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ON THE BLOCKING NUMBERS OF SOME SPECIAL

CONVEX BODIES

JUN WANG AND YUQIN ZHANG

Abstract. In this paper, we study the blocking numbers of some spe-
cial convex bodies. We determine the exact blocking number of a rhom-
bic dodecahedra and a 3-dimensional cylinder H whose base is a 2-
dimensional convex domain. We also estimate that the blocking num-
ber of the ℓp unit ball in E3 is at most 6, for 1 ≤ p < +∞. In high
dimensions, the blocking number of the ℓp unit ball in Ed is at most 2d,
for log2 d < p < +∞.

1. Introduction

Let K be a convex body in Ed with boundary ∂(K) and interior int(K).
Denote by Kd and Cd the convex bodies and centrally symmetric convex
bodies in Ed, respectively. The Hadwiger covering number γ(K) of K is
the smallest number of translates of int(K) such that their union can cover
K. In 1955, Levi [9] studied the Hadwiger covering number of an arbitrary
convex domain K of E2 and proved

γ(K) =

{
4 if K is a parallelogram,

3 otherwise.
(1.1)

In 1957, Hadwiger [8] made a conjecture:
Hadwiger’s covering conjecture. For every d-dimensional convex body
K,

γ(K) ≤ 2d,

where the equality holds if and only if K is a parallelepiped. This conjecture
has been studied by many mathematicians. For example, Lassak [10] proved
this conjecture for all centrally symmetric convex bodies in E3. In 1997,
Rogers and Zong [11] obtained that γ(K) ≤

(
2d
d

)
(d log d + d log log d + 5d)
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for all K ∈ Kd and γ(K) ≤ 2d(d log d + d log log d + 5d) for all K ∈ Cd.
However, the conjecture is still open for d ≥ 3. For more details, see [3,15].

For the purpose of studying Hadwiger’s covering conjecture, Zong [16]
first introduced the blocking number of a convex body. The blocking num-
ber b(K) of a convex body K is the smallest number of non-overlapping
translates K + xi all of them touching K at its boundary and their union
can block any other translate from touching K. Here, “block” means that
if a new translate K + y touches the boundary of K, then it will insect one
of the int(K)+xi. In this paper, non-overlapping means that their interiors
have empty intersection. In 1993, Zong [16] studied the blocking number of
an arbitrary 2-dimensional convex domain and proved that b(K) = 4. In
2018, Swanepoel [12] proved the 2-dimensional case in a new way by using
the angular measure of Brass. In 1995, Zong [17] showed an inequality con-
cerning the Hadwiger covering number and the blocking number as follows,

γ(C) ≤ b(C)(1.2)

for all C ∈ Cd. Based on some facts, Zong [17] also posed the following
conjecture:

Conjecture (Zong). For every d-dimensional convex body K, we have

2d ≤ b(K) ≤ 2d,

where the equality holds in the upper bound if and only if K is a parallelop-
iped.

This number has attracted many mathematicians (see Böroczky [2], Brass,
Moser, and Pach [3] and Zong [16, 17, 19, 20]) and some results have been
obtained. In 2000, Dalla, Larman, Mani-Levitska and Zong [5] estimated the
blocking numbers of d-dimensional unit cube Id and ball Bd, they proved
b(Id) = 2d, b(B3) = 6 and b(B4) = 9. They also gave a conditional lower
bound of the blocking numbers of convex bodies. Using the Minkowski
lemma, it was proved by Zong in [20] that

b(K) = b(D(K))(1.3)

for K ∈ Kd, where D(K) denotes the difference body of K and D(K) =
K−K = {x−x : ∀ x ∈ K}. Thus, it reduces the problem of determining the
blocking numbers of general convex bodies to centrally symmetric convex
bodies. In 2009, Yu [13] determined that the blocking number of the cross-
polytope in E3 is 6. He also estimated that the blocking number of the ℓp
unit ball in E3 is at most 6, for ln 3

ln 2 < p < +∞. Moreover, Yu studied
the blocking number of d-dimensional cylinder H whose base is a (d − 1)-
dimensional convex body K, he obtained a lower bound and an upper bound
of its blocking number in terms of the Hadwiger covering number and the
blocking number of K respectively. In 2009, Yu and Zong [14] studied
various generalizations to the blocking number.
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Let a(K) denote the kissing number of K, the maximal number of non-
overlapping translates of K all touching K at its boundary. Since a blocking
configuration is a limited kissing configuration, then

