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BETA DISTRIBUTIONS WHOSE MOMENT SEQUENCES

ARE RELATED TO INTEGER SEQUENCES LISTED IN

THE OEIS

PAWE L J. SZAB LOWSKI

Abstract. We recall some basic properties of the Beta distribution
and some of its modifications. We identified around 20 of the moment
sequences of Beta distributions as important integer sequences in the
OEIS base of integer sequences. Among those identified are Catalan,
Riordan, Motzkin, or ‘super ballot numbers’. By applying a method of
expansion of the ratio of densities of involved distributions we are able
to obtain some known and many unknown relationships between e.g.
Catalan numbers and other moment sequences of the Beta distributions.

1. Introduction

This paper intends to show that many well-known discrete sequences of
numbers that are important in many, distant from the theory of probability,
branches of mathematics are, in fact, closely connected with moment se-
quences of the beta distribution. By close connection we mean some simple
operation like, for example, multiplication by a sequence of powers of some
number or binomial transformation.

The idea of representing known integer sequences as moment sequences
is becoming more and more popular in recent years. Nice arguments to
follow this idea were recently presented in the paper of Sokal [10]. There
is also a nice review of basic facts concerning moment sequence as well as
some criteria both sufficient and necessary and only sufficient for a number
sequence to be a moment sequence.
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Some of these arguments and facts we repeat here below, however, to get
the definition of the moment sequences and their basic properties as well as
the properties of the set of such sequences we refer the reader to the paper
of Sokal or to the appendix of the recently published, paper of Szab lowski
[14].

As far as moments of the Beta distribution are concerned, it turns out
that, for example, sequences of Catalan, Motzkin, Riordan or ‘super ballot’
numbers are such sequences. They are, in fact, moments of some modifica-
tion the classical beta considered on the segment [0, 1]. In order to indicate
briefly what modifications we mean firstly we will recall the definition of
Beta distribution and the modifications that we are going to consider.

We will be dealing with the moment sequences {mn} i.e. sequences that
are defined by the following formula

mn =

∫
xndµ (x) ,

n ≥ 0, where µ denotes a positive measure on the real line.
Recall, that a numerical sequence {mn}n≥0 with m0 = 1, is a moment

sequence of a probability distribution with infinite support iff all its Hankel
matrices Hn := [mi+j ]0≤i+j≤n are positive definite, or equivalently, the val-

ues of all determinants {det[Hn]}n≥0 have positive values. Additionally, if

the distribution whose moments are elements of the sequence {mn} has the
support contained in the non-negative axis, then the moment sequence also
satisfies the following condition: The following sequence{

detH
′
n

}
n≥0

also assumes non-negative values. Here matrix H
′
n has {i, j}−th entry equal

to m1+i+j , for 0 ≤ i, j ≤ n.
Let us recall the general property of the moment sequences that will be

of use in the sequel.

Proposition 1.1. Suppose {an}n≥0 and {bn}n≥0 are two moment sequences.

Then {anbn}n≥0,
{∑n

j=0

(
n
j

)
ajbn−j

}
n≥0

and
{∑n

j=0 (−1)j
(
n
j

)
ajbn−j

}
n≥0

are also moment sequences.

Proof. For the proof see, e.g., either [3] or [15]. □

Finally, by expanding the ratio of the densities, whose moments we are
considering, and then integrating, we get for free the relationships between
involved moments. The idea of expanding the ratio of the densities (the
Radon-Nikodym derivative more generally) has been presented in [12] and
later developed and generalized in [13]. It happens very often that the
sequence of the moments has a deep combinatorial interpretation and by
using this method of expansion, we can get relationships between these
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important combinatorial sequences that are usually difficult to prove by
combinatorial means. For example, we can easily show that(

2n

n

)
= 4n − 2

n−1∑
j=0

Cj4
n−1−j ,

Cn =
3

2

∑
i≥0

1

4i
(2n + 2i)!

(i + n)!(n + i + 2)!
,

where {Cn}n≥0 are the so-called Catalan numbers. Numbers {Cn} con-
stitute, as it turns out, the moment sequence of the distribution with the
following density:

1

2π

√
4 − x

x
,

where 0 < x < 4.
We will go into detail and give more examples in the sequel. The paper is

organized as follows. In the next Section 2, we present a definition of Beta
distribution, its modifications and the basic properties of its moments. The
following Section 3, is dedicated to the presentation of particular examples,
mostly concerning cases when α and β are multiples of 1/2. In this section
we identify many moments of the beta distribution appearing in the OEIS.
The last Section, 4, is devoted to the presentation of some (by no means all)
possible expansions finite as well as infinite expansions of elements of one
sequence in terms of the other.

2. Basic ingredients and properties

Let us recall the so-called beta distribution, i.e., the distribution with the
density defined for |x| < 1 and α, β > 0,

(2.1) a(x;α, β) =
xα−1(1 − x)β−1

B(α, β)
,

where B(α, β) denotes the value of the well-known Beta function taken at
α and β. It is well-known that the sequence of moments of this distribution
is given by the formula:

(2.2) Mn(0, α, β)/4n =

∫ 1

0
xna(x;α, β)dx =

α(n)

(α + β)(n)
.

We use notation that appears to be redundant at first sight. The reason for
this will be clear in the sequel.

In formula (2.2), we used the following notation. For x ∈ C let us denote:

(2.3) (x)(n) = x(x− 1) · · · (x− n + 1).

This polynomial in x will be called falling factorial while the following poly-
nomial

(2.4) (x)(n) = x(x + 1) · · · (x + n− 1),
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will be called rising factorial, (sometimes called Pochhammer polynomial,
function or symbol). In both cases we set 1 when n = 0.

It is also well-known that

(2.5) (x)(n) = (−1)n(−x)(n), and (x)(n) = (−1)n(−x)(n).

By the binomial theorem, for all complex |x| < 1 we have:

(2.6) (1 − x)α =
∑
j≥0

(−x)j(α)(j)/j! =
∑
j≥0

xj(−α)(j)/j!.

The modifications of the beta distribution that we are going to consider, are
the following. Namely, we will examine the distribution family as well as
densities.

(2.7) g(x; c, α, β) =
(x− c)α−1(4 + c− x)β−1

4α+β−1B(α, β)
,

supported on the segment [c, 4 + c], c ∈ R. If we denote by X the random
variable with the density a(s;α, β) and by Y the random variable with the
density g(x; c, α, β), then we see that

Y = 4X + c.

Let us denote by Mn(c, α, β) the n−th moment of Y , i.e.,

(2.8) Mn(c, α, β) =

∫ 4+c

c
xng(x; c, α, β)dx.

Note that for all α, β > 0 and c ∈ R : M0(c, α, β) = 1.
We have the following Lemma:

Lemma 2.1. i) ∀b, c ∈ R, α, β > 0 and n ∈ N∪{0} we have:

(2.9) Mn(b, α, β) =

n∑
j=0

(
n

j

)
Mj(c, α, β)(b− c)n−j .

