Contributions to Discrete Mathematics

Volume 19, Number 3, Pages 209–221 ISSN 1715-0868

ON THE BLOCKING NUMBERS OF SOME SPECIAL CONVEX BODIES

JUN WANG AND YUQIN ZHANG

ABSTRACT. In this paper, we study the blocking numbers of some special convex bodies. We determine the exact blocking number of a rhombic dodecahedra and a 3-dimensional cylinder H whose base is a 2-dimensional convex domain. We also estimate that the blocking number of the ℓ_p unit ball in \mathbb{E}^3 is at most 6, for $1 \leq p < +\infty$. In high dimensions, the blocking number of the ℓ_p unit ball in \mathbb{E}^d is at most 2d, for $\log_2 d .$

1. INTRODUCTION

Let K be a convex body in \mathbb{E}^d with boundary $\partial(K)$ and interior $\operatorname{int}(K)$. Denote by \mathcal{K}^d and \mathcal{C}^d the convex bodies and centrally symmetric convex bodies in \mathbb{E}^d , respectively. The Hadwiger covering number $\gamma(K)$ of K is the smallest number of translates of $\operatorname{int}(K)$ such that their union can cover K. In 1955, Levi [9] studied the Hadwiger covering number of an arbitrary convex domain K of \mathbb{E}^2 and proved

(1.1)
$$\gamma(K) = \begin{cases} 4 & \text{if } K \text{ is a parallelogram,} \\ 3 & \text{otherwise.} \end{cases}$$

In 1957, Hadwiger [8] made a conjecture:

Hadwiger's covering conjecture. For every d-dimensional convex body K,

$$\gamma(K) \le 2^d,$$

where the equality holds if and only if K is a parallelepiped. This conjecture has been studied by many mathematicians. For example, Lassak [10] proved this conjecture for all centrally symmetric convex bodies in \mathbb{E}^3 . In 1997, Rogers and Zong [11] obtained that $\gamma(K) \leq \binom{2d}{d} (d \log d + d \log \log d + 5d)$

This work is licensed under a Creative Commons "Attribution-NoDerivatives 4.0 International" license.

Received by the editors August 29, 2022, and in revised form and October 9, 2022. 2010 *Mathematics Subject Classification*. 52C17.

Key words and phrases. Blocking number, Hadwiger covering number, ℓ_p unit ball.

This research is supported by National Natural Science Foundation of China (11971346) and the China Scholarship Commission.

for all $K \in \mathcal{K}^d$ and $\gamma(K) \leq 2^d (d \log d + d \log \log d + 5d)$ for all $K \in \mathcal{C}^d$. However, the conjecture is still open for $d \geq 3$. For more details, see [3,15].

For the purpose of studying Hadwiger's covering conjecture, Zong [16] first introduced the blocking number of a convex body. The blocking number b(K) of a convex body K is the smallest number of non-overlapping translates $K + \mathbf{x}_i$ all of them touching K at its boundary and their union can block any other translate from touching K. Here, "block" means that if a new translate $K + \mathbf{y}$ touches the boundary of K, then it will insect one of the $int(K) + \mathbf{x}_i$. In this paper, non-overlapping means that their interiors have empty intersection. In 1993, Zong [16] studied the blocking number of an arbitrary 2-dimensional convex domain and proved that b(K) = 4. In 2018, Swanepoel [12] proved the 2-dimensional case in a new way by using the angular measure of Brass. In 1995, Zong [17] showed an inequality concerning the Hadwiger covering number and the blocking number as follows,

(1.2)
$$\gamma(C) \le b(C)$$

for all $C \in C^d$. Based on some facts, Zong [17] also posed the following conjecture:

Conjecture (Zong). For every d-dimensional convex body K, we have

$$2d \le b(K) \le 2^d,$$

where the equality holds in the upper bound if and only if K is a parallelopiped.

This number has attracted many mathematicians (see Böroczky [2], Brass, Moser, and Pach [3] and Zong [16, 17, 19, 20]) and some results have been obtained. In 2000, Dalla, Larman, Mani-Levitska and Zong [5] estimated the blocking numbers of *d*-dimensional unit cube I^d and ball B^d , they proved $b(I^d) = 2^d$, $b(B^3) = 6$ and $b(B^4) = 9$. They also gave a conditional lower bound of the blocking numbers of convex bodies. Using the Minkowski lemma, it was proved by Zong in [20] that