b(K) ≤ a(K)

for every K ∈ Kd. Combining with (1.2), one can see that the blocking
number serves as a bridge between the Hadwiger covering number and the
kissing number. In [17, 19], Zong discovered a strange phenomena on the
blocking number and kissing number which showed the complicity of the
blocking number. Thus, to determine the blocking number of a convex
body is challenging and meaningful. For more information about the kissing
number, we refer to [4, 6, 7, 18].

The paper is organized as follows, in Section 2, we give some basic defini-
tions and useful lemmas. In Section 3 and Section 4, we determine the exact
blocking numbers of a rhombic dodecahedra and a 3-dimensional cylinder
H. In Section 5, we estimate the blocking number of the ℓp unit ball.

2. Preliminaries

Let Cd,p = {(x1, x2, . . . , xd) : (|x1|p + |x2|p + · · · + |xd|p)
1
p ≤ 1} (p ≥ 1)

denote the ℓp norm unit ball. Let δC be the Minkowski-metric in Ed given
by a centrally symmetric convex body C. In other words, denote by C(z)
the boundary point of C at direction z,

δC(x,y) =

{
∥x−y∥

∥C(x−y)∥ if x ̸= y,

0 if x = y,

where ∥ · ∥ indicates the Euclidean norm.

Definition 2.1. Let K be a convex body, and X = {x1,x2, ...,xn} ⊂ Ed. If
K +X are the non-overlapping translates of K, all of which touch K at its
boundary and prevent any other translates K +x from touching K without
overlapping K +X, then we call K +X a blocking configuration of K.

To determine the exact blocking number of some special convex bodies,
the following lemma is frequently demanded.

Lemma 2.2 ( [17]). Let C be a centrally symmetric convex body in Ed and
x1, x2, ..., xn ∈ Ed. Then we have C + x1, C + x2, ..., C + xn is a blocking
configuration of C if and only if

∂(2C) ⊆
n⋃

i=1

[int(2C) + xi].

Furthermore, b(C) ≤ n holds.

By definition, we know b(K) is the smallest cardinality of a discrete set
X, such that K + X is a blocking configuration. The blocking number is
an invariant under affine transformation. Since C is a centrally symmetric
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convex body, the discrete subset X = {x1,x2, ...,xn} must be a subset of
∂(2C).

Remark 2.3. For convenience, Lemma 2.2 can be reformulated as follows:
Let 1

2C be a centrally symmetric convex body in Ed and y1,y2, ...,yn ∈ Ed.

Then we have 1
2C + y1,

1
2C + y2, ...,

1
2C + yn is a blocking configuration of

1
2C if and only if ∂(C) ⊆

⋃n
i=1[int(C)+yi]. Furthermore, b(12C) = b(C) ≤ n

holds.

3. Rhombic Dodecahedra

Firstly, we determine the exact blocking number of a rhombic dodecahe-
dra.

Theorem 3.1. Let P1 be a rhombic dodecahedron, then b(P1) = 6.

Proof. For any x,y ∈ int(P1), we have δP1(x,y) < 2. It is easy to find six
vertices from the vertex set of P1 such that the distance (with respect to
δP1) between every pair of which is 2. To cover the six vertices of P1, we
need at least six translates of int(P1). Thus, γ(P1) ≥ 6. By (1.2), b(P1) ≥ 6.

On the other hand, given a rhombic dodecahedron P1. Denote the four-
teen vertices of P1 by A = (−1, 0, 0), B = (0, 1, 0), C = (1, 0, 0), D =
(0,−1, 0), E = (0, 0, 1), F = (0, 0,−1), O = (−1

2 ,−
1
2 ,

1
2), P = (−1

2 ,
1
2 ,

1
2),

Q = (12 ,−
1
2 ,

1
2), R = (12 ,

1
2 ,

1
2), P ′ = (−1

2 ,
1
2 ,−

1
2), O′ = (−1

2 ,−
1
2 ,−

1
2),

Q′ = (12 ,−
1
2 ,−

1
2), R

′ = (12 ,
1
2 ,−

1
2). See Figure 1.
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Figure 1. Rhombic Dodecahedron P1.

