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ON THE DOUBLE COVERS OF A LINE GRAPH

SHIVANI CHAUHAN AND A. SATYANARAYANA REDDY

Abstract. Let L(X) be the line graph of graph X. Let X ′′ be the
Kronecker product of X by K2. In this paper, we see that L(X ′′)
is a double cover of L(X). We define the symmetric edge graph of X,
denoted as γ(X) which is also a double cover of L(X). We study various
properties of γ(X) in relation to X and the relationship amongst the
three double covers of L(X) that are L(X ′′), γ(X) and L(X)′′. With
the help of these double covers, we show that for any integer k ≥ 5, there
exist two equienergetic graphs of order 2k that are not cospectral.

1. Introduction

In this paper, we restrict ourselves to finite graphs with no self-loops
and multiple edges. We denote the cycle graph, the path graph, the complete
graph and the star graph on n vertices by Cn, Pn,Kn and K1,n−1 respectively.
A graph Y is a covering graph of a graph X if there is a map from the vertex
set of Y to the vertex set of X such that the neighbourhood of a vertex v
in Y is mapped bijectively onto the neighbourhood of f(v) in X. If each
vertex of X has exactly two preimages in Y then we say that Y is a double
cover of X. An easy way to construct a double cover of a graph X is to take
the Kronecker product of X by K2 and it is denoted by X ′′. The Kronecker
product X1 ×X2 of graphs X1 and X2 is a graph such that the vertex set is
V (X1)× V (X2), vertices (x1, x2) and (x

′

1, x
′

2) are adjacent if and only if x1
is adjacent to x′1 in X1 and x2 is adjacent to x′2 in X2. In Section 3, we show
that L(X ′′) is a double cover of L(X). The double cover for a graph X is
not unique (see Example 1.1). Many researchers used covering of graphs in
the construction of Ramanujan graphs (see [11]) and in the construction of
pairs of cospectral but not isomorphic graphs. Additional information on
covering of graphs can be found in [5, 14].
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Example 1.1. In this example, we demonstrate the two non-isomorphic
double covers of K4.
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Figure 1

Let X = (V,E) be a graph with ∣V (X)∣ = n, ∣E(X)∣ = m. We orient the
edges arbitrarily and label them as e1, e2, . . . , em and also em+i = e−1i , 1 ≤
i ≤m, where e−1k denotes the edge ek with the direction reversed. Then the
edge adjacency matrix of X, denoted by M(X) or simply M , is defined as

Mij =

⎧⎪⎪
⎨
⎪⎪⎩

1 if t(ei) = s(ej) and s(ei) ≠ t(ej),

0 otherwise.

where s(ei) and t(ei) denote the starting and terminal vertex of ei respec-
tively.

Example 1.2. The process of computation of matrix M(C3) is given below.

X M

e1

e−11e2

e−12

e3

e−13 e1 e2 e3 e−11 e−12 e−13
e1 0 1 0 0 0 0
e2 0 0 1 0 0 0
e3 1 0 0 0 0 0
e−11 0 0 0 0 0 1
e−12 0 0 0 1 0 0
e−13 0 0 0 0 1 0

It is interesting to see that M+MT , where AT denotes the transpose of A,
is a symmetric matrix with entries 0 or 1. We call M +MT symmetric edge
adjacency matrix of X, and the graph whose adjacency matrix is M +MT

is called symmetric edge graph of X, denoted by γ(X). We define γk(X) =
γ(γk−1(X)), where k ∈ N with γ0(X) = X. Later, we will see that γ(X) is
also a double cover of L(X). In Figure 2, for a graph X we have given its
line graph and the three non-isomorphic double covers of L(X).
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In the literature, a lot of work has been done on the properties of L(X)
in relation to X (see Chapter 8 of [6]). In Section 2, we study various
properties of γ(X) with respect to X. We provide a decomposition of γ(X)
in terms of crown graphs. With these three double covers of L(X) in hand
which are L(X)′′, L(X ′′) and γ(X), we will study the relation amongst
them in Section 3. In Theorem 3.3, we characterize all graphs X so that
γ(X) = L(X ′′), γ(X) = L(X)′′ and L(X)′′ = L(X ′′). In the rest of this
section, we will discuss why the matrix M is important for the Ihara zeta
function of a graph, the properties of the matrix M , and the symmetric edge
graphs.

