; tq � t � t2 � 1, and α2pn � 1; tq �
n�1�pn�1qt�t3. Theorem 2.1 yields that the limits of zeros of Spθn�2,2,1; tq
are the unit circle |t| � 1 and the isolated limit of zeros at the golden ratio
ϕ � p1�?

5q{2.
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