$$b(K) = b(D(K))$$

for $K \in \mathcal{K}^d$, where D(K) denotes the difference body of K and $D(K) = K - K = \{\mathbf{x} - \mathbf{x} : \forall \mathbf{x} \in K\}$. Thus, it reduces the problem of determining the blocking numbers of general convex bodies to centrally symmetric convex bodies. In 2009, Yu [13] determined that the blocking number of the cross-polytope in \mathbb{E}^3 is 6. He also estimated that the blocking number of the ℓ_p unit ball in \mathbb{E}^3 is at most 6, for $\frac{\ln 3}{\ln 2} . Moreover, Yu studied the blocking number of <math>d$ -dimensional cylinder H whose base is a (d-1)-dimensional convex body K, he obtained a lower bound and an upper bound of its blocking number in terms of the Hadwiger covering number and the blocking number of K respectively. In 2009, Yu and Zong [14] studied various generalizations to the blocking number.

Let a(K) denote the kissing number of K, the maximal number of nonoverlapping translates of K all touching K at its boundary. Since a blocking configuration is a limited kissing configuration, then

 $b(K) \le a(K)$

for every $K \in \mathcal{K}^d$. Combining with (1.2), one can see that the blocking number serves as a bridge between the Hadwiger covering number and the kissing number. In [17, 19], Zong discovered a strange phenomena on the blocking number and kissing number which showed the complicity of the blocking number. Thus, to determine the blocking number of a convex body is challenging and meaningful. For more information about the kissing number, we refer to [4,6,7,18].

The paper is organized as follows, in Section 2, we give some basic definitions and useful lemmas. In Section 3 and Section 4, we determine the exact blocking numbers of a rhombic dodecahedra and a 3-dimensional cylinder H. In Section 5, we estimate the blocking number of the ℓ_p unit ball.

2. Preliminaries

Let $C_{d,p} = \{(x_1, x_2, \ldots, x_d) : (|x_1|^p + |x_2|^p + \cdots + |x_d|^p)^{\frac{1}{p}} \leq 1\} \ (p \geq 1)$ denote the ℓ_p norm unit ball. Let δ^C be the Minkowski-metric in \mathbb{E}^d given by a centrally symmetric convex body C. In other words, denote by $C(\mathbf{z})$ the boundary point of C at direction \mathbf{z} ,

$$\delta^{C}(\mathbf{x}, \mathbf{y}) = \begin{cases} \frac{\|\mathbf{x} - \mathbf{y}\|}{\|C(\mathbf{x} - \mathbf{y})\|} & \text{if } \mathbf{x} \neq \mathbf{y}, \\ 0 & \text{if } \mathbf{x} = \mathbf{y}, \end{cases}$$

where $\|\cdot\|$ indicates the Euclidean norm.

Definition 2.1. Let K be a convex body, and $X = {\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n} \subset \mathbb{E}^d$. If K + X are the non-overlapping translates of K, all of which touch K at its boundary and prevent any other translates $K + \mathbf{x}$ from touching K without overlapping K + X, then we call K + X a blocking configuration of K.

To determine the exact blocking number of some special convex bodies, the following lemma is frequently demanded.

Lemma 2.2 ([17]). Let C be a centrally symmetric convex body in \mathbb{E}^d and $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n \in \mathbb{E}^d$. Then we have $C + \mathbf{x}_1, C + \mathbf{x}_2, ..., C + \mathbf{x}_n$ is a blocking configuration of C if and only if

$$\partial(2C) \subseteq \bigcup_{i=1}^{n} [\operatorname{int}(2C) + \mathbf{x}_i].$$

Furthermore, $b(C) \leq n$ holds.

By definition, we know b(K) is the smallest cardinality of a discrete set X, such that K + X is a blocking configuration. The blocking number is an invariant under affine transformation. Since C is a centrally symmetric

convex body, the discrete subset $X = {\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n}$ must be a subset of $\partial(2C)$.

Remark 2.3. For convenience, Lemma 2.2 can be reformulated as follows: Let $\frac{1}{2}C$ be a centrally symmetric convex body in \mathbb{E}^d and $\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_n \in \mathbb{E}^d$. Then we have $\frac{1}{2}C + \mathbf{y}_1, \frac{1}{2}C + \mathbf{y}_2, ..., \frac{1}{2}C + \mathbf{y}_n$ is a blocking configuration of $\frac{1}{2}C$ if and only if $\partial(C) \subseteq \bigcup_{i=1}^n [\operatorname{int}(C) + \mathbf{y}_i]$. Furthermore, $b(\frac{1}{2}C) = b(C) \leq n$ holds.

3. RHOMBIC DODECAHEDRA

Firstly, we determine the exact blocking number of a rhombic dodecahedra.

Theorem 3.1. Let P_1 be a rhombic dodecahedron, then $b(P_1) = 6$.