A path P = e1e2⋯et, where ei is an oriented edge, is said to backtrack if
ek+1 = e

−1
k for some k ∈ {1,2,3, . . . , t − 1}, i.e. it crosses the same edge twice

in a row. A path P is said to have a tail if et = e
−1
1 , i.e. the last edge of P is

the reverse of the first edge. A closed path C = e1e2⋯et is said to be prime
or primitive if it has no backtrack or tail and C ≠ Df for some closed path
D and f > 1. The Ihara zeta function of a graph X is defined to be

ζX(u) =∏
[C]

(1 − uℓ(C))
−1

,

where the product is over the primes [C] of X and ℓ(C) is the length of
cycle C. The fundamental group π1(X,v) of a connected graph X is the
free group consisting of all closed walks starting and ending at the vertex
v together with the operation which concatenates walks. The rank r of the
π1(X,v) is the number of elements in a minimal generating set of π1(X,v)
which is also the number of edges left out of a spanning tree of X. The
computation of Ihara zeta function using the definition is difficult except for
the cycle graph. The following two results by Bass [2] and Hashimoto [7]
simplified the evaluation of the Ihara zeta function for graphs that have a
minimal degree of at least 2.

Theorem 1.3. [7] Let A(X) or A be the adjacency matrix of X and Q(X)
or Q be the diagonal matrix with jth diagonal entry qj such that qj +1 is the

degree of the jth vertex of X. Suppose that r is the rank of the fundamental



22 SHIVANI CHAUHAN AND A. SATYANARAYANA REDDY

group of X; r − 1 = ∣E∣ − ∣V ∣. Then

(1.1) ζX(u)
−1
= (1 − u2)r−1det(I −Au +Qu2).

The main purpose of introducing the matrix M can be seen in the follow-
ing result.

Theorem 1.4. [2] Let M be the edge adjacency matrix of a graph X. Then

ζX(u)
−1
= det(I −Mu).

Now we will state a few properties of matrix M . Many of these have been
discussed in the thesis of Horton [8] and one can also find them in the book
by Terras [14].

(1.2) M = [
A B
C D ] ,

where A,B,C,D are m ×m matrices with the following properties:

(1) B = BT , C = CT .
(2) D = AT .
(3) The diagonals of A,B,C and

D are zeros.

(4) If J = [
0 Im
Im 0

] , where Im
denotes the identity matrix of
order m then MT = JMJ.

(5) The ith row sum ofM is equal
to dt(ei)−1, where dv denotes
the degree of vertex v.

(6) The sum of the blocks of M,
A+B+C+D is the adjacency

matrix of L(X). Here one
can note that the Hadamard
product of any two matrices
from {A,B,C,D} is the zero
matrix.

(7) Let M be the edge adja-
cency matrix of the graph X.
Then Tr(Mk) = Nk, where
Nk is the number of cycles of
length k without backtracks
and tails.

Now we provide two examples of γ(X), from where one can note that
γ does not preserve connectivity and K1,3 is a tree but γ(K1,3) is a cycle
graph. After that, we shall state Theorem 1.6, which is essential for further
discussion.

Example 1.5. (1) If X = Cn, then γ(X) = 2Cn and γk(X) = 2kCn.
(2) If X =K1,3, then γ(X) = C6 and γk(X) = 2k−1C6.

Theorem 1.6. [4] Let

H = [
A′ B′

B′ A′
]

be a symmetric 2 × 2 block matrix, where A′ and B′ are square matrices of
same order. Then the spectrum of H is the union of the spectra of A′ +B′

and A′ −B′.
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e1 e2 e3 e−11 e−12 e−13
e1 0 1 1 0 0 0
e2 1 0 1 0 0 0
e3 1 1 0 0 0 0
e−11 0 0 0 0 1 1
e−12 0 0 0 1 0 1
e−13 0 0 0 1 1 0

Figure 3. C3, γ(C3) and A(γ(C3)).

⎡
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⎦

.

Figure 4. K1,3, γ(K1,3) and A(γ(K1,3)).

From Equation 1.2, we have

(1.3) M +MT
= [

A +D B +C
B +C A +D ] .