In particular, we get:

Mn(c, α, β) =
n∑

j=0

(
n

j

)
Mj(0, α, β)cn−j ,(2.10)

4n
α(n)

(α + β)(n)
= Mn(0, α, β) =

n∑
j=0

(
n

j

)
Mj(c, α, β)(−c)n−j .(2.11)

ii)

Mn(c, α + 1, β) =
α + β

4α
(Mn+1(c, α, β) − cMn(c, α, β)),

Mn(c, α, β + 1) =
α + β

4β
((4 + c)Mn(c, α, β) −Mn+1(c, α, β)).
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iii) If c = 0 we have also for n ≥ 1

Mn(0, α, β) =
4α

α + β
Mn−1(0, α + 1, β),(2.12)

Mn(0, α, β) =
β

α + β

∑
j≥0

Mn+j(0, α, β + 1).(2.13)

Proof. i) Let us denote by Yb = 4X + b = 4X + c + (b − c) = Yc + (b − c),
so we have:

Mn(b, α, β) = EY n
b

=
n∑

j=0

(
n

j

)
EY j

b (b− c)n−j

=
n∑

j=0

(
n

j

)
Mj(c, α, β)(b− c)n−j .

ii) We have:

Mn(c, α + 1, β) =
α + β

4α

∫ 4+c

c
(x− c)xng(x; c, α, β)dx,

=
α + β

4α
(Mn+1(c, α, β) − cMn(c, α, β).

Mn(c, α, β + 1) =
α + β

4β

∫ 4+c

c
(4 + c− x)xng(x; c, α, β)dx,

=
α + β

4β
((4 + c)Mn(c, α, β) −Mn+1(c, α, β)).

iii) First of all notice that

B(α + 1, β)/B (α, β) =
α

α + β
,

g(x; 0, α, β)/g(x; 0, α + 1, β) = 4α
(α+β)x . Now,

Mn(0, α, β) =
4α

α + β
Mn−1(0, α + 1, β).

Similarly

g(x; 0, α, β)

g(x; 0, α, β + 1)
=

4β

(α + β)(4 − x)
=

β

α + β

∑
j≥0

(x/4)j ,

and notice that the series is convergent and increasing for x ∈ [0, 4). Thus, by
the Lebesgue’s monotone convergence theorem we get the second assertion.

□

Remark: Notice also, that we have

(2.14)
Mn(b, α, β)

(b− c)n
=

n∑
j=0

(
n

j

)
(−1)j

Mj(c, α, β)

(c− b)j
.
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Thus, the sequence {Mn(b, α, β)/(b− c)n}n≥0 is the so-called binomial trans-

formation of the sequence {Mn(c, α, β)/(c− b)n}n≥0. Conversely, notice

that the sequence {Mn(c, α, β)/(c− b)n}n≥0 is the binomial transform of
the sequence

{Mn(b, α, β)/(b− c)n}n≥0 .

However, in the very important base of integer sequences known as the
OEIS, there is a slightly different definition of the binomial transform.

Namely, given two sequences {an}n≥0 and {bn}n , if we have for all n ≥ 0:

bn =
n∑

j=0

(
n

j

)
aj ,

then, we say, that sequence {bn} is the binomial transform of the sequence
{an} . Note, that then we also have for all n ≥ 0:

an =
n∑

j=0

(−1)j
(
n

j

)
bj .

Then, according to the OEIS terminology sequence {an} is the inverse bi-
nomial transform of the sequence {bn} .

Hence, using this terminology, the sequence {Mn(b, α, β)/(b− c)n} , is the
binomial transform of the sequence {Mn(c, α, β)/(b− c)n} .

Furthermore, it follows from these considerations that to get moments
Mn(c, α, β) it is enough to calculate moments Mn(0, α, β) and then apply
the appropriate binomial transformation.

Since many integer sequences in the OEIS are identified by their gener-
ating functions, we will also calculate generating functions of many of these
integer sequences. Let us remark, that we need to have a generating function
defined only on the small open interval around 0. What matters, are the
coefficients of its Taylor expansion around zero. That is why all considered
below generating functions will be considered for x ∈ (−δ, δ), δ > 0. Very
often δ will be equal to 1.

Lemma 2.3. Let us consider the sequence of moments given by the formula
(2.2) such that α + β is an integer, then

i)

g(t;α, β)

=
∑
j≥0

tjMj(0, α, β)/4j

=


1/(1 − t)α if α + β = 1

(1 − (1 − t)1−α)/(t(1 − α)) if α + β = 2
((1 − t)2−α + t(2 − α) − 1)/(t2(1 − α)(2 − α)) if α + β = 3

(6(1 − t)3−α − (α2t2 − 5αt2 + 6t2 + 2αt− 6t + 2))
/
(
t3(α− 1)(α− 2)(α− 3)

) if α + β = 4

,
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for t ∈ (−1, 1).

ii) If g(x) is a generating function of {Mn(0, α, β)/4n} then (α+β)
xα (g(x)−

1) is a generating function of {Mn(0, α + 1, β)/4n}, while (α+β)
4xβ (1 − (1 −

4x)g(x)) is a generating function of {Mn(0, α, β + 1)/4n}.
iii) Let g(x) be a generating function of the sequence {fn}n≥0 i.e., g(x)

=
∑

n≥0 fnx
n, then 1

1−cxg( x
1−cx) is the generating function of the sequence{∑n

j=0

(
n
j

)
fjc

n−j
}
n≥0

.

Proof. i) Recall, that (k)(n) = (n+k−1)!/(k−1)! for all nonnegative integers
k, n such that k + n ̸= 0. We get for α + β = 1 :∑
j≥0

tjMj(0, α, β)/4j =

∞∑
j=0

tj(α)(j)/j! =

∞∑
j=0

tj(−1)j(−α)(j)/j! =
1

(1 − t)a
,

by the binomial theorem (2.6). When α + β = 2, we have:∑
j≥0

tjMj(0, α, β)/4j =
∞∑
j=0

tj(α)(j)/(j + 1)!

=
−1

t(1 − α)

∞∑
j=0

(α− 1)tj+1(α)(j)/(j + 1)!

=
−1

t(1 − α)

∞∑
j=0

tj+1(α− 1)(j+1)/(j + 1).

We act likewise when α + β = 3 and when α + β = 4.
ii) These assertions are based on the following observations.

a(x;α + 1, β)

a(x;α, β)
= x

α + β

α
,

since Γ(α + 1) = αΓ(α), where a(x;α, β) is given by (2.1). Similarly

a(x;α, β + 1)/a(x;α, β) = (1 − x)
α + β

β
.

Thus, we have Mn(0, α + 1, β) = α+β
4α Mn+1(0, α, β) and Mn(0, α, β + 1)

= α+β
β (Mn(0, α, β) −Mn+1(0, α, β)/4).

iii) After applying ordinary change of the order of summation, we have:
∞∑
n≥0

xn
n∑

j=0

(
n

j

)
fjc

n−j =
∑
j≥0

xjfj
∑
n≥j

(cx)n−j (j + 1) · · ·n
(n− j)!

=
∑
j≥0

xjfj
∑
n≥j

(cx)n−j (j + 1) · · ·n
(n− j)!

