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CONSTRUCTION OF (a,b,c) TILINGS OF THE
EUCLIDEAN PLANE, HYPERBOLIC PLANE
AND THE SPHERE

MARK D. TOMENES AND MA. LOUISE ANTONETTE N. DE LAS PENAS

ABSTRACT. An (a,b,c) tiling forms under its symmetry group a orbits
of vertices; b orbits of edges; and ¢ orbits of tiles. This paper discusses
a method to arrive at an (a,b,c) tiling of the Euclidean plane (E?),
hyperbolic plane (H?) or 2-dimensional sphere (S?). An application of
the method facilitates the complete enumeration of the (a,2,c) tilings
of E? and S§? as well as a listing of (a, 3, ¢) tilings of E.

1. INTRODUCTION

One area of study in discrete geometry is the classification of tilings based
on the vertex, edge or tile transitivity properties. In the literature, tilings
are usually characterized and enumerated, focusing solely on isogonality
(vertex) [13, 20, 23, 27|, isotoxality (edge) [17, 19, 21, 24] or isohedrality
(tile) properties [5, 11, 15, 16, 21, 22, 29, 30, 31].

Tilings that assume simultaneously, vertex, edge and tile transitivity con-
ditions have not been studied extensively. In [1], Chavey introduced the
notion of an (a, b, ¢) tiling, a tiling that forms a orbits of vertices, b orbits
of edges and ¢ orbits of tiles under its symmetry group. In the same study
it was determined that not all triples a — b — ¢ can be realized as (a, b, c)
tilings of the Euclidean plane (E?); and conditions relating a, b and ¢ were
specified. In [12], Dress and Scharlau derived 37 types of (2,2,2) tilings of
[E2. Apart from this, there is still no complete enumeration of (a, b, c) tilings
for b > 1 as of this writing. Also, there is hardly any literature on (a, b, c)
tilings of the hyperbolic plane (H?).

In recent years, (a, b, ¢) tilings have appeared prominently in crystallogra-
phy in accordance with design synthesis and reticular chemistry [7, 8, 9, 10].
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In [6], —Friedrichs and O’Keeffe noted that 2-periodic (a,a — 1, ¢) tilings are
rare. The authors presented seven (3,2, ¢) tilings of E? and 12 (3,2, ¢) tilings
of the 2-dimensional sphere (S?).

Considering these facts, the objective of this paper is to contribute to
existing studies on (a, b, ¢) tilings. An approach to construct (a,b, c) tilings
of E2, H? or S? is presented. The method facilitates arriving at tilings with
a-isogonality, b-isotoxality and c-isohedrality properties, simultaneously. In
this paper we give the complete enumeration of (a,2,c) tilings of E? and
S?; and a listing of (a, 3, ¢) tilings of E2. Moreover, new examples of (a, b, c)
tilings of H? are made possible, such as those arising from regular tilings
[p"] and semi-regular tilings.

In the literature, most studies dealing with the construction and classi-
fication of tilings are approached combinatorially using adjacency symbols
[16, 19, 20, 21], Delaney-Dress symbols [22] or generalized Schlafli symbols
[12]. In this work, the approach employed is group theoretic, involving
subgroup structures of symmetry groups of tilings, and orbit-stabilizer con-
ditions.

This paper is organized as follows. Section 2 gives the basic definitions
used in the paper. Section 3 presents a method of constructing (a,b, c)
tilings. Section 4 and Section 5 outline, respectively, the enumeration of
(a,2,c) tilings of E? and S?; and a listing of (a, 3,c) tilings of E2. Section 6
discusses (a, b, ¢) tilings of E? realized by convex tiles only. Section 7 high-
lights particular (a, b, ¢) tilings of H2. Finally, Section 8 gives the conclusion
and future outlook of the study.

2. PRELIMINARIES

A tiling T of X (X is the Euclidean plane (E?), hyperbolic plane (H?)
or 2-dimensional sphere (S?)) is a countable collection of closed topological
disks called tiles T = {T; : i € N} that is a covering (U;T; = X) as well as
a packing (Int(7;) N Int(Tj) = 0 if ¢ # j, Int(T") denotes the interior of tile
T). The intersection of any two distinct tiles can be a set of isolated points
and arcs. The points are called vertices of T and the arcs are called edges
of T. A vertex with p edges incident to it is said to have wvalence p. The
tiling 7 is edge-to-edge if the intersection of any of its two tiles are either
the common edge or vertex of the tiles, or empty.