From Property 6 of M , we see that the row sum of Equation 1.3 is equal
to A(L(X)), note that γ(X) is the double cover of L(X). By Theorem
1.6, we can see that the spectrum of A(L(X)) is contained in the spectrum
of A(γ(X)). The following are a few immediate observations of the graph
γ(X).

(1) The number of vertices of γ(X) is twice the number of edges of X.
(2) We have,

Tr ((M +MT
)
2) = 2∣E(γ(X))∣ = 2eTMe,

where e denotes the column vector with all entries one and J(M +
MT ) = (M +MT )J.

(3) Note that

(1.4) ∣E(γ(X))∣ = 2∣E(L(X))∣ =
∣V (X)∣

∑
i=1

d2i − 2∣E(X)∣.

(4) It is easy to see that if X is Eulerian, then γ(X) is Eulerian provided
γ(X) is connected which follows from the fact that if X is Eulerian
then L(X) is Eulerian (see Harary [6]). But if γ(X) is Eulerian,
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then X need not be Eulerian which is clear from Part 2 of Example
1.5.

(5) It is well known that ifX is regular, then L(X) is regular. This shows
that the map γ maps regular graphs to regular graphs. Conversely,
if γ(X) is regular, then X is either a regular graph or a semi-regular
bipartite graph. It can be seen from Lemma 6.2 in [13].

For further information on the matrix M and the Ihara zeta function,
one can refer to [14]. For other results and proofs related to graph theory,
we refer to [6, 12]. We recall once again that L(X) and X ′′ denote the line
graph and Kronecker double cover of X, respectively.

2. Properties of γ(X)

We begin this section by stating the famous Whitney theorem and then
we present the analogous result for the γ function.

Theorem 2.1. [15] Let X and Y be connected graphs with isomorphic line
graphs. Then X and Y are isomorphic, unless one is K3 and the other is
K1,3.

Theorem 2.2. Let X and Y be connected graphs. Then γ(X) is isomorphic
to γ(Y ) if and only if X is isomorphic to Y.

Proof. Suppose that γ(X) is isomorphic to γ(Y ), then by Property 6 of M
we note that L(X) is isomorphic to L(Y ). By Theorem 2.1 and Part 2 of
Example 1.5, the result follows. □

Next, we prove that γ is additive with respect to the disjoint union.

Lemma 2.3. Let X be a graph with connected components X1,X2, . . . ,Xk

i.e., X =X1 ⊍X2 ⊍ . . . ⊍Xk. Then

γ(X1 ⊍X2 ⊍ . . . ⊍Xk) ≅ γ(X1) ⊍ γ(X2) ⊍ . . . ⊍ γ(Xk).

Proof. We give the proof for k = 2 and the general case follows by induction
on k. Let X1,X2 be graphs with m1,m2 edges, respectively. Then A(γ(X1⊍

X2)) and A(γ(X1)⊍γ(X2)) have the following block structures, respectively.

A(γ(X1 ⊍X2)) =

⎛
⎜
⎜
⎜
⎝

A1 0 B1 0
0 A2 0 B2

B1 0 A1 0
0 B2 0 A2

⎞
⎟
⎟
⎟
⎠

A(γ(X1) ⊍ γ(X2)) = (
A(γ(X1)) 0

0 A(γ(X2))
) =

⎛
⎜
⎜
⎜
⎝

A1 B1 0 0
B1 A1 0 0
0 0 A2 B2

0 0 B2 A2

⎞
⎟
⎟
⎟
⎠

.

It is easy to see that

P TA(γ(X1 ⊍X2))P = A(γ(X1) ⊍ γ(X2)),
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where P =

⎛
⎜
⎜
⎜
⎝

Im1 0 0 0
0 0 Im2 0
0 Im1 0 0
0 0 0 Im2

⎞
⎟
⎟
⎟
⎠

is a permutation matrix. □

We will see a few examples to observe the pattern of graphs under the γ
function. For more examples, one can refer the Table 2.

Example 2.4. (1) If X = Pn then γn−1(X) is a null graph. Table 1
shows the effect of repeated application of the γ function on the path
graph.