Proof. For any $\mathbf{x}, \mathbf{y} \in \operatorname{int}(P_1)$, we have $\delta^{P_1}(\mathbf{x}, \mathbf{y}) < 2$. It is easy to find six vertices from the vertex set of P_1 such that the distance (with respect to δ^{P_1}) between every pair of which is 2. To cover the six vertices of P_1 , we need at least six translates of $\operatorname{int}(P_1)$. Thus, $\gamma(P_1) \geq 6$. By (1.2), $b(P_1) \geq 6$.

On the other hand, given a rhombic dodecahedron P_1 . Denote the fourteen vertices of P_1 by $A = (-1, 0, 0), B = (0, 1, 0), C = (1, 0, 0), D = (0, -1, 0), E = (0, 0, 1), F = (0, 0, -1), O = (-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}), P = (-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}), Q = (\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}), R = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}), P' = (-\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}), O' = (-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}), Q' = (\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}), R' = (\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}).$ See Figure 1.

FIGURE 1. Rhombic Dodecahedron P_1 .

By Lemma 2.2 and Remark 2.3, it is sufficient to find six points $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_6$,

on $\partial(P_1)$ satisfying

(3.1)
$$\partial(P_1) \subseteq \bigcup_{i=1}^6 [\operatorname{int}(P_1) + \mathbf{u}_i].$$

For the subset $V_{P_1} = \{A, B, C, D, E, F\}$, the distance (with respect to δ^{P_1}) between every pair of which is 2. By a simple observation, to prevent other translate $P_1 + \mathbf{u}$ from touching some vertex V in V_{P_1} , V should be in the relative interior of one face of $P_1 + \mathbf{u}$ in a blocking configuration. Otherwise, $P_1 + 2\mathbf{v}$ can touch P_1 at V, where \mathbf{v} is the corresponding vector of V. Thus, the six translation vectors on $\partial(P_1)$ we select to make the equation (3.1) hold should not be in V_{P_1} .

If $\operatorname{int}(P_1) + \mathbf{u}$ contains some point X of V_{P_1} with vector $\mathbf{u} \in \partial(P_1)$, then we call \mathbf{u} associated with X. We can also verify that the translation vector \mathbf{u} lies on the boundary of a "cap"-the pyramid with an apex X.

Since the symmetry of P_1 , considering half of the points in V_{P_1} is enough. Now take $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \in \partial(P_1)$, and they are associated with E, C, B, respectively. Denote them by $\mathbf{u}_1(E), \mathbf{u}_2(C), \mathbf{u}_3(B)$. Also, \mathbf{u}_1 lies on the boundary of the pyramid E-POQR, \mathbf{u}_2 lies on the boundary of the pyramid C-QQ'R'R, \mathbf{u}_3 lies on the boundary of the pyramid B-PRR'P'. Without loss of generality, we assume $\mathbf{u}_1 = (a_1, b_1, c_1)$ lies on the right half of the triangle EQR away from Q. Then

$$a_{1} + c_{1} - 1 = 0,$$

$$\frac{1}{2} \le c_{1} < 1,$$

$$0 \le b_{1} \le \frac{1}{2},$$

$$0 \le a_{1} \le \frac{1}{2}.$$

We assume $\mathbf{u}_2 = (a_2, b_2, c_2)$ lies on the right half of the triangle CQ'R' away from Q'. Then

$$a_2 - c_2 - 1 = 0,$$

 $\frac{1}{2} \le a_2 \le 1,$
 $0 \le b_2 \le \frac{1}{2},$
 $-\frac{1}{2} \le c_2 \le 0.$

We assume $\mathbf{u}_3 = (a_3, b_3, c_3)$ lies on the right half of the triangle BP'P away from P'. Then

$$a_{3} - b_{3} + 1 = 0,$$

$$-\frac{1}{2} \le a_{3} \le 0,$$

$$\frac{1}{2} \le b_{3} \le 1,$$

$$0 \le c_{3} \le \frac{1}{2}.$$

Hence six faces of P_1 must intersect $int(P_1) + \mathbf{u}_1$. See Figure 2. They are six faces of P_1 , where the shadows represent the parts of $\partial(P_1)$ contained in $int(P_1) + \mathbf{u}_1$. Denote the six kinds of shadows by $\Gamma_1, \Gamma_2, ..., \Gamma_6$. To emphasize their connection to the vertex E, denote them by $\Gamma_1(E), \Gamma_2(E)$, ..., $\Gamma_6(E)$, respectively. Similarly, we have six faces of P_1 must intersect $int(P_1) + \mathbf{u}_2$ and six faces of P_1 must intersect $int(P_1) + \mathbf{u}_3$.