By Lemma 2.2 and Remark 2.3, it is sufficient to find six points

u1,u2, ...,u6,
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on ∂(P1) satisfying

∂(P1) ⊆
6⋃

i=1

[int(P1) + ui].(3.1)

For the subset VP1 = {A,B,C,D,E, F}, the distance (with respect to δP1

) between every pair of which is 2. By a simple observation, to prevent other
translate P1 + u from touching some vertex V in VP1 , V should be in the
relative interior of one face of P1+u in a blocking configuration. Otherwise,
P1+2v can touch P1 at V , where v is the corresponding vector of V . Thus,
the six translation vectors on ∂(P1) we select to make the equation (3.1)
hold should not be in VP1 .

If int(P1) + u contains some point X of VP1 with vector u ∈ ∂(P1), then
we call u associated with X. We can also verify that the translation vector
u lies on the boundary of a “cap”–the pyramid with an apex X.

Since the symmetry of P1, considering half of the points in VP1 is enough.
Now take u1, u2, u3 ∈ ∂(P1), and they are associated with E, C, B, re-
spectively. Denote them by u1(E), u2(C), u3(B). Also, u1 lies on the
boundary of the pyramid E-POQR, u2 lies on the boundary of the pyramid
C-QQ′R′R, u3 lies on the boundary of the pyramid B-PRR′P ′. Without
loss of generality, we assume u1 = (a1, b1, c1) lies on the right half of the
triangle EQR away from Q. Then

a1 + c1 − 1 = 0,

1

2
≤ c1 < 1,

0 ≤ b1 ≤
1

2
,

0 ≤ a1 ≤
1

2
.

We assume u2 = (a2, b2, c2) lies on the right half of the triangle CQ′R′ away
from Q′. Then

a2 − c2 − 1 = 0,

1

2
≤ a2 ≤ 1,

0 ≤ b2 ≤
1

2
,

−1

2
≤ c2 ≤ 0.
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We assume u3 = (a3, b3, c3) lies on the right half of the triangle BP ′P away
from P ′. Then

a3 − b3 + 1 = 0,

−1

2
≤ a3 ≤ 0,

1

2
≤ b3 ≤ 1,

0 ≤ c3 ≤
1

2
.

Hence six faces of P1 must intersect int(P1)+u1. See Figure 2. They are
six faces of P1, where the shadows represent the parts of ∂(P1) contained
in int(P1) + u1. Denote the six kinds of shadows by Γ1, Γ2, ..., Γ6. To
emphasize their connection to the vertex E, denote them by Γ1(E), Γ2(E),
..., Γ6(E), respectively. Similarly, we have six faces of P1 must intersect
int(P1) + u2 and six faces of P1 must intersect int(P1) + u3.

E

Q R

C

M1 M2

R

C B

R′

M2

M3

M4

Γ1(E) Γ2(E)

E

R

M4

B

M6

P

M5

Γ3(E) Γ4(E)

E

P O

A

M6

M7 M8

M9

E

QO

D

M9

M10 M11

Γ5(E)

Q

D

Q′

C

M11

M12

M1

Γ6(E)

Figure 2. ∂(P1) ∩ [int(P1) + u1].

By the symmetry of P1, we take u4 = −u3, u5 = −u2, u6 = −u1. Then
u4 is associated with D, u5 is associated with A, u6 is associated with
F . Denoted them by u4(D), u5(A), u6(F ). It is easy to know that Γi(D)
corresponds to Γi(B), Γi(A) corresponds to Γi(C), Γi(F ) corresponds to
Γi(E) for i = 1, ..., 6.

We claim that every face of P1 can be covered by the following covering
system. See Figure 3 and Figure 4.

(1): The covering system of the face EQCR : Γ1(E), Γ4(C), Γ6(D).
The covering condition is | CN9 |>| CM1 |, where | CN9 | represents
the length of segment CN9. That is, | b2 − c2 − 1 |>| a1 − c1 |.