X γ(X) γ2(X) γ3(X)

Table 1

(2) If X =K1,n, then γ(X) is a crown graph on the 2n vertices. In par-
ticular, if X = K1,4 then γ(X) is a cube. Recall that a crown graph
on 2n vertices is a graph with two sets of vertices {v1, v2, . . . , vn} and
{v′1, v

′

2, . . . , v
′

n}, with an edge from vi to v′j whenever i ≠ j.

(3) If X =K2,3, then γ(X) is a 6-prism graph.

Figure 5. K2,3 and γ(K2,3).

The following results provide how the γ function preserves connectedness
and bipartiteness. Unless specified otherwise, we assume that

A(γ(X)) = [
A +D B +C
B +C A +D ] ,

and A0 = A +D,B0 = B +C.

Proposition 2.5. (1) Let X be a connected graph. Then γ(X) is con-
nected if and only if X is not a cycle graph or a path graph. More-
over, γ(X) cannot be a cycle graph unless X =K1,3.

(2) Let γ(X) be a connected graph, then γ(X) has a cut edge if and
only if X contains a pendant vertex which is adjacent to a vertex of
degree two.

(3) Let X be a connected graph. Then X is bipartite if and only if γ(X)
is bipartite.



26 SHIVANI CHAUHAN AND A. SATYANARAYANA REDDY

Proof. Proof of Part 1. Let us suppose that γ(X) is not a connected graph.
Then B + C = 0 and hence B,C = 0. Thus we conclude that the degree of
each vertex in X is at most 2. Since X is a connected graph, X is either a
cycle graph or a path graph. From part 1 of Example 1.5 and 2.4 one can
see that the converse also holds.

For the second part of the Proposition, let γ(X) be a cycle graph on 2k
(k ≠ 3) vertices. From the structure of the adjacency matrix of a cycle graph,
we see that when we add the four blocks of A(C2k), we obtain 2A(Ck). On
adding all the blocks of A(γ(X)), we get 2A(L(X)). We deduce that L(X)
is a cycle graph on k vertices. However, we know from [6] that a connected
graph is isomorphic to its line graph if and only if it is a cycle graph. This
implies that X is a cycle graph on k vertices, which is a contradiction to
Part 1 of Example 1.5. If X = K1,3, then from Part 2 of Example 1.5 we
have already seen that γ(X) is C6.

Proof of Part 2. Let γ(X) have a cut edge and no pendant vertex. From
the structure of A(γ(X)), it can be observed that γ(X) has two copies of a
graph each of whose adjacency matrix is A0. Since γ(X) is connected, the
edges corresponding to the matrix B0 connects the two copies of the graph
given by A0. As B0 is symmetric, no edge given by the matrix B0 can be a
cut edge. Also, note that no edge in the two copies given by A0 in A(γ(X))
can be a cut edge. Therefore γ(X) has a pendant vertex which implies that
X has a pendant vertex that is adjacent to a vertex of degree 2. The converse
is easy to see as well.

Proof of Part 3. Suppose that X is bipartite with vertex partitions
{v1, v2, . . . , vn} and {v′1, v

′

2, . . . , v
′

k}. Choose an orientation in such a way
that e′is are the directed edges from vi to v′j for all 1 ≤ i ≤ n,1 ≤ j ≤ k. Then
observe that

M = [
0 B
C 0

]

which implies

(2.1) M +MT
= [

0 B0

B0 0
] .

Therefore, γ(X) is bipartite. The converse is easy to see. □

From the proof of Part 3 of Proposition 2.5, one can see that if X is
bipartite, the spectrum of γ(X) is given by the union of spectra of A(L(X))
and −A(L(X)). It is possible to know the number of triangles in γk(X), once
we know the number of triangles in X from the following result.

Proposition 2.6. Let ti be the number of triangles in γi−1(X), where i ≥ 1.
Then ti = 2

i−1t1.
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X γ(X) X γ(X)

Table 2



28 SHIVANI CHAUHAN AND A. SATYANARAYANA REDDY

Proof. We shall prove the result by induction on i. We begin by proving for
i = 2. It is easy to see that

6t2 = Tr((M +M
T
)
3
) = 2Tr(M3

) + 3Tr(M2MT
) + 3Tr(M(MT

)
2
).