The symmetry group G of T is the group of isometries of X that leave T
invariant. The elements of G are called symmetries of T.

Consider a vertex x, edge E or tile T of 7 and H a subgroup of G
(H < G). The stabilizer of x (respectively E, T') in H denoted by Staby ()
(respectively Staby(E), Stabgy (7)) is defined as the group consisting of
elements of H that fix =, that is, Staby (x) = {h € H : hx = x} (respectively
Staby(E) = {h € H : hE = E}, Staby(T) = {h € H : h'T = T}). For
H < G, the set Hx = {hx : h € H} (respectively HE = {hE : h € H},
HT = {hT : h € H}) is defined as the orbit of x (respectively E, T') under
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FIGURE 1. (A) (3,2,2) tiling of E?; (B) (1,2,3) tiling of H?;
and (C) (2,2,2) tiling of S2. The axes/planes of reflections
that generate the symmetry group of a tiling are shown.

the action of H. A group G is said to act transitively on a set of vertices,
edges or tiles of T if there is only one orbit of vertices, edges or tiles of T,
respectively, under G.

If the symmetry group G of a tiling T forms k orbits of vertices, edges
or tiles of T, then the tiling is called, respectively, k-isogonal, k-isotoxal or
k-isohedral. If k = 1, then 7 is called an isogonal, isotoxal or isohedral
tiling, respectively.

A tiling 7 of X is called an (a,b,c) tiling if T forms a, b and ¢ orbits
of vertices, edges and tiles, respectively, under the action of its symmetry
group G. T is also called an a-isogonal, b-isotoxal and c-isohedral tiling.
Not all triples a — b — ¢ can be realized as an (a, b, c) tiling. In [1], Chavey
states that in an (a, b, c) tiling, a < b+ 1 and ¢ < b+ 1.

The tilings under consideration in this study are edge-to-edge tilings with
tiles that are closed and bounded topological disks. We assume the tilings
are such that the intersection of two tiles is a connected set. We exclude
tilings with digons (tiles with two edges) or tilings with vertices of valence
two.

In this paper, the symmetry group of a tiling is described using Conway’s
orbifold notation, which is based on the type of symmetries occurring in
the group [3, 2]. The symbol * denotes a reflection, x a glide reflection
or rotoreflection, o a translation and a positive integer u indicates a u-fold
rotation. If u comes after *, the symmetry there is dihedral of order 2u (e.g.
center of rotation lies on a reflection axis). For tilings of E? or H?, a center
of rotation of order n, n > 2 will be labeled by an n-gon. A twofold rotation
will be labeled by an oval.

Illustration 2.1. A (3,2,2) tiling of E? is shown in Figure 1A. There are
three orbits of vertices (blue, red and green), two orbits of edges (red and
blue) and two orbits of tiles (green and orange) under its symmetry group
GT = <P1,Q1,R1‘P12 = % = R% = (P1R1)2 = (P1Q1)3 = (Q1R1)6> =~ x632.
The tiling of H? shown in Figure 1B forms one orbit of vertices (yellow), two
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orbits of edges (blue and red) and three orbits of tiles (yellow, blue and green)
under its symmetry group G4 = (P, Q2, R2o|P} = Q% = R3 = (PRy)3 =
(P2Q2)% = (Q2R2)%) = %663. Hence, it is a (1,2, 3) tiling. Finally, the tiling
of S? in Figure 1C is a (2,2,2) tiling since it forms two orbits of vertices
(orange and green), two orbits of edges (blue and red) and two orbits of tiles
(blue and yellow) under its symmetry group G3 = (P3, Qs, R3|P? = Q3% =
R% = (P3R3)3 = (P3Q3)5 = (Q3R3)2> = %x532.