=
∑
j≥0

xjfj
∑
k≥0

(cx)k
(j + 1)(k)

k!
.
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Now we recall (2.5) and (2.6) and get:
∞∑
n≥0

xn
n∑

j=0

(
n

j

)
fjc

n−j =
∑
j≥0

xjfj
∑
k≥0

(cx)k
(−1)k(−(j + 1))(k)

k!

=
∑
j≥0

xjcj(1 − cx)−j−1

=
1

1 − cx
g

(
x

1 − cx

)
.

□

One of the referees posed the following question. For what triplets (c, α, β)
the sequence {Mn(c, α, β)}n≥0 generates integers. Well, we will not answer
this question fully, since it seems that a problem is more difficult than ex-
pected. We have, however the following partial result, exposing the possible
complications in answering this question. Namely, we have:

Theorem 2.4. Let α ∈ (0, 1) be a rational number and let α = p
r , where

p and r are two positive integers relatively prime and let n be a positive
integers. Then ∀n ∈ N the number
(2.15)(r

4

)n k∏
j=1

d
∑∞

m=1⌊n/dmj ⌋
j Mn

(
0,

p

r
, 1 − p

r

)
=

∏n
j=0(jr + p)

n!

k∏
j=1

d
∑∞

m=1⌊n/dmj ⌋
j ,

is an integer. Here r =
∏k

j=1 d
βj

j , is a prime decomposition of r.

Proof. Let us fix n. Then we have by (2.2):

(2.16) rn
Mn

(
0, pr , 1 − p

r

)
4n

= rn
(α)(n)

n!
.

Now let us recall the so-called Chinese reminder Theorem stating that every
two congruence equations

ax ≡ c, (modm1) bx ≡ d (modm2),

have unique solution modm1m2 if and only if numbers m1 and m2 are
relatively prime. Hence, taking m1 = r and 1 < n1 ≤ n relatively prime, we
see that the set of two congruence equations:

x ≡ p, mod r x ≡ 0, modn1

has a unique solution mod(n1r). In other words, that among numbers jr+p,
j = 1, . . . , n at least one is divided by n1. That means that the number (2.16)
is a rational number that has the denominator composed by the numbers
that are not relatively prime to r. Or in other words, are composed of powers
of the divisors of r. Now, one has to count sums of powers of particular
divisors less then or equal to n. Let us fix the divisor, let it be dj . Then

there are ⌊n/dj⌋ factors of the form kdj , k = 1, . . . , then there are
⌊
n/d2

j

⌋
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factors of the form kd2
j and so on. Now since we multiply those factors (we

had n! before canceling out factor relatively prime to r) so we have

d
⌊n/dj⌋+⌊n/d2j⌋+...

j

in the denominator of (2.16). Now to get an integer out of this number we
have to multiply it by the denominator. □

Remark: If one considers the more general situation like e.g., Mn(0, p/r, k−
p/r)/4n then the situation is not that simple. Namely, in the denominator,
there might appear prime factors that are different than the prime factors
of the denominator of parameter α, i.e., r. For example, if we consider the
sequence ∀n ≥ 1 :

6 × 3
∑∞

j=0⌊n/3j⌋2⌊n/2⌋Mn(0, 1/3, 6 − 1/3)

4n
,

then the first few elements of this sequence are the following :
1, 8/7, 3, 20/3, 26/3, 832/11, 3952/33, 1216/3, 45600/7. Hence we have apart
of divisors of 3 and 6 we have also 7, 11 and maybe others.

Remark: Notice, that in general, the integer sequence(r4)n
k∏

j=1

d
∑∞

m=1⌊n/dmj ⌋
j Mn(0, p/r, 1 − p/r)


n≥0

is not a moment sequence, even though {rn} and

{Mn(0, p/r, 1 − p/r)/4n}n≥0

are. This is because, in general,
k∏

j=1

d
∑∞

m=1⌊n/dmj ⌋
j


n≥0

is not a moment sequence. On the other hand sequences given by (2.15),
increase our knowledge about some sequences presented in the OEIS. For
example sequence (2.15), with p/r = 1/3 is listed as A004117 in the OEIS
or with p/r = 1/8 as A181161 in the OEIS.

Now, we will calculate moments Mn(0, α, β) for all values α = n/2 and β
= m/2, where n and m are natural numbers.

3. First, partial results

Lemma 3.1. i) For natural n and non-negative integer iwe have:(
i +

1

2

)(n)

=
(2i + 2n)!i!

4n(i + n)!(2i)!
,(

1

2

)
(n)

=(−1)n−1 2(2n− 2)!

4n(n− 1)!
,
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setting 1 for n = 0 and for n ≥ 1 :(
3

2

)
(n)

=

{
3/2 if n = 1

(−1)n 12(2n−4)!
4n(n−2)! if n > 1

,

(
5

2

)
(n)

=


5/2 if n = 1
3/2 if n = 2

(−1)n−3 120(2n−6)!
4n(n−3)! if n > 2

.

ii) For n ≥ 0 :

Mn

(
0, i +

1

2
, j +

1

2

)
=

(
2i+2n
i+n

)(
i+n
n

)(
2i
i

)(
i+j+n

n

) =
(2n + 2i)!i!(i + j)!

(i + n)!(2i)!(i + j + n)!
,

hence in particular:
iiA) Mn(0, i + 1/2, 1/2) =

(
2n+2i
n+i

)
/
(

2i
i

)
,

iiB) Mn(0, i + 1/2, 3/2) = Ci+n/Ci,
iiC) Mn(0, i + 1/2, 5/2) = ((i + 2)!i!(2n + 2i)!)/((2i)!(n + i)!(n + i + 2)!)
iiD) Mn(0, i + 1/2, 7/2) = ((i + 3)!i!(2n + 2i)!)/((2i)!(i + n)!(n + i + 3)!),
iiE) Mn(0, i + 1/2, 9/2) = (i!(i + 4)!(2n + 2i)!)/((2i)!(i + n)!(n + i + 4)!),
iiF) Mn(0, 1/2, j + 1/2) = (j!(2n)!)/(n!(n + j)!),
iiG) Mn(0, 3/2, j + 1/2) = ((j + 1)!(2n + 1)!)/(n!(n + j + 1)!),
iiH) Mn(0, 5/2, j + 1/2) = ((j + 2)!(2n + 3)!)/((n + 1)!(n + 2 + j)!),
iiI) Mn(0, 7/2, j + 1/2) = ((j + 3)!(2n + 5)!)/(60(n + 2)!(n + j + 3)!),
iiJ) Mn(0, 9/2, j + 1/2) = (4!(4 + j)!(2n + 8)!)/(8!(n + 4)!(n + 4 + j)!).

iii) For n ≥ 0 :

Mn(0, i + 1/2, j) = 4n
(2i + 2j)!i!

(2i)!(i + j)!

(2i + 2n)!(i + j + n)!