We now claim that Tr(M2MT ) = Tr(M(MT )2) = 0. Since M is a nonneg-
ative matrix, Tr(M2MT ) = 0 if and only if (M2MT )ii = 0 for all i. We
have

(M2MT
)ii =

2m

∑
k=1

(M2
)ik(M

T
)ki =

2m

∑
k=1

2m

∑
j=1

MijMjkMik.

If each of Mij ,Mjk and Mik are nonzero, then ek = e−1k . Consequently, X
has multiple edges, which is a contradiction. Similarly, one can show that
(M(M2)T )ii = 0. Thus, 3t2 = Tr(M3). From Property 7 of M , we have

another identity t2 =
N3

3 . Hence, the result follows from the fact that t1 =
N3

6 ,
as each vertex of a triangle can be an initial vertex and two directions.
Assume that the result is true for all i ≤ k − 1. Clearly, tk = 2tk−1. By the
induction hypothesis, the proof is complete. □

Next, we will present a characterization of symmetric edge graphs anal-
ogous to that of line graphs, as given by Krausz in [10]. By the star graph
at the vertex u in a graph X, denoted by St(u), we mean a subgraph of
X with V (St(u)) = {w ∣ w is adjacent to u} ∪ {u} and E(St(u)) = {e ∣
u is incident with e}. The approach used in the proof of Theorem 2.8 is
motivated by the proof of Theorem 8.4 in [6].

Theorem 2.7. [10] A graph is a line graph if and only if its edges can be
partitioned into complete subgraphs with the property that no vertex lies in
more than two of the subgraphs.

Theorem 2.8. A graph is a symmetric edge graph if and only if its edges
can be partitioned into crown subgraphs in such a way that each vertex lies
in at most two of the subgraphs.

Proof. Let Y be the symmetric edge graph of X. Without loss of generality,
X is connected. Let v be any vertex of X, then by Part 2 of Example 2.4 we
see that St(v) induces a crown subgraph of Y . The edges of Y are exactly
in one of the subgraphs. For any e ∈ E(X), there exists exactly two vertices
a, b ∈ V (X) such that e ∈ St(a) ∩ St(b), which shows that no vertex of Y is
in more than two of the subgraphs.

Let H1,H2, . . . ,Hn be the partition of the graph Y satisfying the hy-
pothesis. We explain the construction of X from Y, where Y = γ(X). Let
H = {H1,H2, . . . ,Hn}, U be the set of vertices of Y which lies in only one
of the partitions Hi. Also, note that ei ∈ U if and only if e−1i ∈ U. Let U1 ⊂ U
such that U1 contains half of the elements of U and either ei or e−1i ∈ U1.
The vertices of X are given by H ∪ U1. Two vertices of X are adjacent if
they have a nonempty intersection. □
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Corollary 2.9. Let X be a connected graph. Then γ(X) is unicyclic if and
only if X is a tree with ∆(X) = 3, where ∆(X) denotes the maximum degree
of X and there is exactly one vertex of degree three.

Proof. Suppose that γ(X) is unicyclic, which implies that X does not con-
tain a cycle. By Theorem 2.8, it is clear that there does not exist a vertex
in X with a degree greater than or equal to 4. If there exists more than
one vertex of degree 3, then we get a contradiction to the hypothesis. The
converse is easy to follow by Theorem 2.8. □

3. Double covers of line graph

Let X be a connected graph with n vertices and m edges. Let {v1, v2, . . . ,
vn} be the vertex set of X. Let V (X ′′) = {v′1, v

′

2, . . . , v
′

n} ∪ {v
′

n+1, v
′

n+2, . . . ,
v′2n} be bipartition of X ′′ and E(X ′′) be given by

{e1, e2, . . . , em, em+1 = e
−1
1 , em+2 = e

−1
2 , . . . , e2m = e

−1
m }.

We define a map ϕ ∶ V (X ′′)↦ V (X) such that ϕ(v′i) and ϕ(v′n+i) are mapped
to vi for all 1 ≤ i ≤ n. We label the edges of X ′′ such that ek is an edge from
v′i to v′n+j (i ≠ j) if and only if em+k is an edge from v′j to v′n+i (i ≠ j). We
illustrate this labelling in Example 3.1. Recall that the adjacency matrix of
a bipartite graph can be written as

[
0 B
BT 0

] ,

where B is called the bi-adjacency matrix.