FIGURE 2. $\partial(P_1) \cap [int(P_1) + \mathbf{u}_1].$

By the symmetry of P_1 , we take $\mathbf{u}_4 = -\mathbf{u}_3$, $\mathbf{u}_5 = -\mathbf{u}_2$, $\mathbf{u}_6 = -\mathbf{u}_1$. Then \mathbf{u}_4 is associated with D, \mathbf{u}_5 is associated with A, \mathbf{u}_6 is associated with F. Denoted them by $\mathbf{u}_4(D)$, $\mathbf{u}_5(A)$, $\mathbf{u}_6(F)$. It is easy to know that $\Gamma_i(D)$ corresponds to $\Gamma_i(B)$, $\Gamma_i(A)$ corresponds to $\Gamma_i(C)$, $\Gamma_i(F)$ corresponds to $\Gamma_i(E)$ for i = 1, ..., 6.

We claim that every face of P_1 can be covered by the following covering system. See Figure 3 and Figure 4.

- (1): The covering system of the face EQCR: $\Gamma_1(E)$, $\Gamma_4(C)$, $\Gamma_6(D)$. The covering condition is $|\overline{CN_9}| > |\overline{CM_1}|$, where $|\overline{CN_9}|$ represents the length of segment $\overline{CN_9}$. That is, $|b_2 - c_2 - 1| > |a_1 - c_1|$.
- (2): The covering system of the face CRBR': $\Gamma_2(E)$, $\Gamma_3(C)$, $\Gamma_4(B)$. Denote by T the intersection point of $\overline{N_5N_6}$ and $\overline{S_7S_8}$. The covering

FIGURE 3. The covering system of faces EQCR, CRBR', ERBP.

FIGURE 4. The covering system of faces BPAP', EPAO, EODQ.

conditions are

$$|\overline{RM_2}| > d(T, RB),$$
$$|\overline{RM_4}| > d(T, RC),$$
$$|\overline{R'N_4}| > |\overline{S_9R'}|,$$

where d(T, RB) denotes the Euclidean distance between the point T and the line RB. That is,

$$\left| \frac{a_1 - c_1 + 1}{2} \right| > \frac{2\sqrt{2}}{3} \left| \frac{b_2 + c_2}{2} \right|,$$
$$\left| \frac{c_1 - b_1 - 1}{2} \right| > \frac{2\sqrt{2}}{3} \left| \frac{b_2 + c_2}{2} \right|,$$
$$|a_2 - b_1 - 1| > |a_3 - c_3|.$$

(3): The covering system of the face $ERBP : \Gamma_3(E), \Gamma_3(B), \Gamma_6(A)$. The covering conditions are

$$| \overline{RM_4} | > | \overline{S_6R} |,$$

$$| \overline{EM_6} | > | \overline{ES_4} |.$$

That is,

$$|c_1 - b_1 - 1| > |a_3 + c_3|,$$

 $|a_1 - b_1 - 1| > |c_3 - b_3|.$

(4): The covering system of the face BPAP': $\Gamma_1(B)$, $\Gamma_5(A)$, $\Gamma_6(F)$. The covering condition is

$$\overline{AN_9} \mid = \mid \overline{CN_9} \mid > \mid \overline{AS_1} \mid .$$

That is, $|c_2 - b_2 + 1| > |a_3 + b_3|$.

(5): The covering system of the face $EPAO : \Gamma_4(E), \Gamma_1(A), \Gamma_2(B)$. The covering condition is

The covering condition is

$$|\overline{EM_9}| > |\overline{EN_1}| = |\overline{FN_1}|$$

That is, $|a_1 + b_1 - 1| > |a_2 + c_2|$.

(6): The covering system of the face $EODQ : \Gamma_5(E), \Gamma_2(A), \Gamma_5(D)$.

The covering conditions are

$$| \overline{ON_2} |=| \overline{R'N_4} | >| \overline{OS_9} |=| \overline{R'S_9} |,$$

$$| \overline{ON_4} |=| \overline{R'N_2} | >| \overline{OM_9} |.$$

That is,

$$|a_2 - b_2 - 1| > |a_3 - c_3|,$$

 $|a_2 + c_2 - 1| > |a_1 + b_1|.$

For other faces of P_1 , we have their corresponding covering systems:

- The covering system of AODO' is : $\Gamma_2(F)$, $\Gamma_3(A)$, $\Gamma_4(D)$.
- The covering system of DQCQ' is : $\Gamma_6(E)$, $\Gamma_1(D)$, $\Gamma_5(C)$.
- The covering system of FP'AO' is : $\Gamma_1(F)$, $\Gamma_4(A)$, $\Gamma_6(B)$.
- The covering system of FO'DQ' is : $\Gamma_3(F)$, $\Gamma_3(D)$, $\Gamma_6(C)$.
- The covering system of FQ'CR' is : $\Gamma_1(C)$, $\Gamma_4(F)$, $\Gamma_2(D)$.
- The covering system of FR'BP' is : $\Gamma_5(F)$, $\Gamma_2(C)$, $\Gamma_5(B)$.