(i + n)!(2i + 2j + 2n)!
,

hence in particular we get:
iiiA) Mn(0, 1/2, 1) = 4n/(2n + 1),
iiiB)Mn(0, 3/2, 1) = 3 × 4n/(2n + 3),
iiiC) Mn(1/2, 2) = 3 × 4n/((2n + 1)(2n + 3)),
iiiD) Mn(0, 3/2, 2) = 4n15/((2n + 3)(2n + 5)).
iv) For n ≥ 0 :

Mn(0, i, j + 1/2) = 42n (i + n− 1)!(i + j + n)!(2i + 2j)!

(2i + 2j + 2n)!(i− 1)!(i + j)!
,

hence in particular we have:
ivA) Mn(0, 1, 1/2) = 42n(n!)2/(2n + 1)!,
ivB) Mn(0, 1, 3/2) = 42n12n!(n + 2)!/(2n + 4)!,
ivC) Mn(0, 2, 1/2) = 42n12(n + 1)!(n + 2)!/(2n + 4)!,
ivD) Mn(0, 2, 3/2) = 42n120(n + 1)!(n + 3)!/(2n + 6)!,
ivE) Mn(0, 3, 1/2) = 60 × 4n(n + 2)!(n + 3)!/(2n + 6)!,
ivF) Mn(0, 4, 1/2) = 42n280(n + 4)!(n + 3)!/(2n + 8)!.

Proof. i) Following definitions given by (2.3) and (2.4) we get (i + 1/2)(n)

= (i + 1/2)(i + 3/2) · · · (i + 1/2 + n − 1) = (2n + 2i − 1)!!/(2(n)(2i − 1)!!).
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Now, it is elementary to check that (i + 1/2)(n) = (2i+2n)!i!
4n(i+n)!(2i)! . Generally,

we have (i + 1/2)(n) = (−1)n(−i− 1/2)(n), hence we could use this formula
to get (1/2)(n), (3/2)(n) and (5/2)(n) but it seems that it might be easier to
check these formulae directly. ii) Applying assertion i) twice we get ii). iii)
and iv) we apply assertion i) once but in the case of iii) in the numerator
and in the case of iv) in the denominator. v) Is direct application of (2.10)
and (2.11). □

Some sequences of integers, that will appear in the sequel, are identifiable
by their generating functions in the OEIS, hence we need to calculate also
the generating functions of the moments of the Jacobi distributions that will
appear in the sequel. In fact, there are two ways of calculating the generating
functions of moment sequences. The first one, so to say, direct, uses a
formula (2.2) and the other uses the integral representation of the moment
sequence. The Lemma 2.3, above lists some of the generating functions and
presents some of the ways to transform them.

Thus, as a corollary we have:

Corollary 3.2. Let us denote by G(x; c, α, β) =
∑

k≥0 x
kMk(c, α, β). Then

we have for c ∈ R, α, β > 0 G(0, c, α, β) = 1 while for x ̸= 0 and |x| < 1/4
we get:

a) G(x; 0, 1/2, 1/2) = 1/
√

1 − 4x,
b) G(x; 0, 3/2, 1/2) = (1 −

√
1 − 4x)/(2x

√
1 − 4x),

c) G(x; 0, 1/2, 3/2) =
(
1 −

√
1 − 4x

)
/(2x),

d) G(x; 0, 1/2, 5/2) =
(
(1 − 4x)3/2 + 6x− 1

)
/
(
6x2
)
,

e) G(x; 0, 3/2, 3/2) =
(
1 − 2x−

√
1 − 4x

)
/
(
2x2
)
,

f) G(x; 0, 5/2, 1/2) =
(
1 −

√
1 − 4x− 2x

√
1 − 4x

)
/
(
6x2

√
1 − 4x

)
,

g) G(x; 0, 1/2, 7/2) =
(
1 − (1 − 4x)5/2 − 10x + 30x2 − 20x3

)
/
(
10x4

)
,

h) G(x; 0, 3/2, 5/2) =
(
(1 − 4x)

√
1 − 4x− 1 + 6x− 6x2

)
/
(
4x3
)
,

i) G(x; 0, 5/2, 3/2) =
(
−1 + (1 − 4x)1/2 + 2x + 2x2

)
/
(
4x3
)
,

j) G(x; 0, 7/2, 1/2) =
(
1 − (1 − 4x)1/2(1 + 2x + 6x2)

)
/
(
20x3

√
1 − 4x

)
,

In the identification of particular moment sequences in the OEIS below,
we will use the following terminology: we say that a sequence A “is equal
to l − s(p1, p2 . . .) sequence B” if A is obtained from B by omitting the
first elements that are equal to p1, p2, . . .. Similarly, we say that sequence
A is “r − s(p1, p2, . . .) sequence B” if B is obtained from A by adding its
beginning numbers p1, p2, . . .. Finally, we say that B is obtained from A
by sign-change, briefly “sc”, if the even elements of both sequences are the
same while odd elements have different signs by the same absolute values.

Remark: In particular

(3.1)
∑
k≥0

Cn/4n = 2.
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Since Cn
∼= 4n/n3/2, the series above is convergent. Its sum can be found

easily by passing to the limit x → 1/4 in assertion c of Corollary 3.2.

Remark: a) Mn(0, 1/2, 1/2) =
(

2n
n

)
, sequence A000984 in the OEIS. It is

called the sequence of “Central binomial”,
b) Mn(0, 1/2, 3/2) =

(
2n
n

)
/(n + 1), sequence A000108 in the OEIS. It is

called the sequence of “Catalan numbers”,
c) Mn(0, 3/2, 1/2) =

(
2n+1
n+1

)
=
(

2n+2
n+1

)
/2, sequence A001700 in the OEIS,

d) Mn(0, 1/2, 5/2) = (2(2n)!) / (n!(n + 2)!), 1
3× “super ballot numbers”

i.e., 1
3× of the sequence A007054 in the OEIS,

e) Mn(0, 3/2, 3/2) =
(

2n+2
n+1

)
/(n+2), l−s(1) Catalan numbers, i.e., l−s(1)

i.e., sequence A000108 in the OEIS,
f) Mn(0, 5/2, 1/2) =

(
2n+4
n+2

)
/6, 1

3 l − s(1) sequence A001700 in the OEIS,

g) Mn(0, 1/2, 7/2) = (6(2n + 2)!) / ((n + 1)!(n + 4)!), 1
10 × r− s(10) super

ballot numbers i.e., 1
10 × r − s(10) of the sequence A007272 in the OEIS,

h) Mn(0, 3/2, 5/2) = (3(2n + 2)!) / ((n + 1)!(n + 3)!) , 1
2 × r − s(3) super

ballot numbers more precisely 1
2 × r− s(3 ) sequence A007054 in the OEIS,

i) Mn(0, 5/2, 3/2) =
(

2n+4
n+2

)
/ (2 (n + 3)) , 1

2 × r− s(1, 1) Catalan numbers,

j) Mn(0, 7/2, 1/2) = ((2n + 6)!) / (20(n + 3)!(n + 3)!), 1
10 × r − s(1, 3) se-

quence A001700 in the OEIS.

Corollary 3.5. 1) 4nMn(−3/4, 1/2, 1/2) is the sequence A322248 in the

OEIS, since the g.f. of this sequence is 1/
√

(1 − 13x) (1 + 3x) which can be
obtained by the formula given in assertion iii) of Lemma 2.3.