3. METHOD OF CONSTRUCTING (a,b,c) TILINGS

Theorem 3.1. Let T be an edge-to-edge tiling of X (Euclidean plane (E?),
hyperbolic plane (H?) or 2-dimensional sphere (S?)) with symmetry group
G. Let H < G. If H forms T orbits of tiles, 5 orbits of edges and t orbits
of vertices in T then there exists an (a, b, c) tiling T* of X satisfying a < 7,
b <5 and c < t with symmetry group G* such that H < G*.

Proof. Consider T, an edge-to-edge tiling of X. Let H < G, GG the symmetry
group of 7. Suppose H forms 7 orbits of tiles, 5 orbits of edges and ¢ orbits
of vertices in 7. For each orbit HT;, (i = 1,...,7), consider a tile T; € HT;,
that is, 7; is an orbit representative of HT;. Then, take a point z; € Int(T;)
such that hz; = x; V h € Staby(T;) and form V = Hxy U Hzo U - - - U Hay.
This will result in every tile of 7 containing exactly one point from V.

Take an edge E; € HE; (j = 1,...,5). Consider z;; € Int(Tj1) NV,
Tj2 € Int(ijg) NV, where T} 1, T} are the tiles incident to E;. Connect
zj1 and xj2 by an edge EJ such that hE} = E} V h € Stabg(E;). Form
HE}UHE;U---UHE?. This is the skeleton of an edge-to-edge tiling 7*
where pairs of points from V lying on tiles which are adjacent to an edge of
T are joined to form edges of T*.

The vertices of T* are elements of V and its tiles are d-gons, d > 2.
A vertex V of T with valence d will give rise to a d-gonal tile T* in T7,
V e Int(T™).

Since HT* = T7*, it follows that H < G*, where G* is the symmetry
group of 7T*.

If G* = H, then T* is a (7, §,t) tiling since V = Hzqy U Hxo U--- U Har
and 7" = HE{UHE3U---UHE?. Moreover, since every tile of 7* contains
a vertex of T, and H forms ¢ orbits of vertices in T, then it follows that H
forms ¢ orbits of tiles in T*.

Suppose G* > H. If g1o] = ac; for some g1 € G*\ H, =} € Hz;, :U;‘ € Hx;,

7 vertices of 77, 4,5 € {1,2,...,T}, i # j, 7 > 1, then there are a orbits
of vertices under G* where a < 7. If g2F; = E] for some g» € G*\ H,
E, € HE}, E| € HE;, E,, E| edges of T*, k,l € {1,2,...,5}, k # [,
5 > 1, then there are b orbits of vertices under G* where b < 5. Finally, if
g3y, = T for some g3 € G*\ H, T;;, € HT,, Tx € HT}, Ty, T, tiles of
T* m,n € {1,2,...,t}, m # n, t > 1, then there are ¢ orbits of tiles under
G* wherec<t. If r=1,5=1ort=1,then wehavea=7,b=50orc=1
respectively. Thus, 7* is an (a, b, ¢) tiling where a <7, b < 5, ¢ < . O

*
T, T
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We assume in Theorem 3.1 that the symmetry group G of the tiling
T is a plane crystallographic group for a tiling of E? or H?, or a finite
spherical group for a tiling of S2. We assume that the vertices, edges and
tiles of T have stabilizers Cy or Dy (cyclic group of order d or dihedral
group of order 2d, respectively) in G. Consequently, as a result of the
construction, the symmetry group G* of the resulting tiling 7* is either a
plane crystallographic group or a finite spherical group. The vertices, edges
and tiles of 7 have stabilizers Cy or D, in G*.

An edge E} (j = 1,...5) used in the construction of 7™ in Theorem 3.1
may be one of five types, shown in Figure 2.

(4) (B) () (D) (E)

FIGURE 2. Edge E} with (A) Staby(E}) = Do (B)-
(C) Stabm(E}) = Di; (D) Stabp(E}) = Co; and (E)
Stabpy (E}) = Cy.