Take $\mathbf{u}_1 = (0.38, 0.17, 0.62), \mathbf{u}_2 = (0.62, 0.1, -0.38), \mathbf{u}_3 = (-0.33, 0.67, 0.06), \mathbf{u}_4 = -\mathbf{u}_3, \mathbf{u}_5 = -\mathbf{u}_2, \mathbf{u}_6 = -\mathbf{u}_1$, it is easy to verify $\mathbf{u}_i \in \partial(P_1)$ for i = 1, ..., 6 and conditions (1) - (6) hold. Therefore, (3.1) holds. Then $b(P_1) \leq 6$. This completes the proof of the theorem.

4. 3-DIMENSIONAL CYLINDER

Denote by $H = K \times [-\lambda, \lambda] = \{(\mathbf{x}, y) : \mathbf{x} \in K, y \in [-\lambda, \lambda]\}$ a cylinder in \mathbb{E}^3 , where K is a 2-dimensional non-parallelogram convex domain, $\lambda > 0$. By (1.3) and the fact that the blocking number is invariant under affine

transformations, we have

$$\begin{split} b(H) &= b(H - H) \\ &= b((K - K) \times [-2\lambda, 2\lambda]) \\ &= b(C \times [-2\lambda, 2\lambda]) \\ &= b(C \times [-\lambda, \lambda]), \end{split}$$

determining b(H) is equivalent to studying the blocking number of a 3dimensional cylinder $H = C \times [-1, 1]$ whose base is a 2-dimensional symmetric convex domain C.

It is already known that b(H) = 8 (see [5]), if the base of the cylinder H is a parallelogram. The following theorem gives the exact blocking number of a 3-dimensional cylinder whose base is a 2-dimensional non-parallelogram convex domain. Before the proof of the Theorem 4.3, we need some lemmas.

Lemma 4.1 ([13]). Let $H \subseteq \mathbb{E}^d$ be a cylinder H, whose base is a d-1-dimensional convex body K. Then we have

$$2\gamma(K - K) \le b(H) \le 2b(K).$$

Especially, if K is symmetric, then $2\gamma(K) \leq b(H) \leq 2b(K)$ holds.

Lemma 4.2 ([1]). Each 2-dimensional convex domain has an inscribed affine regular hexagon.

Theorem 4.3. For a cylinder H in \mathbb{E}^3 whose base is a 2-dimensional nonparallelogram convex domain, we have b(H) = 6.

Proof. By the above it suffices to consider $H = C \times [-1, 1]$, where C is a 2-dimensional non-parallelogram and symmetric convex domain. By Lemma 4.1 and (1.1), we have $b(H) \ge 2\gamma(C) = 6$.

By Lemma 2.2 and Remark 2.3, its sufficient to find six points \mathbf{u}_1 , \mathbf{u}_2 , ..., $\mathbf{u}_6 \in \partial(H)$ such that

(4.1)
$$\partial(H) \subseteq \bigcup_{i=1}^{6} [\operatorname{int}(H) + \mathbf{u}_i].$$

By Lemma 4.2, *C* has an inscribed affine regular hexagon *P*. The vertices of *P* are denoted by \mathbf{v}_1 , \mathbf{v}_2 ,..., \mathbf{v}_6 in an anti-clockwise order. See Figure 5. By the symmetry of *C*, we have $\mathbf{v}_1 = -\mathbf{v}_4$, $\mathbf{v}_2 = -\mathbf{v}_5$, $\mathbf{v}_3 = -\mathbf{v}_6$. Denote by C_1 and C_{-1} the two bases of *H*, respectively. It is obvious that $\partial(C)$ can not be covered by $\operatorname{int}(H) + \mathbf{v}_1$, $\operatorname{int}(H) + \mathbf{v}_3$, $\operatorname{int}(H) + \mathbf{v}_5$. If we move the point \mathbf{v}_2 slightly along the boundary of *C* towards \mathbf{v}_1 , then we get a point \mathbf{v}'_2 . The symmetric point \mathbf{v}_5 of \mathbf{v}_2 also moves sightly towards \mathbf{v}_4 and we get $\mathbf{v}'_5 = -\mathbf{v}'_2$. Now we can deduce

$$\partial(C) \subseteq \bigcup \{ \operatorname{int}(H) \pm \mathbf{v}_2', \operatorname{int}(H) \pm \mathbf{v}_3 \}.$$