Example 3.1. In this example, we illustrate the labelling of X ′′, where X
is given in Figure 2. We label the edges of X ′′ in the following manner:

(1′,8′) = e1, (1
′,9′) = e2, (1

′,11′) = e3, (2
′,9′) = e4, (2

′,10′) = e5, (3
′,12′) = e6,

(2′,7′) = e−11 , (3′,7′) = e−12 , (5′,7′) = e−13 , (3′,8′) = e−14 , (4′,8′) = e−15 ,

(6′,9′) = e−16 .

6′

5′

4′

3′

2′

1′

12′

11′

10′

9′

8′

7′

(a) X ′′

7′ 8′ 9′ 10′ 11′ 12′

1′ 0 1 1 0 1 0
2′ 1 0 1 1 0 0
3′ 1 1 0 0 0 1
4′ 0 1 0 0 0 0
5′ 1 0 0 0 0 0
6′ 0 0 1 0 0 0

(b) Biadjacency matrix of X ′′

Figure 6
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The rows and columns of A(L(X ′′)) are indexed by E(X ′′). It is easy to
see that A(L(X ′′)) has the following structure

[
P Q
QT R] ,

where P,Q,R are m ×m matrices with the following properties:

(1) P = R. Since Pij = 1 implies that ei is adjacent to ej , the labelling
defined above shows that em+i is adjacent to em+j .

(2) Q = QT . Since Qij = 1 implies ei is adjacent to em+j , the labelling
defined above shows that ej is adjacent to em+i.

(3) P+Q = A(L(X)). Note that if Pij = 1 then Qij = 0 and vice-versa. If
(P +Q)ij = Pij +Qij = 1, then from the definition of covering graph

we have A(L(X))ij = 1.

We obtain L(X ′′) is a double cover of L(X). Also, from the point 3 men-
tioned above and Theorem 1.6 we see that the spectrum of A(L(X)) is
contained in the spectrum of A(L(X ′′)). To proceed with the proof of The-
orem 3.3, we need to define claw free graphs. Recall that a claw is another
name for the complete bipartite graph K1,3. In contrast, a claw-free graph
is a graph in which no induced subgraph is a claw. It was proved by Beineke
in [3] that the line graph of any graph is claw-free.

Proposition 3.2. Let X be a connected graph. Then

(1) L(X ′′) is disconnected if and only if X is bipartite.
(2) 2t′ = t2 + t3, where t′, t2, t3 denotes the number of triangles in L(X),

γ(X) and L(X ′′), respectively.

Proof. Proof of Part 1. The proof follows easily from the result proved in [9],
which demonstrates that a Kronecker double cover of a graphX is connected
if and only if X is connected and non-bipartite.

Proof of Part 2. We know from the definition of a line graph that

t′ = t1 +∑
i

(
di
3
).

From Proposition 2.6, we know that 2t1 = t2. Since X ′′ is bipartite, we have
t3 = 2∑i (

di
3
). Hence 2t′ = t2 + t3. □

We are now interested to see the relationship among γ(X), L(X ′′) and
L(X)′′ for a connected graph X. We begin with an example.

Figure 7. X,L(X), L(X)′′ and γ(L(X)) (left to right).
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From Figure 7, we see that γ(X) = L(X)′′ and γ(L(X)) = L(L(X)′′),
but it is not true in general, one can check with X = C3. In the next theorem
we characterize all those graphs which satisfy this property.

X X ′′ γ(X) = L(X ′′)

Table 3

Theorem 3.3. Let X be a connected graph. Then

(1) γ(X) is isomorphic to L(X)′′ if and only if X is bipartite.
(2) γ(X) is isomorphic to L(X ′′) if and only if one of the following is

true:
● X is a path graph.
● X is a cycle graph on even vertices.
● X =K4,K4 − {e} or a triangle with a pendant vertex.

(3) L(X ′′) is isomorphic to L(X)′′ if and only if X is either a cycle
graph or a path graph.

Proof. Proof of Part 1. If X is bipartite, then by Part 3 of Proposition 2.5,
γ(X) is bipartite which shows that

A(γ(X)) = A(L(X)′′) = [
0 A(L(X))

A(L(X)) 0
] .