2) 4nMn(−7/4, 1/2, 1/2) is the sequence A098441 in the OEIS, since the

g.f. of this sequence is 1/
√

1 − 2x− 63x2 which can be obtained by the for-
mula given in assertion iii) of Lemma 2.3.

3) 2nMn(−3/2, 1/2, 1/2) is the sequence A084605 in the OEIS, since the

g.f. of this sequence is 1/
√

1 − 2x− 15x2 which can be obtained by the for-
mula given in assertion iii) of Lemma 2.3.

4) 2nMn(−3/2, 1/2, 1/2) is the sequence A084605 in the OEIS, since the

g.f. of this sequence is 1/
√

1 − 2x− 15x2 which can be obtained by the for-
mula given in assertion iii) of Lemma 2.3.

5) Mn(−1, 1/2, 1/2) is the sequence A002426 “central trinomial coeffi-
cient” in the OEIS, by assertion i) of Lemma 2.1.

6) 2nMn(−1/2, 1/2, 1/2) is the sequence A322242 in the OEIS, since the

g.f. of this sequence is 1/
√

1 − 6x− 7x2 which can be obtained by the formula
given in assertion iii) of Lemma 2.3.

7) 4nMn(−1/4, 1/2, 1/2) is not listed in the OEIS. The g.f. of this se-

quence is 1/
√

1 − 14x− 15x2 which can be obtained by the formula given
in assertion iii) of Lemma 2.3. Visibly this sequence is closely related to
sequence A098441 in the OEIS by appropriate binomial transform (Lemma
2.1).
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8) 4nMn(1/4, 1/2, 1/2) is not listed in the OEIS. The g.f. of this sequence

is 1/
√

1 − 18x + 17x2 which can be obtained by the formula given in asser-
tion iii) of Lemma 2.3. Visibly this sequence is closely related to sequence
A098441 in the OEIS by appropriate binomial transform (Lemma 2.1).

9) 2nMn(1/2, 1/2, 1/2) is the sequence A084771 in the OEIS, since the g.f.

of this sequence is 1/
√

1 − 10x + 9x2 which can be obtained by the formula
given in assertion iii) of Lemma 2.3.

10) Mn(1, 1/2, 1/2) is the sequence A026375 in the OEIS, since the g.f.

of this sequence is 1/
√

1 − 6x + 5x2 which can be obtained by the formula
given in assertion iii) of Lemma 2.3.

11) 4nMn(5/4, 1/2, 1/2) is not listed in the OEIS. The g.f. of this se-

quence is 1/
√

1 − 26x + 105x2 which can be obtained by the formula given
in assertion iii) of Lemma 2.3. Visibly this sequence is closely related to
sequence A098441 in the OEIS by appropriate binomial transform (Lemma
2.1).

12) 2nMn(3/2, 1/2, 1/2) is the sequence A248168 in the OEIS, since the

g.f. of this sequence is 1/
√

1 − 14x + 33x2 which can be obtained by the
formula in assertion iii) of Lemma 2.3. given in assertion iii) of Lemma
2.3.

13) Mn(2, 1/2, 1/2) is the sequence A081671 in the OEIS, since the g.f.

of this sequence is 1/
√

1 − 8x + 12x2 which can be obtained by the formula
given in assertion iii) of Lemma 2.3.

14) Mn(2, 3/2, 1/2) is the l − s(1) sequence A005573 in the OEIS since
the g.f. of this sequence is

(√
1 − 2x−

√
1 − 6x

)
/(2x

√
1 − 6x) which can be

obtained by the formula given in assertion iii) of Lemma 2.3.
15) 2nMn(5/2, 1/2, 1/2) is not listed in the OEIS. The g.f. of this se-

quence is 1/
√

1 − 18x + 65x2 that can be obtained by the formula given in
assertion iii) of Lemma 2.3. Visibly this sequence is closely related to se-
quence A084771 in the OEIS by appropriate binomial transform (Lemma
2.1).

Now, we examine some examples connected with Catalan numbers.

Corollary 3.6. 1) Mn(−1, 1/2, 3/2) “Riordan numbers” i.e., sequence
A005043 in the OEIS. This is because by Lemma 2.3 its generating function
is equal to (1−

√
(1 − 3x)/(1 + x))/(2x) as given in an unnumbered formula

on page 87 of [4].
2) Mn(−1, 3/2, 3/2) sequence A001006 in the OEIS, the so-called Motzkin

numbers. This is so since its g.f. is f(x) = (1 − x−
√

1 − 2x− 3x2)/(2x2),
that satisfies the following equation x2f2 + (x − 1)f + 1 = 0 as given in
Wikipedia.

3) 2nMn(−1/2, 1/2, 3/2) is the sequence A337168 in the OEIS, since the

g.f. of this sequence is A(x) =
(
−1 +

√
(1 − 7x)/(1 + x)

)
/ (4x) that can be

obtained by the formula given in assertion iii) of Lemma 2.3. (There is a
small misprint in the formula for the g.f. in the OEIS (there is 8 instead of
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7). However by a simple check one can see that A(x) satisfies the following
identity A(x) = 1/(x + 1) + 2xA(x)2).

4) 2nMn(−3/2, 1/2, 3/2) is not listed in the OEIS, it’s g.f. is(
−1 +

√
(1 − 5x)/(1 + 3x)

)
/ (4x)

which can be obtained by the formula given in assertion iii) of Lemma 2.3.
Visibly this sequence is closely related to sequence A337168 in the OEIS by
an appropriate binomial transform. Compare with Lemma 2.1.

5) 2nMn(1/2, 1/2, 3/2) is the r−s(1) sequence A162326 in the OEIS. This

is so since the g.f. of 2nMn(1/2, 1/2, 3/2) is (1 −
√

(1 − 9x)/(1 − x))/(4y)

hence the g.f. of the sequence A162326 is 1+x(1−
√

(1 − 9x)/(1 − x))/(4y)

= (5 −
√

(1 − 9x)/(1 − x))/4.
6) Mn(1, 1/2, 3/2) sequence A007317 in the OEIS defined as “the binomial

transform of Catalan numbers” since we have Lemma 2.1 and the remark
following it.

7) Mn(1, 3/2, 1/2) is not listed in the OEIS, However by (2.10) we see
that it is a binomial transform of the sequence A001700 of the OEIS.

8) 2nMn(3/2, 1/2, 3/2) sequence not listed in the OEIS. Its g.f. is equal

to (1−
√

(1 − 11x) /(1 − 3x)/(4x). Visibly this sequence is closely related to
sequence A162326 in the OEIS by appropriate binomial transform. Compare
Lemma 2.1.

9) Mn(2, 1/2, 3/2) sequence A064613 in the OEIS defined as the “second
binomial transform of Catalan numbers” its g.f. is

(1 −
√

(1 − 6x)/(1 − 2x))/(2x).

Now, we will present some assorted examples that seem to be important
from the point of view of combinatorics.

Corollary 3.7. 1) Mn(1, 3/2, 3/2) is the r − s(1) sequence A002212 in the
OEIS .