FIGURE 5. $int(C) + \mathbf{v}_i, i = 1, 2, ..., 6.$

Given a small positive number ϵ , let $\mathbf{u}_5 = \mathbf{v}'_5 + (0, 0, \epsilon), \, \mathbf{u}_6 = \mathbf{v}_6 - (0, 0, \epsilon),$ $\mathbf{u}_3 = \mathbf{v}_3 + (0, 0, \epsilon)$, and $\mathbf{u}_2 = \mathbf{v}_2' - (0, 0, \epsilon)$, then

$$\partial(C \times (1-\epsilon, -1+\epsilon)) \subseteq \bigcup \{ \operatorname{int}(H) + \mathbf{u}_5, \operatorname{int}(H) + \mathbf{u}_6, \operatorname{int}(H) + \mathbf{u}_3, \operatorname{int}(H) + \mathbf{u}_2 \}.$$

As for C_1 and C_{-1} , there always exists a positive number $\sigma < 1$, take $\mathbf{u}_1 = \sigma \mathbf{v}_1 + \mathbf{e}_1, \ \mathbf{u}_4 = \sigma \mathbf{v}_4 - \mathbf{e}_1$, where $\mathbf{e}_1 = (0, 0, 1)$. Then we have

$$\partial(C_1) \subseteq \bigcup \{ \operatorname{int}(H) + \mathbf{u}_3, \operatorname{int}(H) + \mathbf{u}_5, \operatorname{int}(H) + \mathbf{u}_1 \}$$

and

$$\partial(C_{-1}) \subseteq \bigcup \{ \operatorname{int}(H) + \mathbf{u}_2, \operatorname{int}(H) + \mathbf{u}_4, \operatorname{int}(H) + \mathbf{u}_6 \}.$$

Hence, (4.1) holds, that is to say, $b(H) \leq 6$. Therefore, b(H) = 6, this completes the proof of the theorem.

5.
$$\ell_p$$
 UNIT BALL IN E^d

In this section, we estimate that the blocking number of $C_{3,p}$ for $1 \le p < p$ $+\infty$ and $C_{d,p}$ for $\log_2 d .$

Theorem 5.1.
$$b(C_{3,p}) \le 6$$
, for $1 \le p < +\infty$.

Proof. If p = 1 and $\log_2 3 , we already have <math>b(C_{3,p}) \le 6$, see [13].

Hence we only need to consider the case when 1 . $Let <math>\mathbf{y}_1 = ((\frac{1}{2})^{\frac{1}{p}}, (\frac{1}{2})^{\frac{1}{p}}, 0), \ \mathbf{y}_2 = (-(\frac{1}{2})^{\frac{1}{p}}, (\frac{1}{2})^{\frac{1}{p}}, 0), \ \mathbf{y}_3 = ((\frac{1}{2})^{\frac{1}{p}}, -(\frac{1}{2})^{\frac{1}{p}}, 0), \ \mathbf{y}_4 = (-(\frac{1}{2})^{\frac{1}{p}}, -(\frac{1}{2})^{\frac{1}{p}}, 0), \ \mathbf{y}_5 = (0, 0, 1), \ \mathbf{y}_6 = (0, 0, -1),$ we will show that $\partial(C_{3,p}) \subseteq \bigcup_{i=1}^{6} [\operatorname{int}(C_{3,p}) + \mathbf{y}_i].$ (5.1)

Let

$$\Gamma = \{(x_1, x_2, x_3) : x_1^p + x_2^p + x_3^p = 1, x_i \ge 0, i = 1, 2, 3\}$$

be the surface of $C_{3,p}$ in the first octant. By the symmetry of $C_{3,p}$, it is sufficient to verify that

(5.2)
$$\Gamma \subseteq [\operatorname{int}(C_{3,p}) + \mathbf{y}_1] \cup [\operatorname{int}(C_{3,p}) + \mathbf{y}_5].$$

Since

$$\left(1 - \left(\frac{1}{2}\right)^{\frac{1}{p}}\right)^p + \frac{1}{2} < 1,$$

we know (1,0,0) and (0,1,0) both belong to $int(C_{3,p}) + \mathbf{y}_1$. We also have