(2): The covering system of the face CRBR′ : Γ2(E), Γ3(C), Γ4(B).
Denote by T the intersection point of N5N6 and S7S8. The covering
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Figure 3. The covering system of faces EQCR, CRBR′, ERBP .
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Figure 4. The covering system of faces BPAP ′, EPAO, EODQ.

conditions are

| RM2 | > d(T,RB),

| RM4 | > d(T,RC),

| R′N4 | >| S9R′ |,

where d(T,RB) denotes the Euclidean distance between the point T
and the line RB. That is,∣∣∣∣a1 − c1 + 1

2

∣∣∣∣ > 2
√
2

3

∣∣∣∣b2 + c2
2

∣∣∣∣ ,∣∣∣∣c1 − b1 − 1

2

∣∣∣∣ > 2
√
2

3

∣∣∣∣b2 + c2
2

∣∣∣∣ ,
|a2 − b1 − 1| > |a3 − c3| .

(3): The covering system of the face ERBP : Γ3(E), Γ3(B), Γ6(A).
The covering conditions are

| RM4 | >| S6R |,
| EM6 | >| ES4 | .
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That is,

| c1 − b1 − 1 | >| a3 + c3 |,
| a1 − b1 − 1 | >| c3 − b3 | .

(4): The covering system of the face BPAP ′ : Γ1(B), Γ5(A), Γ6(F ).
The covering condition is

| AN9 |=| CN9 |>| AS1 | .

That is, | c2 − b2 + 1 |>| a3 + b3 |.
(5): The covering system of the face EPAO : Γ4(E), Γ1(A), Γ2(B).

The covering condition is

| EM9 |>| EN1 |=| FN1 | .

That is, | a1 + b1 − 1 |>| a2 + c2 |.
(6): The covering system of the face EODQ : Γ5(E), Γ2(A), Γ5(D).

The covering conditions are

| ON2 |=| R′N4 | >| OS9 |=| R′S9 |,
| ON4 |=| R′N2 | >| OM9 | .

That is,

| a2 − b2 − 1 | >| a3 − c3 |,
| a2 + c2 − 1 | >| a1 + b1 | .

For other faces of P1, we have their corresponding covering systems:

• The covering system of AODO′ is : Γ2(F ), Γ3(A), Γ4(D).
• The covering system of DQCQ′ is : Γ6(E), Γ1(D), Γ5(C).
• The covering system of FP ′AO′ is : Γ1(F ), Γ4(A), Γ6(B).
• The covering system of FO′DQ′ is : Γ3(F ), Γ3(D), Γ6(C).
• The covering system of FQ′CR′ is : Γ1(C), Γ4(F ), Γ2(D).
• The covering system of FR′BP ′ is : Γ5(F ), Γ2(C), Γ5(B).

Take u1 = (0.38, 0.17, 0.62), u2 = (0.62, 0.1,−0.38), u3 = (−0.33, 0.67, 0.06),
u4 = −u3, u5 = −u2, u6 = −u1, it is easy to verify ui ∈ ∂(P1) for i = 1, ..., 6
and conditions (1)− (6) hold. Therefore, (3.1) holds. Then b(P1) ≤ 6. This
completes the proof of the theorem. □

4. 3-dimensional cylinder

Denote by H = K × [−λ, λ] = {(x, y) : x ∈ K, y ∈ [−λ, λ]} a cylinder in
E3, where K is a 2-dimensional non-parallelogram convex domain, λ > 0.
By (1.3) and the fact that the blocking number is invariant under affine
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transformations, we have

b(H) = b(H −H)

= b((K −K)× [−2λ, 2λ])

= b(C × [−2λ, 2λ])

= b(C × [−λ, λ]),

determining b(H) is equivalent to studying the blocking number of a 3-
dimensional cylinder H = C × [−1, 1] whose base is a 2-dimensional sym-
metric convex domain C.

It is already known that b(H) = 8 (see [5]), if the base of the cylinder H
is a parallelogram. The following theorem gives the exact blocking number
of a 3-dimensional cylinder whose base is a 2-dimensional non-parallelogram
convex domain. Before the proof of the Theorem 4.3, we need some lemmas.

Lemma 4.1 ( [13]). Let H ⊆ Ed be a cylinder H, whose base is a d − 1-
dimensional convex body K. Then we have

2γ(K −K) ≤ b(H) ≤ 2b(K).

Especially, if K is symmetric, then 2γ(K) ≤ b(H) ≤ 2b(K) holds.