2) Mn(2, 3/2, 3/2) sequence A005572 in the OEIS,

since its g.f. is (1 − 4x−
√

1 − 8x + x2)/(2x2)
3) Mn(3, 3/2, 3/2) sequence A182401 in the OEIS,

since its g.f. is (1 − 5x−
√

1 − 10x + 21x2)/(2x2)
4) Mn(1/2, 3/2, 3/2) is the r − s(1) sequence A059231 in the OEIS,

since its g.f. is f(x) = (1 − 5x−
√

1 − 10x + 9x2)/(8x2),

hence 1 + xf(x) = (1 + 3x−
√

1 − 10x + 9x2)/(8x).

Sometimes the description of the sequence in the OEIS is insufficient.
Either the generating function is not given, or the formula for the nth item
in the sequence is missing. However, in some cases, one observes that the first
several elements of the sequence {Mn(c, α, β)} for some values of parameters
c, α, β agree with the elements of the sequence from the OEIS. Then there
exists a strong supposition that these two sequences are identical. We will
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present a few of these suppositions in the form of conjectures, presented
below.

Conjecture. 1. Mn(−1, 3/2, 1/2) is the sequence A005773 of the OEIS.
More precisely it is an inverse Binomial transform of the sequence A001700.

2. 2nMn(−3/2, 3/2, 1/2) is the sequence A151318 of the OEIS.
3. 2Mn(−1, 5/2, 3/2) is the sequence A005554 in the OEIS.
4. 2Mn(1, 5/2, 3/2) is the sequenceA045868 in the OEIS.

Notice, that the distribution with the density g(x;−2, α, α) is symmetric
hence all odd moments of the form Mn(−2, α, α) are equal to 0. Besides the
support of this distribution is symmetric [−2, 2]. All these reasons suggest
that it should be in a special way. Namely, we will denote by

g(y;−2, γ, δ)
def
= b(y; γ, δ)

=
(y + 2)γ−1(2 − y)δ−1

4γ+δ−1B(γ, δ)
,

Sn(γ, δ) =

∫ 2

−2
xnb(x; γ, δ)dx.

Remark: i) Notice, also, that we have for all n ≥ 0, γ, δ > 0 :

Sn(δ, γ) = (−1)nSn(γ, δ).

This is so since we have for γ, δ > 0 and x ∈ [−2, 2] :

b(x; γ, δ) = b(−x; δ, γ).

Using Lemma 2.1, we have:

Sn(γ, δ) =

n∑
j=0

(
n

j

)
(−2)n−jMj(0, γ, δ),

Mn(0, γ, δ) =
n∑

j=0

(
n

j

)
2n−jSj(γ, δ).

As far as the values of the moments Sn are concerned, we have:

Proposition 3.9. a) Sn(1/2, 1/2) =

{
0 if n is odd(
n

n/2

)
if n is even

, sequence

A126869 in the OEIS,

b) Sn(1, 1) =

{
0 if n is odd
2n

(n+1) if n is even
,

c) Sn(3/2, 3/2)=

{
0 if n is odd

Cn/2 if n is even
, sequence A126120 in the OEIS,

d) Sn(2, 2) =

{
0 if n is odd

3×2n

(n+1)(n+3) if n is even
,
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e) Sn(1/2, 3/2) = (−1)n
(

n
⌊n/2⌋

)
, sequence A126930 in the OEIS, since

its g.f. is (1 −
√

(1 − 2x)/(1 + 2x))/(2x), while Sn(3/2, 1/2) =
(

n
⌊n/2⌋

)
.

Strangely, it has a different number in the OEIS (A001405),
f)

Sn(1, 2) =

{ −2n

n+2 if n is odd
2n

n+1 if n is even

Sn(2, 1) =

{ 2n

n+2 if n is odd
2n

n+1 if n is even

by Remark 3.8.
g) 2Sn(3/2, 5/2) is the r − s(1, 1) and sc sequence A089408 in the OEIS

since the g.f. of 2Sn(3/2, 5/2) is g(x) = (−6x2 + 6x− 1 + (1 − 4x)3/2)/2x3

by Lemma 2.3. Operation r− s(1, 1) changes this function to 1−x+x2g(x)

= (4x − 1 + (1 − 2x)
√

1 − 4x2)/(2x). Now it remains to change x to −x.
By Remark 3.8 2Sn(5/2, 3/2) is r − s(1, 1) sequence A089408 in the OEIS,
since following its description remains to change x to −x in (4x − 1 +

(1 − 2x)
√

1 − 4x2)/(2x).

Remark: Taking into account Corollary 3.62) identifying Motzkin numbers
by their generating function, identity 2.9 with b = −1 and c = −2 and
assertion c) of Proposition 3.9, we immediately arrive at the formula relating
Motzkin numbers and Catalan numbers, namely:

(3.2) Mon =

⌊n/2⌋∑
j=0

(
n

2j

)
Cj ,

where Mon denotes nth Motzkin number. The formula above, relating
Motzkin and Catalan numbers, appears in the solution of problem 4 in the
Stanley’s book [11].

4. Expansions

In this section, we are going to get some interesting identities involving
the above-mentioned moments similar to the ones presented in the intro-
duction. These identities will be obtained by simple expansions of the ratio
of the densities of the involved beta distributions. To avoid unnecessary
complications we will apply these expansions only in two cases. Namely, let
us take real γ such that α− γ is an integer then we can expand the ratio of
b(x;α, β)/b(x; γ, δ) in the following series:

b(x;α, β)

b(x; γ, δ)
=

B(γ, δ)42δ−β−1

B(α, β)

∑
k≥0

xα−γ+k

4k+α−γ

(β − δ)k
k!

.

and consequently, we can relate moment sequences of the two distributions,
one with the density b(x;α, β), and the other with the density b(x;α, β).
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(4.1) Mn(0, α, β) =
B(γ, δ)4γ−α+δ−β

B(α, β)

∑
k≥0

(β − δ)k
k!4k+α−γ

Mk+n+α−γ(0, γ, δ).

We will also exploit the following similar trick, related to the expansion of
the ratio g(x;α, β)/g (x; γ, δ) . Namely, we consider the following expansion:

(4.2) b (x;α, β) =
B(γ, δ)

4α−γ+β−δB(α, β)
b(x; γ, δ)

∑
k≥0

xk

4kk!
ck(α− γ, β − δ),

based on the fact that

g(x;α, β)/g (x; γ, δ) =
B(γ, δ)

4α−γ+β−δB(α, β)
(y + 2)α−γ(2 − y)β−δ,

expansion (2.6) and the standard multiplication of power series. Thus we
have:

(4.3) ck(α− γ, β − δ) =
k∑

j=0

(
k

j

)
(−1)k−j(α− γ)(j)(β − δ)(k−j).

(4.2) leads to the following expansion involving moments Sn.

(4.4) Sn(α, β) =
B(γ, δ)

4α−γ+β−δB(α, β)

∑
k≥0

ck(α− γ, β − δ)

4kk!
Sn+k(γ, δ).

As far as the question of convergence of the series (4.1) and (4.4) is con-
cerned, we have the following remarks.

