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THE INVOLUTIVE DOUBLE COSET PROPERTY FOR

STRING C-GROUPS OF AFFINE TYPE

ALLEN HERMAN∗ AND ROQAYIA SHALABI

Abstract. In this article, we complete the classification of infinite
affine Coxeter group types with the property that every double coset
relative to the first parabolic subgroup is represented by an involution.
This involutive double coset property was established earlier for the
Coxeter groups of type C̃2 and G̃2, we complete the classification by
showing it also holds for type F̃4 and the types C̃n for all n. As this
property is inherited by all string C-groups of these types, it follows
that the corresponding abstract regular polytopes will have polyhedral
realization cones.

1. Introduction

A Schurian association scheme (G/H,G//H) is the 2-orbit coherent con-
figuration arising from the action of a finite group G on the set of left cosets
G/H of a subgroup H of G. For each g ∈ G, the relation gH is the orbital

gH = G(H, gH) = {(xH, xgH) : x ∈ G}.
The set of orbitals is in one-to-one correspondence with the set of double
cosets G//H = {HgH : g ∈ G} of H in G via

(xH, yH) ∈ gH ⇐⇒ Hx−1yH = HgH.

This correspondence carries over to the adjacency algebra of the scheme,
and indeed, the elements of the standard basis of C[G//H] considered as the
adjacency algebra of the association scheme correspond to the normalized
characteristic functions

1

|H|
(HgH)+,

where (HgH)+ =
∑

x∈HgH x for all g ∈ G. This “double coset algebra” can

be identified with the Hecke algebra eHCGeH , where eH = 1
|H|H

+, so the

character theory of C[G//H] can be understood in terms of the characters
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of the group G. We refer the readers to [2], [5], [8], and [15] for further
information on the general structure and character theory of double coset
algebras and Schurian association schemes.

In [2], it was shown that every double coset of G//H is involutive (i.e.
equal to HgH where g has order 1 or 2) in the cases where H is the ver-
tex stabilizer subgroup (i.e. first maximal parabolic subgroup) of a string
Coxeter group G that is either finite of Schläfli type not equal to {5, 3, 3},
or affine of types {4, 4} or {3, 6}. These affine types are also identified by

diagrams of type C̃2 and G̃2 in [10] and [12, Table 2B1]. This was then
applied to show that the realization cone of any abstract regular polytopes
of these types must be polyhedral.

That the involutive double coset property implies commutativity of the
double coset algebra is commonly known as “Gelfand’s trick”, as this is one
of the means of establishing the existence of a Gelfand pair. For double coset
algebras of parabolic subgroups of finite Coxeter groups, the equivalence of
commutativity to the involutive double cosets property was noted much
earlier by Iwahori; the argument appears in [4].

For infinite Coxeter groups, we will make use of the recent classification by
Abramenko, Parkinson, and Van Maldeghem of the cases of commutativity
of the double coset algebras of parabolic Hecke algebras of Coxeter groups
[1]. For vertex stabilizer subgroups of infinite string Coxeter groups the

results in [1] indicate commutativity for the affine Schläfli types C̃n (n ≥ 2),

F̃4 and G̃2. Actually all of the effort in [1] is directed at showing other cases
are not commutative—the commutativity of these cases in [1] is treated as
being well-known; its proof appears to be a consequence of a theorem of
[11] that makes use of special functions techniques from harmonic analysis.
In section 2 we show that the approach in [2] can be applied to show the
involutive double coset property holds for the vertex stabilizer cases of type
{4, 3, . . . , 3, 4} (type C̃n) and {3, 3, 4, 3} (type F̃4). Then, we can infer from
[1] that there are no other affine cases where the involutive double coset
property can hold. We conclude by outlining a few consequences of our main
theorem for string C-groups of these types and the corresponding regular
abstract polytopes.

2. Involutive Double Cosets

Affine Coxeter groups are those Coxeter groups that have a maximal nor-
mal free abelian subgroup of finite index. The diagram for an irreducible
affine Coxeter group (see [10, pg. 32] or [12, Table 3B2]) can be obtained
by adding a single vertex and edge connecting it to the diagram of a Cox-
eter group of finite type. The special vertices are those that lie in the orbit
of this extra vertex under diagram automorphisms of the group (i.e., auto-
morphisms of the group that are realized by graph automorphisms of the
diagram). The affine Coxeter groups whose diagrams are strings are those

of type C̃n : {4, 3, . . . , 3, 4} (with n− 2 3’s), F̃4 : {3, 3, 4, 3}, and G̃2 : {3, 6}.
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Here, the diagram has been oriented so that the additional special vertex is
the first vertex.