Proof of Part 2. In order to prove this, we first prove that γ(X) is a line
graph of some graph if and only if ∣V (X)∣ ≤ 4 or X is either a cycle graph
or a path graph.

Suppose that γ(X) is a line graph of some graph. Clearly ∆(X) ≤ 3,
since if any vertex v in X has a degree greater than or equal to 4, then by
Theorem 2.8, v induces a crown graph on at least 8 vertices. Hence, γ(X)
cannot be a claw-free graph.

Case 1: If ∆(X) ≤ 2, then X is either a cycle graph or a path graph.
From Part 1 of Example 1.5 and 2.4, it is clear that γ(X) is a line
graph of 2X.
Case 2: Let ∆(X) = 3 and ∣V (X)∣ > 4. Let v be a vertex of degree
3 and vertices adjacent to v be x, y, z. Since ∣V (X)∣ > 4, if we add a
pendant edge on any of the vertices x, y, z, then the graph γ(X) is
not a claw-free graph, which is clear from Figure 7.
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Conversely, if X = Cn (or Pn), then γ(X) is a line graph of two copies of
Cn (or Pn). If X =K1,3, then by Part 2 of Example 1.5 γ(X) is C6 which is
a line graph of C6. γ(X) for other non-isomorphic graphs with ∣V (X)∣ = 4
are described in Table 3 and Figure 7.

Suppose that γ(X) = L(X ′′). Then by the above statement, it can be
noted that ∣V (X)∣ ≤ 4 or X = Cn or Pn. If X = Cn and n is odd, then
L(X ′′) = C2n ≠ 2Cn = γ(X). IfX = Cn(n is even) or Pn, then L(X ′′) = γ(X).
For X =K4 or K4−{e} or a triangle with a pendant vertex, we can see from
Table 3 and Figure 7 that γ(X) = L(X ′′). If X = K1,3 it can be seen that
L(X ′′) ≠ γ(X). The converse part of the same is easy to follow.

Proof of Part 3. Assume that L(X)′′ = L(X ′′). From here it is clear that
the degree of each vertex of X is less than or equal to two. Hence, X is
either a cycle graph or a path graph. Conversely, if X = Ck and k is odd
then X ′′ = C2k, L(X

′′) = L(X)′′ = C2k. If X = Ck(k is even) or Pk then
X ′′ = 2X, the result follows. □

We conclude from Theorem 3.3 that ifX (not isomorphic toK4,K4−e,Cn,
or a triangle with a pendant vertex) is non-bipartite then γ(X), L(X)′′ and
L(X ′′) are three non-isomorphic double covers of L(X). We have already
seen that for a graph X, the spectrum of A(L(X)) is contained in the
spectrum of A(γ(X)) and A(L(X ′′)). An immediate question arises about
the remaining eigenvalues that is the eigenvalues given by A0−B0 and P−Q.
If X is bipartite, then A0 −B0 = −A(L(X)) and P −Q = A(L(X)). If X is
non-bipartite we have Theorem 3.5. We shall discuss an example for further
clarity.

Example 3.4. Let X be the graph given in Figure 2. For a graph X ′′ we
will continue to use the labelling defined in Example 3.1. The adjacency
matrix corresponding to L(X ′′) is equal to

[
P Q
Q P] , where P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 0 0 0
1 0 1 1 0 0
1 1 0 0 0 0
0 1 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
1 0 0 0 0 1
1 0 0 0 0 0
0 1 0 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It is easy to see that P +Q = A(L(X)) and

P −Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 −1 −1 0
1 0 1 1 0 −1
1 1 0 0 0 0
−1 1 0 0 1 −1
−1 0 0 1 0 0
0 −1 0 −1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Now, we use the upper diagonal entries of matrix P−Q to assign an orienta-
tion to the graph X such that A0 −B0 = −(P −Q). For example: (P−Q)14 =
−1. From Example 3.1, we see that e1 is an edge between 1′ and 2′ + 6′,
and e4 is an edge between 2′ and 3′ + 6′. Hence in X, we put e1 from 1 to
2 and e4 from 2 to 3. Similarly, we repeat the same process for all of the
remaining upper diagonal entries in P −Q and obtained the oriented graph
given in Figure 8. It is easy to check that for the graph in Figure 8, we have
A0 +B0 = A(L(X)) and A0 −B0 = −(P −Q).

e2

e−12e6

e−16

e5

e−15

e1

e−11

e−14
e4

e3

e−13

1

23 4

5

6

Figure 8

Now using the idea of Example 3.4, we prove that A0 −B0 = −(P −Q).