Proposition 4.1. ∀n ≥ 0:
i) |Mn(0, α, β)| < 4n, |Sn(α, β)| < 2n,

ii) |Mn(0, i + 1/2, j + 1/2)| = 4nO(1/nj+1/2),
iii)

|Mn(0, i + 1/2, j)| = |4n ((2n + 2i)!i!(i + j)!) / ((i + n)!(2i)!(i + j + n)!) |

= 42nO(1/nj+1/2)

iv)

|Mn(0, i, j + 1/2)|
=
∣∣42n ((i + n− 1)!(i + j + n)!(2i + 2j)!) / ((2i + 2j + 2n)!(i− 1)!(i + j)!)

∣∣
=4nO(1/nj+1/2).

Proof. i) This fact follows directly from the supports of the measures whose
moments are considered and the fact that the measures concerned are ab-
solutely continuous with respect to the Lebesgue measure, i.e., have densi-
ties. Namely, in the first case it is the segment [0, 4] while in the second
case the segment [−2, 2]. For ii), iii) and iv) we start with the fact that
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2n
n

)
1

4n
∼= O(1/n1/2) as n → ∞. Secondly, let us notice that (n + k)!/n!

= (n + 1) · · · (n + k) = O(nk). Hence, for the case ii) we have∣∣∣∣ (2n + 2i)!i!(i + j)!

(i + n)!(2i)!(i + j + n)!

∣∣∣∣ ∼= i!(i + j)!

(2i)!

4n+i

√
n + i

(n + i)!

(n + i + j + n)!

∼= O(4n/nj+1/2),

iii) ∣∣∣∣4n (2n + 2i)!i!(i + j)!

(i + n)!(2i)!(i + j + n)!

∣∣∣∣ ∼= 4n
i!(i + j)!

(2i)!

(
2n + 2i

n + i

)
(n + i)!

(i + j + n)!

∼= 42nO(1/nj+1/2),

iv) ∣∣∣∣42n (i + n− 1)!(i + j + n)!(2i + 2j)!

(2i + 2j + 2n)!(i− 1)!(i + j)!

∣∣∣∣ ∼=
4n

(2i + 2j)!

(i− 1)!(i + j)!

(
4n/

(
2i + 2j + 2n

i + j + n

))
(i + n− 1)!

(i + j + n)!
∼= O(1/nj+1−1/2).

□

Theorem 4.2. For n ≥ 0 we have:
i)

(4.5) Cn = 2

(
2n

n

)
− 1

2

(
2(n + 1)

n + 1

)
.

ii)

C2n+1 =
n∑

i=0

(
2n

2i

)
4n−iCi,(4.6)

C2n+2 = 2
n∑

i=0

(
2n + 1

2i

)
4n−iCi(4.7)

iii)

Cn =
3

2

∑
i≥0

1

4i
(2n + 2i)!

(i + n)!(n + i + 2)!
,

iv)

(n + 1)!(n + 2)!

(2n + 4)!
=

1

4n+2

∑
j≥0

(
2j

j

)
1

4j(n + j + 2)
.

Or equivalently

4n+2

Cn+2
=
∑
j≥0

(
2j

j

)
1

4j
(n + 2)(n + 3)

(2n + 2j + 2)
.
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v)

1

4n

(
2n

n

)
= 1 − 1

2

n−1∑
j=0

Cj

4j
,

vi)

n!n!

(2n + 1)!
= 4

∑
j≥0

4j
(n + j)!(n + j + 2)!

(2n + 2j + 4)!
.

Or equivalently

4n

Cn
=
∑
j≥0

4n+j+1

Cn+j+1

(2n + 2)(n + 1)

(n + j + 1)(2n + 2j + 3)(2n + 2j + 4)
.

Proof. i)We take α = 1/2, β = 3/2, γ = δ = 1/2. Then we apply (4.1).
ii) First we note that Mn(0, 3/2, 3/2) = Cn+1, by Remark 3.4e), while
Sn(3/2, 3/2) = 0 for n odd and Cn/2 when n is even. Then we apply (2.11
and take k = 2n getting directly (4.6). We get (4.7) likewise. iv) We take α
= 1/2, β = 3/2, γ = 1/2, δ = 5/2. Then

a(x;α, β)

a(x; γ, δ)
=

3

4 − x
=

3

4

∑
k≥0

xk

4k
.

Now recall that Mn(0, 1/2, 3/2) = Cn and Mn(0, 1/2, 5/2) = 2(2n)!
n!(n+2)! by

Remark 3.4 b) and d). Now it remains to apply (4.1). iv) We consider α =
2, β = 1/2 and γ = 3/2 and δ = 1. Then we apply (4.1) using expansion

g(x; 0, 2, 1/2)

g(x; 0, 3/2, 1)
=

1

2

√
x

4 − x

=
1

4

∑
j≥0

(−1)j(−1/2)(j)
xj+1/2

4jj!

=
1

4

∑
j≥0

(2j)!

4jj!

xj+1/2

4jj!

=
1

4

∑
j≥0

(
2j

j

)
1

42j
xj+1/2.

Now we notice that
∫ 4

0 xn+1/2g(x; 0, 3/2, 1)dx = 3
2

∫ 4
0 xng(x; 0, 2, 1)dx =

3
24n (2)(n)

(3)(n) = 3
24n 2(n+1)!

(n+2)! = 3×4n

n+2 . Hence

42n 12(n + 1)!(n + 2)!

(2n + 4)!
=

1

4

∑
j≥0

(
2j

j

)
1

42j

∫ 4

0
xj+n+1/2g(x; 0, 3/2, 1)dx

=
1

4

∑
j≥0

(
2j

j

)
1

42j

3 × 4n+j

(n + j + 2)
.
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v) and vi) we apply assertion iii)(iiib) of Lemma 2.1 first for α = 3/2, β
= 1/2 and γ = 3/2 and δ = 3/2 and secondly for α = 1, β = 1/2 and γ = 1
and δ = 3/2 then we use identity (3.1) in the case vi) and divide both sides
by 42n in the case of vii). □

Remark: Assertion i) is well-known. It appears for example as exercise 4 on
page 155 of [6]. It is also easy to get from the assertion i) the formula given
in assertion i) of Theorem 3.1 in Stanley’s book [11]. Namely, we have

Cn = 2

(
2n

n

)
− 1

2

(
2(n + 1)

n + 1

)
=

(
2n

n

)
+

(
2n

n

)
− 1

2

(
2(n + 1)

n + 1

)
=

(
2n

n

)
+

(2n)!

n!n!
− (2n + 1)!

n!(n + 1)!

=

(
2n

n

)
+

(
2n

n

)(
1 − 2n + 1

n + 1

)
=

(
2n

n

)
−
(

2n

n− 1

)
.

Assertion ii) presents, in fact, two cases of the so-called Touchard’s identity
for odd and even cases.