 $\Gamma_1 = \{(x_1, x_2, x_3) : x_1^p + x_2^p = 1, x_3 = 0, x_i \ge 0, i = 1, 2\} \subseteq \operatorname{int}(C_{3,p}) + \mathbf{y}_1,$ since

$$\left(x_1 - \left(\frac{1}{2}\right)^{\frac{1}{p}}\right)^p + \left(x_2 - \left(\frac{1}{2}\right)^{\frac{1}{p}}\right)^p < x_1^p + x_2^p = 1.$$

Let

$$\Gamma_{2} = \left\{ (x_{1}, 0, x_{3}) : x_{1}^{p} + x_{3}^{p} = 1, \left(\frac{1}{2}\right)^{\frac{1}{p}} < x_{1} \le 1, 0 \le x_{3} < \left(\frac{1}{2}\right)^{\frac{1}{p}} \right\},\$$

$$\Gamma_{3} = \left\{ (0, x_{2}, x_{3}) : x_{2}^{p} + x_{3}^{p} = 1, \left(\frac{1}{2}\right)^{\frac{1}{p}} < x_{2} \le 1, 0 \le x_{3} < \left(\frac{1}{2}\right)^{\frac{1}{p}} \right\},\$$

It is easy to verify

$$\left(0, \left(\frac{1}{2}\right)^{\frac{1}{p}}, \left(\frac{1}{2}\right)^{\frac{1}{p}}\right), \left(\left(\frac{1}{2}\right)^{\frac{1}{p}}, 0, \left(\frac{1}{2}\right)^{\frac{1}{p}}\right) \in \partial(C_{3,p}) + \mathbf{y}_{1}, \operatorname{int}(C_{3,p}) + \mathbf{y}_{5}, \\ \Gamma_{2}, \Gamma_{3} \subseteq \operatorname{int}(C_{3,p}) + \mathbf{y}_{1}.$$

Let

$$\Gamma_{2}' = \left\{ (x_{1}, 0, x_{3}) : x_{1}^{p} + x_{3}^{p} = 1, \left(\frac{1}{2}\right)^{\frac{1}{p}} \le x_{3} \le 1, 0 \le x_{1} \le \left(\frac{1}{2}\right)^{\frac{1}{p}} \right\},\$$
$$\Gamma_{3}' = \left\{ (0, x_{2}, x_{3}) : x_{2}^{p} + x_{3}^{p} = 1, \left(\frac{1}{2}\right)^{\frac{1}{p}} \le x_{3} \le 1, 0 \le x_{2} \le \left(\frac{1}{2}\right)^{\frac{1}{p}} \right\},\$$

It is easy to verify

$$\Gamma'_2, \Gamma'_3 \subseteq \operatorname{int}(C_{3,p}) + \mathbf{y}_5.$$

Denote the intersection arc of $C_{3,p} + \mathbf{y}_5$ and Γ by

$$l = \left\{ (x_1, x_2, x_3) : x_3 = \frac{1}{2}, x_1^p + x_2^p = 1 - \left(\frac{1}{2}\right)^p, x_i \ge 0, i = 1, 2 \right\}.$$

Apart from l, the subset of Γ bounded by Γ'_2 , Γ'_3 and l belong to $\operatorname{int}(C_{3,p}) + \mathbf{y}_5$. Hence, to verify (5.2) is equivalent to confirm $l \subseteq \operatorname{int}(C_{3,p}) + \mathbf{y}_1$. By a routine computation, we have $l \subseteq \operatorname{int}(C_{3,p}) + \mathbf{y}_1$. Thus, (5.2) holds. Surfaces of $C_{3,p}$ in other quadrants can be covered similarly. Therefore, (5.1) holds and $b(C_{3,p}) \leq 6$. This completes the proof of the theorem. \Box

Theorem 5.2. $b(C_{d,p}) \le 2d$, for $\log_2 d .$

Proof. Suppose that $p < +\infty$. Take $\mathbf{y}_1 = (1, 0, \dots, 0)$, $\mathbf{y}_2 = (0, 1, \dots, 0)$, $\dots, \mathbf{y}_d = (0, 0, \dots, 1)$, then $\pm \mathbf{y}_i \in \partial(C_{d,p})$ for $1 \le i \le d$. It is easy to verify that

$$\left\{\mathbf{x} = (x_1, x_2, \dots, x_d) : \mathbf{x} \in \partial(C_{d,p}), x_i > \frac{1}{2}\right\} \subseteq \operatorname{int}(C_{d,p}) + \mathbf{y}_i.$$

If every boundary point z of $C_{d,p}$ has a coordinate z_i such that

$$|z_i| > \frac{1}{2}$$

then we have

$$\partial(C_{d,p}) \subseteq \cup_{i=1}^{d} (\operatorname{int}(C_{d,p})) \pm \mathbf{y}_i.$$

By Lemma 2.2 and Remark 2.3, $b(C_{d,p}) \leq 2d$ holds.