Lemma 4.2 ( [1]). Each 2-dimensional convex domain has an inscribed
affine regular hexagon.

Theorem 4.3. For a cylinder H in E3 whose base is a 2-dimensional non-
parallelogram convex domain, we have b(H) = 6.

Proof. By the above it suffices to consider H = C × [−1, 1], where C is a 2-
dimensional non-parallelogram and symmetric convex domain. By Lemma
4.1 and (1.1), we have b(H) ≥ 2γ(C) = 6.

By Lemma 2.2 and Remark 2.3, its sufficient to find six points u1, u2,
. . ., u6 ∈ ∂(H) such that

(4.1) ∂(H) ⊆
6⋃

i=1

[int(H) + ui].

By Lemma 4.2, C has an inscribed affine regular hexagon P . The vertices
of P are denoted by v1, v2,..., v6 in an anti-clockwise order. See Figure 5.
By the symmetry of C, we have v1 = −v4, v2 = −v5, v3 = −v6. Denote
by C1 and C−1 the two bases of H, respectively. It is obvious that ∂(C) can
not be covered by int(H) + v1, int(H) + v3, int(H) + v5. If we move the
point v2 slightly along the boundary of C towards v1, then we get a point
v′
2. The symmetric point v5 of v2 also moves sightly towards v4 and we get

v′
5 = −v′

2. Now we can deduce

∂(C) ⊆
⋃

{int(H)± v′
2, int(H)± v3}.
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v1

v2 v3

v4

v5
v6

v
′

2

v
′

5

o

Figure 5. int(C) + vi, i = 1, 2, ..., 6.

Given a small positive number ϵ, let u5 = v′
5+(0, 0, ϵ), u6 = v6− (0, 0, ϵ),

u3 = v3 + (0, 0, ϵ), and u2 = v′
2 − (0, 0, ϵ), then

∂(C×(1−ϵ,−1+ϵ)) ⊆
⋃

{int(H)+u5, int(H)+u6, int(H)+u3, int(H)+u2}.

As for C1 and C−1, there always exists a positive number σ < 1, take
u1 = σv1 + e1, u4 = σv4 − e1, where e1 = (0, 0, 1). Then we have

∂(C1) ⊆
⋃

{int(H) + u3, int(H) + u5, int(H) + u1}

and
∂(C−1) ⊆

⋃
{int(H) + u2, int(H) + u4, int(H) + u6}.

Hence, (4.1) holds, that is to say, b(H) ≤ 6. Therefore, b(H) = 6, this
completes the proof of the theorem. □

5. ℓp unit ball in Ed

In this section, we estimate that the blocking number of C3,p for 1 ≤ p <
+∞ and Cd,p for log2 d < p < +∞.

Theorem 5.1. b(C3,p) ≤ 6, for 1 ≤ p < +∞.

Proof. If p = 1 and log2 3 < p < +∞, we already have b(C3,p) ≤ 6, see [13].
Hence we only need to consider the case when 1 < p ≤ log2 3.

Let y1 = ((12)
1
p , (12)

1
p , 0), y2 = (−(12)

1
p , (12)

1
p , 0), y3 = ((12)

1
p ,−(12)

1
p , 0),

y4 = (−(12)
1
p ,−(12)

1
p , 0), y5 = (0, 0, 1), y6 = (0, 0,−1), we will show that

∂(C3,p) ⊆ ∪6
i=1[int(C3,p) + yi].(5.1)

Let
Γ = {(x1, x2, x3) : xp1 + xp2 + xp3 = 1, xi ≥ 0, i = 1, 2, 3}

be the surface of C3,p in the first octant. By the symmetry of C3,p, it is
sufficient to verify that

Γ ⊆ [int(C3,p) + y1] ∪ [int(C3,p) + y5].(5.2)
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Since (
1−

(
1

2

) 1
p

)p

+
1

2
< 1,

we know (1, 0, 0) and (0, 1, 0) both belong to int(C3,p) + y1. We also have

Γ1 = {(x1, x2, x3) : xp1 + xp2 = 1, x3 = 0, xi ≥ 0, i = 1, 2} ⊆ int(C3,p) + y1,

since (
x1 −

(
1

2

) 1
p

)p

+

(
x2 −

(
1

2

) 1
p

)p

< xp1 + xp2 = 1.