Illustration 3.2. We show the application of Theorem 3.1 via a construc-
tion of a (4, 3,2) tiling of E2. We consider a starting tiling 7 of E? consist-
ing of regular 4-gons with symmetry group G = (P,Q, R) = %442 (Fig-
ure 3A). Take the subgroup H = (Q,R, PQPRQRPQP) = %442 of G
where [G : H] = 8. Under H, T forms four orbits of tiles, three or-
bits of edges and two orbits of vertices (7 = 4, 5 = 3, ¢ = 2). Consider
tiles Th € HTy, T, € HTy, T35 € HT3, Ty € HT, (Figure 3B). Choose
x1 € Int(T1), o € Int(T), x5 € Int(T3), x4 € Int(Ty), satisfying hiz) = x;
Y h € StabH(Tl) = <Q,R> = Dy; hoxo = 29V hy € StabH(Tz) = <R> = Dq;
hsxs = x3 V hg € StabH(Tg) = (Q,PQPRQRPQP) & Doy hgyry = x4 ¥V
hy € Staby(Ty) = (R, PQPRQRPQP) = D, (Figure 3C). Then we form
V = HxzyUHzo U Hxs U Hxy (Figure 3D), consisting of the vertices of the
tiling we are constructing.

Now, consider Fy € HEy, Ey € HE5, E3 € HEs (Figure 3E). Consider
the vertices 11 € Int(T1;) NV and z12 € Int(T12) NV where 777 and
T1 5 are tiles incident to Fq. Connect 1,1 and 212 by an edge Ej satisfying
hEf = E}V hy € Stabg(E1) = (R) = D; (Figure 3F). In a similar manner,
edges E5 and Ej are constructed satisfying ho E5 = E3 V hy € Staby (Es) =
C1; hsE5 = E5 ¥V hs € Staby(E3) = (R) = D; (Figure 3G). Then we form
T*=HE}UHE; U HE] (Figure 3H). T* is an edge-to-edge (4, 3,2) tiling
with symmetry group G* = H = (Q, R, PQPRQRPQP) = x442.

The next two results will be helpful in describing (a, b, ¢) tilings obtained
from the previous theorem.
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FIGURE 3. Construction of a (4, 3, 2) tiling 7* from the tiling
T by 4-gons: (A) T with axes of reflections P, @, R; (B) tile
orbit representatives under H = (Q, R, PQPRQRPQP) =
x442; (C) vertices z1 € Int(T1), x2 € Int(Ty), x3 € Int(T3),
zg € Int(Ty); (D) V = Hxy U Hza U Hxz U Hzxy; (E)
edge orbit representatives Ej, Fy, E3 under H; (F) edge
Ef where Staby(E}) = (R) = Dq; (G) edges E5 and Ej
where Staby (E3) = C; and Stabpy(E3) = (R) = Dy; and
(H) (4,3,2) tiling 7* = HEf U HE} U HES.

Theorem 3.3. Suppose G acts transitively on the set O of tiles, edges or
vertices of a tiling of X. Let H < G. If H forms n orbits of tiles, edges or
vertices in O and Stabg(z) is finite, then

where x;, 1 = 1,...,n, is a representative of an H orbit of vertex, edge or
tile and x € O.

Proof. Since H forms n orbits of tiles, edges or vertices in O then O =
HrxiUHaxyU---UHx,, where z; € O, i=1,...,n.

Let x € O. Since G acts transitively on O, for all :cz € Hz;,5=1,2,...,
there exists gf € G such that g{ 2 = /. We now show that the set {g €

i

Glgr = x{} is the coset g?S where S = Stabg(z). Consider g* € {g €

Glgz = zl}. We can write g* as g* = (gf)(gf)*lg* where (g7 )" 'g* € S since
(g)tg*x = (¢))~'a! = z so that g* € ¢g/S. Conversely, if g* € g/ then

(2

_ . J : _J R B | _J
g*=glg, g€ S. Since g*z = gl gz = g/a = x] then ¢* € {g € G|gx =z} }.
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Construct the set X; = U2, g; 75, We show U, X =G. lfgr e U | X; =
Uiy U52, g]S, then g* € G. Conversely, if ¢* € G, then g*x € Hx; for
some i € {1,2,...,n}. Thus, g*x = ] for some j € {1,2,...} and hence
g € {g € Glgz = x]} = ¢/S. Consequently, g* € X; and therefore,
U, X =G.