Now we consider the subset

$$T = \left\{ (t_1, t_2, \dots, t_d) : |t_i| \le \frac{1}{2}, i = 1, d \right\}.$$

According to the above discussion, T must be a subset of $int(C_{d,p})$. Then

$$(|t_1|^p + |t_2|^p + \dots + |t_d|^p)^{\frac{1}{p}} \le \left(\frac{d}{2^p}\right)^{\frac{1}{p}} \le \frac{d^{\frac{1}{p}}}{2} < 1,$$

and

 $\log_2 d < p.$

This completes the proof of the theorem.

Remark 5.3. By Theorem 5.2, we can easily deduce that
$$b(C_{3,p}) \leq 6$$
 for $\log_2 3 which has been already obtained by Yu [13].$

Remark 5.4. By Theorem 5.2 and (1.2), we have $\gamma(C_{d,p}) \leq b(C_{d,p}) \leq 2d$, for $\log_2 d .$

Acknowledgement: We are very grateful to the referee for carefully reading this paper and for many useful suggestions and corrections.

References

- A.S. Besicovitch, Measure of asymmetry of convex curves, J. London Math. Soc. 23 (1948), 237–240.
- [2] K. Böroczky Jr., *Finite packing and covering*, Cambridge University Press, Cambridge, 2004.
- [3] P. Brass, W. Moser, J. Pach, Research problems in discrete geometry, Springer-Verlag, New York, 2005.
- [4] J.H. Conway and N.J.A. Sloane, Sphere packings, lattices and groups, Springer-Verlag, New York, 1988.
- [5] L. Dalla, D.G. Larman, P. Mani-Levitska, C. Zong, The blocking numbers of convex bodies, Discrete Comput. Geom. 24 (2000), 267–277.
- [6] G. Fejes Tóth and W. Kuperberg, Packing and covering with convex sets, in Handbook of Convex Geometry (P.M. Gruber and J.M. Wills, eds.), pp. 799–860, North-Holland, Amsterdam, 1993.
- [7] P.M. Gruber and C.G. Lekkerkerker, Geometry of numbers (2nd edn.), North-Holland, Amsterdam, 1987.

- [8] H. Hadwiger, Ungelőste Problems Nr. 20, Elem. Math. 12 (1957), 121.
- [9] F.W. Levi, Überdeckung eines Eibereiches durch Parallelverschiebung seines offenen Kerns, Arch. Math. 6 (1995), 369–370.
- [10] M. Lassak, Solution of Hadwiger's covering problem for centrally symmetric convex bodies in E³, J. London Math. Soc. **30** (1984), 501–511.
- [11] C.A. Rogers and C. Zong, Covering convex bodies by translates of convex bodies, Mathematika 44 (1997), 215–218.
- [12] K.J. Swanepoel, Combinatorial distance geometry in normed spaces, New trends in intuitive geometry, 407–458, Bolyai Soc. Math. Stud., 27, János Bolyai Math. Soc. Budapest, 2018.
- [13] L. Yu, Blocking numbers and fixing numbers of convex bodies, Discrete Math. 309 (2009), 6544–6554.
- [14] L. Yu and C. Zong, On the blocking number and the covering number of a convex body, Adv. Geom. 9 (2009), 13–29.
- [15] C. Zong, A quantitative program for Hadwiger's covering conjecture, Sci. China Math. 53 (2010), 2551–2560.
- [16] C. Zong, Packing and covering, Ph.D. Thesis, TU Wien, 1993.
- [17] C. Zong, Some remarks concerning kissing numbers, blocking numbers and covering numbers, Period. Math. Hungar. 30 (1995), 233–238.
- [18] C. Zong, Sphere packings, Springer-Verlag, New York, 1999.
- [19] C. Zong, Strange phenomena in convex and discrete geometry, Springer-Verlag, New York, 1996.
- [20] C. Zong, The kissing number, blocking number and covering number of a convex body, Contemp. Math. Amer. Math. Soc. 453 (2008), 529–548.

School of Mathematical Sciences, Tianjin Normal University, 300387, Tianjin, P.R.China

INSTITUTE OF MATHEMATICS AND INTERDISCIPLINARY SCIENCES, TIANJIN NORMAL UNIVERSITY, 300387, TIANJIN, P.R.CHINA *E-mail address:* kingjunjun@tju.edu.cn.

SCHOOL OF MATHEMATICS, TIANJIN UNIVERSITY, 300354, TIANJIN, P.R.CHINA *E-mail address:* yuqinzhang@tju.edu.cn.