C̃n:
44

0 1 n

F̃4:
4

0 1 2 3 4

G̃2:
6

0 1 2

We start with an immediate application of the result from [1].

Corollary 2.1. The Schurian association schemes related to abstract regular
polytopes of the following affine Schläfi types of rank ≥ 2 are always com-
mutative: type C̃n : {4, 3, . . . , 3, 4} (n ≥ 2), F̃4 : {3, 3, 4, 3}, and G̃2 : {3, 6}.

As the only diagram automorphism of F̃4 = {3, 3, 4, 3} is the identity
mapping, it follows from the proof of [1, Lemma 2.5] that its double coset
algebra with respect to the first vertex stabilizer will be involutive. For
groups of type C̃n when n > 2, there are nonidentity diagram automor-
phisms. Nevertheless, for these types we have been able to adapt the direct
calculation approach used in [2] for C̃2 and G̃2 to show the involutive double
cosets property will hold.

Theorem 2.2. Let G be a Coxeter group of type F̃4 = {3, 3, 4, 3}. Let
a, b, c, d, e be the Coxeter generators of G (in order of the diagram), and let
Ha = ⟨b, c, d, e⟩ be the first vertex stabilizer. Then every double coset of Ha

in G is involutive.

Proof. LetH = Ha. According to the strategy used in [2], every double coset
HwH is represented by a word of finite length that starts and ends with a,
and every double coset whose representative has at least n a’s is obtained
by appending a reduced right H-coset repesentative beginning with and
containing only one a to a double coset representative with n − 1 a’s. So
the strategy is to find the left-reduced words that start with and contain
only one a, using these to inductively determine the possible patterns for
double coset representatives with a given number of a’s, and then show each
of these double cosets is equal to one represented by an involution.

For the type {3, 3, 4, 3}, the reduced H-coset representatives beginning
with and containing only one a are:

Ha,Hab,Habc,Habcd,Habcde,Habcdc,Habcdce,
Habcdced,Habcdcedc, and Habcdcedcb.

Starting with H, the double cosets that can be formed by appending these
one at a time are:

H,HaH,H(abcdcb)aH,H(abcdcedcb)aH, . . . ,H(abcdcedcb)n−1aH, . . . .

Since any double coset whose minimal representative contains n a’s will be
obtained by appending one of our left-reduced words to the representative of
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a double coset that contains n−1 a’s, the above list covers all double cosets
in G//H. It is easy to see that each of these double cosets is equivalent to
one whose representative is an involution. □

It is shown in [1] that the dual Schläfli type {3, 4, 3, 3} has noncommuta-
tive Hecke algebra with respect to the first vertex stabilizer.

Theorem 2.3. Let G be a Coxeter group of type C̃n = {4, 3, . . . , 3, 4}. Let
H be a vertex stabilizer. Then G//H has involutive double cosets.

Proof. The case n = 2 is proved in [2]. For C̃3, let the Coxeter generators
be a, b, c, d. The reduced right H-coset representatives are:

Ha,Hab,Habc,Habcd,Habcdc, and Habcdcb.

(The referee has pointed out it would be of interest to know the geometric
significance of the set of reduced right H-coset representatives with regard
to the tesselation of Euclidean space corresponding to this affine Coxeter
group. We have yet to explore this direction.)

Now, we repeatedly append these, starting with the trivial double coset
H, and look for patterns to emerge. The first few double cosets are:

H,HaH,Hab aH,Habcdcb aH,Habc ab aH, and Habcdc ab aH.

From this point on, we only see the three infinite patterns:

H(abcdc)k ab aH, (k ≥ 0), H(abcd)k abc ab aH, (k ≥ 0), and

H(abcdcb)k abcdc ab aH, (k ≥ 0).

Again it is straightforward (though a bit tedious) to show each of these
double cosets is equal to one represented by an involution. So the result
holds for C̃3.