The number of elements of H in S is |S1| where S; = Staby(x1) and since
H acts transitively on Hx1, H must also contain [S;] elements from each

coset gls in X;. This results to |S|/|S1| cosets of H in G. In general, for
each X;, we obtain |S|/]S;| cosets of H in G. Since the union of all cosets
in X1,Xo,...,X,, is G, we obtain

|S| StabG
Z | Z |StabH
cosets of H in G. O

Corollary 3.4. Under the conditions that Theorem 8.8 holds, if x € O,
then n < [G : H] < n|Stabg(z)|.

Proof. We have 1 < |Stabg(z;)| < |Stabg(z)| for all i = 1,...,n. If
| Stabg(x;)| = 1 for all 4, then [G : H] attains its maximum value which
is n|Stabg(x)|. On the other hand, if |Stabg(z;)| = |Stabg(z)| for all i
then [G : H] attain its minimum value which is n. Thus, n < [G : H] <
n|Stabg(x)|. O

In Theorem 3.1, the following result is true.

Theorem 3.5. Let T be an (a,b,¢) tiling. If H forms a orbits of vertices,
b orbits of edges and c orbits of tiles in T* then

(3.1) a<eG:H < (a—c+1)) |Staba(T)];
i=1
B B b
(3.2) b<bHG:H|<(b—b+1)> [Staba(E))|; and
j=1
(3.3) c<alG:H| < (c—a+1))_|Staba(Vi)]
k=1
where Tj, 1 = 1,...,¢ are tile representatives in each orbit of tiles, Ej,
j=1,...,b are edge representatives in each orbit of edges, Vi, k=1,...,a

are vertex representatives in each orbit of vertices under G.

Proof. We prove only (3.1). The inequalities (3.2) and (3.3) can be shown
using a similar argument. Since T has ¢ orbits of tiles under G, we can write
T = GT1UGT>U- - -UGT: where Tj, i = 1, ..., ¢ are tile orbit representatives.

Suppose the tiles in GT; form n; orbits under H, that is, GT; = HTM U
HTM U---u HTW where Tm, 7 =1,2,...,n;, are tile representatives in
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each orbit in GT; under H. Thus, 7 has Y5, n; orbits of tiles under H.
Since T* has a orbits of vertices under H, it follows that a = > 7 | n;.

Now, since G acts transitively on GT; and GT; forms n; orbits under H,
then by Corollary 3.4, we have n; < [G : H] < n;| Stabg(T;)|. Thus,

(3.4) > n <G HJ <> gl Staba(T;)].
i=1 i=1
Since n; —1 < 3¢ (n; — 1) for all i = 1,2,...,¢ and a = >5_
follows that n; < a — ¢+ 1. Hence, (3.4) becomes

a<elG:H] < (a—c+1)> [Stabg(T))|.
=1
[l

Remark 3.6. From (3.1)-(3.3), we obtain, respectively, ¢ < a, b < b, a < c.

4. (a,2,c) TILINGS OF E2 AND S?

In this part of the paper, we apply the results given in the previous section
to arrive at (a, 2, ¢) tilings of E? and S2.

In the construction of an (a,2,c) tiling we have b < 2 by Remark 3.6
so the starting tiling 7 to consider has one or two orbits of edges under
its symmetry group, that is, 7 is isotoxal or 2-isotoxal. It is ideal to use a
homeotoxal or a 2-homeotoxal tiling provided in [17] as the starting tiling 7.
Recall that a tiling of E2 (or S?) is said to be homeotozal or 2-homeotozal if
the group containing the homeomorphisms of E? (or S?) that map the tiling
onto itself, form one orbit or two orbits of edges, respectively. Note that if the
edges of a 2-isotoxal tiling form two transitivity classes under its symmetry
group, then the edges form one or two transitivity classes under the group
of homeomorphisms sending the tiling to itself. In which case, a 2-isotoxal
tiling is necessarily either homeotoxal or 2-homeotoxal [17]. Similarly, an
isotoxal tiling is necessarily a homeotoxal tiling.

The entire process in obtaining the complete list of (a, 2, ¢) tilings of E?
and S? is outlined below.

(1) We take each of the homeotoxal and 2-homeotoxal tilings provided
in [17] as a starting tiling 7.