Theorem 4.4. We have:
i) for all n ≥ 0

(4.8)

⌊n/2⌋∑
i=0

(
n

2i

)
2n−2i

(
2i

i

)
=

(
2n

n

)
,

ii) for all n ≥ 1(
2n

n

)
= 2 × 4n−1 − 2n−1

⌊n/2⌋∑
j=1

(
n

2j

) j−1∑
s=0

Cs

4s
.

iii)

Cn+1 = 2

(
2n

n

)
− 1

2

⌊n/2⌋∑
j=0

(
n

2j

)
2n−2j

(
2j + 2

j + 1

)
.

iv)

Cn =
n∑

k=0

(−1)k
(
n

k

)(
k

⌊k/2⌋

)
2n−k.

v)

1

2n−1

(
n

⌊n/2⌋

)
= 2 −

⌊(n−1)/2⌋∑
j=0

1

4j
Cj .
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vi)

Sn(3/2, 3/2) = 2

(
n

⌊n/2⌋

)
−
(

n + 1

⌊(n + 1)/2⌋

)
.

vii) Let us define C−1 = −1/2 and d0 = 1 and further let n > 0 :

dn =
n!

2 × 4n−1

n∑
k=0

(−1)k−1

(
2k

k

)
Cn−k−1.

Then

Sn(1, 2) =
π

4

∑
k≥0

Sn+k(3/2, 3/2)

2kk!
dk.

In particular ∀j ≥ 0

−2 × 22j

2j + 3
=

π

4

∑
k≥0

Cj+k+1

22k+1(2k + 1)!
d2k+1,

4j

2j + 1
=

π

4

∑
k≥0

Cj+k

4k(2k)!
d2k.

Proof. i) We use Proposition 3.9a) and (2.11). ii) We take γ = δ = 3/2 and
α = β = 1/2. To use identity (4.4) we have to calculate only the coefficients
cn(α− γ, β − δ) = cn(−1,−1). One can easily check that

cn(−1,−1) =

{
0 if n is odd
n! if n is even

.

Then we argue:

(
2n

n

)
=

B(3/2, 3/2)

42(1/2−3/2)B(1/2, 1/2)

⌊n/2⌋∑
j=0

(
n

2j

)
2n−2j

∞∑
s=0

Cs+j

4s

=
1

2

⌊n/2⌋∑
j=0

(
n

2j

)
2n−2j4j

∞∑
s=0

Cs+j

4s+j

= 2n−1

⌊n/2⌋∑
j=0

(
n

2j

)(
2 −

j−1∑
s=0

Cs

4s

)
.

Further we make use of (3.1) and the following identity:

⌊n/2⌋∑
j=0

(
n

2j

)
= 2n−1.
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iii) We take γ = δ = 1/2 and α = β = 3/2. We will use Lemma 3.1iiB with
i = 1, then (2.11) obtaining

Cn+1 =
n∑

j=0

(
n

j

)
2n−jSj(3/2, 3/2)

=

⌊n/2⌋∑
j=0

(
n

2j

)
2n−2jCj .

Then we apply (4.5) and finally we use (4.8).
iv) let us take γ = δ = 3/2 then, using (4.4) and (3.1) and the following

argument

(−1)n
(

n

⌊n/2⌋

)
=

∫ 2

−2
xng(x;−2, 1/2, 3/2)dx

=

∫ 2

−2
xng(x;−2, 3/2, 3/2)

1

2 + x
dx

=
1

2
2n(−1)n

∞∑
k=0

(−1)k+n2−k−nSn+k(3/2, 3/2)

=(−1)n2n−1

×

( ∞∑
m=0

(−1)m2−mSm(3/2, 3/2) −
n−1∑
m=0

(−1)m
1

2m
Sm(3/2, 3/2)

)
.

Consequently we have

1

2n−1

(
n

⌊n/2⌋

)
= 2 −

⌊(n−1)/2⌋∑
j=0

1

4j
Cj .

v) We take α = β = 3/2 and γ = 3/2 and δ = 1/2.
vi) We take δ = 3/2 and γ = 3/2 and α = 1 and β = 2. then we have

Sn(1, 2) =

{ 2n

n+1 if n is even

− 2n

n+2 if n is odd

=
1

8

∫ 2

−2
yn(2 − y)dy.
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We will be applying (4.4), hence we have to calculate coefficients ck(α −
γ, β − δ) = ck(−1/2, 1/2). Now

cs(−1/2, 1/2) =
s∑

k=0

(
s

k

)
(−1)s−k(−1/2)(k)(1/2)(s−k),

=
s∑

k=0

(
s

k

)
(−1)s−k(−1)k(1/2)(k)(1/2)(s−k)

=
s∑

k=0

(
s

k

)
(−1)k(1/2)(k)(−1/2)(s−k)(4.9)

Now notice that if k = 0 then (1/2)k = (1/2)k = 1 while for k > 0 we get

(1/2)(k) =
k−1∏
m=0

(1/2 + m) =
(2k)!

4kk!
,

(−1/2)(k) = (−1)k
k−1∏
m=0

(m− 1/2) = − (2(k − 1))!

2 × 4k−1(k − 1)!
.

Hence

cn(−1/2, 1/2)

=(−1)n
(2n)!

4nn!
−

n−1∑
k=0

(−1)k
n!(2k)!(2(n− k − 1))!

k!(n− k)!4kk!2 × 4n−k−1(n− k − 1)!

=(−1)n
(2n)!

4nn!
− n!

2 × 4n−1

n−1∑
k=0

(−1)k
(

2k

k

)
Cn−k−1.

Notice, that if we define C−1 as −1/2 then the formula above, becomes more
simple and has the more unified form:

cn(−1/2, 1/2) =
n!

2 × 4n−1

n∑
k=0

(−1)k+1

(
2k

k

)
Cn−k−1.

Upon applying ((4.4), we get:

Sn(1, 2) =
π

4

∞∑
k=0

Sn+k(3/2, 3/2)

2kk!
ck(−1/2, 1/2),

i.e., assertion vii). □

Remark: Notice, that assertion v) of Theorem 4.4 is a generalization of the
assertion v) of the Theorem 4.2.

Remark: Let us notice, that the sequence {dn}n≥0 defined in assertion viii)
of Theorem 4.4 is also a moment sequence since it is originally defined by

the formula (4.9). This is so since
{

(−1/2)(n) /n!
}

and
{

(1/2)(n) /n!
}

are

both moment sequences by (2.2), {n!} is the is the moment sequence of the
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distribution with the density exp(−x) on R+. Consequently, by Proposition
1.1 we deduce that {dn} is a moment sequence. Further we have for |x| < 1;∑

n≥0

xn

n!
dn =

∑
n≥0

n∑
k=0

xk

k!
(−1)k(1/2)(k) xn−k

(n− k)!
(−1/2)(n−k)

=

∞∑
k=0

xk

k!
(−1)k(1/2)(k)

∑
n≥k

xn−k

(n− k)!
(−1/2)(n−k)

=

√
1 − x

1 + x
.

But
√

1−x
1+x = exp(tanh−1(−x)) for x real and |x| < 1. Hence we can identify

sequence {dn} as sc version of the sequence A000246 in the OEIS.
It might be of interest to notice that the formula given in assertion viii)

of Theorem 4.4 expresses dn in terms of the Catalan numbers.
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