For n > 3, let the Coxeter generators be a, b, c, . . . , x, y, z (in order, so
(ab)4 = (yz)4 = 1). The reduced right H-coset representatives will follow
the same pattern as in the case of n = 3:

Ha,Hab,Habc, . . . ,Habc . . . xyz,
Habc . . . xyzy, . . . ,Habc . . . xyzyx . . . cb.

The appending pattern for the double cosets starts out in an analogous
fashion to the case when n = 3:

H,HaH,Hab aH,H(abc . . . xyzyx . . . cb) aH,H(abc) ab aH,

H(abc . . . xyzyx . . . dc) ab aH.

After this point, patterns for several distinct infinite families emerge:

H(abc . . . xyzyx . . . cb)k aH, (k ≥ 0),

H(abc . . . xyzyx . . . dc)k ab aH, (k ≥ 0),

H(abc . . . xyzyx . . . ed)k(abc) ab aH, (k ≥ 0),

H(abc . . . xyzyx . . . fe)k(abcd) (abc) ab aH, (k ≥ 0),



40 ALLEN HERMAN∗ AND ROQAYIA SHALABI

...

H(abc . . . xyz)k (abc . . . xy) · · · (abc) ab aH, (k ≥ 0).

Again it is straightforward to verify that appending any of our left-reduced
words to any of these will result in a double coset already in the list, so
these are all of the double cosets. It is again straightforward to show all of
these double cosets are equivalent to ones represented by an involution. The
Theorem follows. □

Remark 2.4: Another consequence of [1, Theorem 2.1] is that, when G is

an affine Coxeter group of type Xn other than C̃n, F̃n, G̃2, or Ã1, and Hi

is a maximal parabolic subgroup of G, then Xn,i will not be commutative.
Since affine Coxeter groups contain a normal free abelian subgroup (i.e. a
lattice) of finite index, G is guaranteed to have normal subgroup N of finite
index (possibly a multiple of the maximal lattice) for which the double coset
algebra C[(G/N)//(NHi/N)] will be noncommutative. (We are indebted
to the referee here for pointing out that it is not necessary to appeal to
Malcev’s theorem in order to obtain a normal subgroup of finite index with
this property.)

Remark 2.5: As noted in [2], a motivating consequence of our main result
is that the realization cone of any finite abstract regular polytope whose
automorphism group is a string C-group of type C̃n, F̃4, or G̃2 will be poly-
hedral. This is because the pure realizations of the polytope correspond to
irreducible characters of the double coset algebra Ḡ//H̄ defined by the vertex
stabilizer subgroup H̄ of the string C-group Ḡ, a finite homomorphic image
of the Coxeter group of the given type. The involutive double coset property
for Ḡ//H̄ is inherited from G//H. This implies Ḡ//H̄ is a symmetric associ-
ation scheme, so every irreducible character has degree 1 and is real-valued.
It follows that the pure realizations of the polytope will have “essential di-
mension” 1 and so are the nonnegative real multiples of a single vector of
length 1. The realization cone is the nonnegative real span of finitely many
of these orthogonal vectors of length 1, so it will be polyhedral.

The finite regular polytopes of string affine type are the toroidal polytopes
described in sections 6D, 6E, 6F, and 6G of [12]. Here by the type of a finite
regular polytope we mean that its automorphism group is a finite quotient of
the Coxeter group of that type. In the Atlas of Small Polytopes [9], we find

18 regular polytopes of type G̃2, 23 of type C̃2, and 6 of type C̃3. Examples
of type F̃4 appear in [12, Table 6E1]. For examples of type C̃n, for all n > 2,
see [12, Table 6D1].

Remark 2.6: An immediate consequence of Corollary 2.1 is that Monson’s
question has a positive answer for string C-groups of these Schläfli types:
there can be no quaternionic pure realizations of abstract regular polytopes
of these types. Cameron, Leemans, and the first author have recently found
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an example of a polytope of type {5, 5} for which Monson’s question, which
appears as Problem 23 in [14], has a negative answer [3]; its corresponding
double coset algebra has irreducible characters of quaternionic type (i.e. real
Schur index 2). In light of the above results, it would be interesting to
consider Monson’s question for polytopes of Schläfli types {4, 5}, {5, 4},
{6, 3}, {3, 7} or {3, 4, 3, 3}.
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