Theorem 3.5. Let X be a connected graph. Then A0 −B0 = −(P −Q).

Proof. If X is bipartite, then we are done. Suppose that X is non-bipartite.
It is clear that A0 −B0 and P −Q have zero entries at the same positions.
Suppose that (P −Q)ij = −1. This implies that edge ei is adjacent to em+j
in X ′′. Let ei be an edge between vertices v′a and v′n+b, and em+j be an
edge between vertices v′a and v′n+c. In graph X, we label the edge from
vertex vb to va as ei and the edge from va to vc as ej . This shows that
(A0 −B0)ij = 1. □

Recall that two graphs of the same order are called equienergetic (resp.,
cospectral) if they have the same energy (resp., spectrum). In [1] Balakrish-
nan showed that for any integer k ≥ 3, there exist two equienergetic graphs of
order 4k that are not cospectral. Let X be a graph on m edges where m ≥ 5.
Then from Theorem 3.5, we see that γ(X) and L(X ′′) are equienergetic
graphs of order 2m that are not cospectral. We exclude the graphs given
in Part 2 of Theorem 3.3. Using Theorem 3.5, we will provide a relation
between the zeta function of γ(X) and L(X ′′) in Corollary 3.6. Conse-
quently, we obtain that the zeta function of L(X) divides the zeta function
of γ(X), L(X ′′) and L(X)′′. The Kronecker product of matrices A = [aij]
and B is defined to be the partitioned matrix [aijB] and is denoted by A⊗B.
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Corollary 3.6. Let X be a connected graph with m edges. Then

ζ−1γ(X)(u) = ζ
−1
L(X)(u)g(u),

ζ−1L(X′′)(u) = ζ
−1
L(X)(u)g(−u),

ζ−1L(X)′′(u) = ζ
−1
L(X)(u)ζ

−1
L(X)(−u),

where g(u) = (1 − u2)∣E(L(X))∣−∣V (L(X))∣det(Im − (A0 −B0)u +Q(L(X))u
2).

Proof. Let

P = [
Im Im
Im −Im

] .

Then

PA(γ(X))P −1 = [
C0 0
0 D0

] ,

where A0 +B0 = C0 and D0 = A0 −B0 and PQ(γ(X))P −1 = Q(L(X))⊗ I2.
Let s = ∣E(γ(X))∣ − ∣V (γ(X))∣. From Equation 1.1 we have,

ζ−1γ(X)(u) =(1 − u
2
)
sdet(I2m −A(γ(X))u +Q(γ(X))u2)

=(1 − u2)sdet(P (I2m −A(γ(X))u +Q(γ(X))u2)P −1)

=(1 − u2)sdet(I2m − PA(γ(X))P −1u +Q(γ(X))u2)

=(1 − u2)sdet(Im −C0u +Q(L(X))u
2
)

⋅ det(Im −D0u +Q(L(X))u
2
)

= ζ−1L(X)(u)g(u).

Similarly, we can see that

ζ−1L(X′′)(u) =ζ
−1
L(X)(u)(1 − u

2
)
∣E(L(X))∣−∣V (L(X))∣

⋅ det(Im − (P −Q)u +Q(L(X))u2).

By Theorem 3.5, we obtain ζ−1L(X′′)(u) = ζ
−1
L(X)(u)g(−u). As

A(L(X)′′) = [
0 A(L(X))

A(L(X)) 0
] ,

we use the above technique which provides ζ−1L(X)′′(u) = ζ
−1
L(X)(u)ζ

−1
L(X)(−u).

This completes the proof. □

From the above corollary, we conclude that ifX is bipartite, then ζ−1γ(X)(u)

= ζ−1L(X)(u)ζ
−1
L(X)(−u) and ζ−1L(X′′)(u) = (ζ

−1
L(X)(u))

2.
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