Let

Γ2 =

{
(x1, 0, x3) : x

p
1 + xp3 = 1,

(
1

2

) 1
p

< x1 ≤ 1, 0 ≤ x3 <

(
1

2

) 1
p

}
,

Γ3 =

{
(0, x2, x3) : x

p
2 + xp3 = 1,

(
1

2

) 1
p

< x2 ≤ 1, 0 ≤ x3 <

(
1

2

) 1
p

}
,

It is easy to verify(
0,

(
1

2

) 1
p

,

(
1

2

) 1
p

)
,

((
1

2

) 1
p

, 0,

(
1

2

) 1
p

)
∈ ∂(C3,p) + y1, int(C3,p) + y5,

Γ2,Γ3 ⊆ int(C3,p) + y1.

Let

Γ′
2 =

{
(x1, 0, x3) : x

p
1 + xp3 = 1,

(
1

2

) 1
p

≤ x3 ≤ 1, 0 ≤ x1 ≤
(
1

2

) 1
p

}
,

Γ′
3 =

{
(0, x2, x3) : x

p
2 + xp3 = 1,

(
1

2

) 1
p

≤ x3 ≤ 1, 0 ≤ x2 ≤
(
1

2

) 1
p

}
,

It is easy to verify

Γ′
2,Γ

′
3 ⊆ int(C3,p) + y5.

Denote the intersection arc of C3,p + y5 and Γ by

l =

{
(x1, x2, x3) : x3 =

1

2
, xp1 + xp2 = 1−

(
1

2

)p

, xi ≥ 0, i = 1, 2

}
.

Apart from l, the subset of Γ bounded by Γ′
2, Γ

′
3 and l belong to int(C3,p)+y5.

Hence, to verify (5.2) is equivalent to confirm l ⊆ int(C3,p)+y1. By a routine
computation, we have l ⊆ int(C3,p)+y1. Thus, (5.2) holds. Surfaces of C3,p

in other quadrants can be covered similarly. Therefore, (5.1) holds and
b(C3,p) ≤ 6. This completes the proof of the theorem. □

Theorem 5.2. b(Cd,p) ≤ 2d, for log2 d < p < +∞.
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Proof. Suppose that p < +∞. Take y1 = (1, 0, . . . , 0), y2 = (0, 1, . . . , 0),
. . ., yd = (0, 0, . . . , 1), then ±yi ∈ ∂(Cd,p) for 1 ≤ i ≤ d. It is easy to verify
that {

x = (x1, x2, . . . , xd) : x ∈ ∂(Cd,p), xi >
1

2

}
⊆ int(Cd,p) + yi.

If every boundary point z of Cd,p has a coordinate zi such that

|zi| >
1

2
,

then we have
∂(Cd,p) ⊆ ∪d

i=1(int(Cd,p))± yi.

By Lemma 2.2 and Remark 2.3, b(Cd,p) ≤ 2d holds.
Now we consider the subset

T =

{
(t1, t2, . . . , td) : |ti| ≤

1

2
, i = 1, , d

}
.

According to the above discussion, T must be a subset of int(Cd,p). Then

(|t1|p + |t2|p + · · ·+ |td|p)
1
p ≤

(
d

2p

) 1
p

≤ d
1
p

2
< 1,

and
log2 d < p.

This completes the proof of the theorem. □

Remark 5.3. By Theorem 5.2, we can easily deduce that b(C3,p) ≤ 6 for
log2 3 < p < +∞ which has been already obtained by Yu [13].

Remark 5.4. By Theorem 5.2 and (1.2), we have γ(Cd,p) ≤ b(Cd,p) ≤ 2d, for
log2 d < p < +∞.
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[6] G. Fejes Tóth and W. Kuperberg, Packing and covering with convex sets, in Handbook
of Convex Geometry (P.M. Gruber and J.M. Wills, eds.), pp. 799–860, North-Holland,
Amsterdam, 1993.

[7] P.M. Gruber and C.G. Lekkerkerker, Geometry of numbers (2nd edn.), North-
Holland, Amsterdam, 1987.



ON THE BLOCKING NUMBERS OF SOME SPECIAL CONVEX BODIES 221
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