(2) Given a starting tiling 7 with automorphism group G, we consider
every subgroup H of G, distinct up to conjugacy, satisfying 2 < b[G :
H] < (3-b) 22:1 | Stabg(E;)|. We use the computer software GAP
[14] in arriving at the subgroups of G.

If 7 is a homeotoxal tiling, then b = 1 and we take every subgroup

H of G satisfying 2 < [G : H] < 2| Stabg(E1)|. On the other hand,
if 7 is a 2-homeotoxal tiling, then b = 2 and we take every subgroup
H of G satisfying 1 < [G : H] < (|Stabg(E1)| + | Stabg (E2)|) /2.
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(3) For every subgroup H in the list of subgroups obtained in Step 2, we
check if it forms two orbits of edges in T (5 = 2) to be assured that
we will get an (a,2,¢) tiling when applying Theorem 3.1. If § = 2,
then we proceed with the method given in Theorem 3.1 paragraph
2 and construct 7* = HE} U HE3. In the case of 7 a homeotoxal
tiling, the edges E] and E5 must be carefully selected such that
gET # E5, where g € G\ H so as not to obtain an (a, 1, ¢) tiling.

From the process outlined above, of taking all the homeotoxal and 2-
homeotoxal tilings, and considering all the qualified subgroups (distinct up
to conjugacy) of the automorphism group of a homeotoxal or two homeotoxal
tiling, we obtain the complete list of (a, 2, ¢) tilings of E2 and S? distinct up
to homeomerism. The results are presented in Theorem 4.1 and Table 1 for
E2, and in Theorem 4.3 and Tables 2 and 3 for S?. The tilings with tiles
that have disconnected intersections are not included.

We recall that two tilings of E2 (or S?) are said to be homeomeric provided
there exists a homeomorphism of E? (or S?) mapping one tiling onto the
other, which maps each symmetry of either tiling onto a symmetry of the
other tiling. Each homeomeric type of (a,2,¢) tiling appearing in Table 1
and Table 2 is described by its

a) symmetry group; and
b) edge transitivity symbol given by
S .= <m~1911 _nflz;pflg_qf14>51 <m§21.n§22;p§23.q§2‘1>52
Sj Sja. Sis Sjuns. : : .

where (mj P, )77 describes an edge orbit representative
E7, j =1,2. E7 is adjacent to an mj-gon and an nj;-gon, and the
endpoints (vertices) have valences p; and ¢;. A superscript Sj; , | =
1,...,4 of mj, n; (respectively p;, ;) is either Dy (dihedral group of
order 2d) or Cy (cyclic group of order d) denoting the group type of
the stabilizer of the corresponding tile (respectively, endpoint) in G*.
The superscript S; indicates the group type of Stabg«(E7) which is
either Dy or Cjy.

Each subgroup (distinct up to conjugacy) from the list in step 2 that forms
two orbits of edges in T yields an (a,2,c¢) tiling 7* with symmetry group
G* = H. This provides the information for a). The values for m, n, p, ¢ in
the edge transitivity symbol point to the homeotoxal tiling or 2-homeotoxal
tiling used as the starting tiling 7. Both a) and b) are necessary to describe
a homeomeric type of (a,2,¢) tiling completely.

Two (a,2,c) tilings may have the same edge transitivity symbol, but are
not homemomeric because the tilings have distinct symmetry group types.
This is the case, for instance, for the (1,2,1) tilings no. 6 and no. 7 in
Table 1 which share the same edge transitivity symbol and have symmetry
groups of different Conway types. The Conway notation is the first criteria
to differentiate between symmetry group types, but for the situation where
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two tilings have symmetry groups with the same Conway notation, the po-
sitions of the fixed points and fixed lines of the distinct symmetries in the
corresponding fundamental regions may serve as a guide to distinguish be-
tween the symmetry group types of the two tilings. To illustrate this point,
the (1,2,1) tilings no. 5 and no. 6 in Table 1 have the same edge transi-
tivity symbol, and have the same Conway symmetry group type, namely,
x x. For tiling no. 5, each axis of glide reflection in the fundamental region
shown passes through edges belonging to the same edge orbit (Figure 4A).
For tiling no. 6, only one of the axes of glide reflections in the fundamental
region passes through edges belonging to the same edge orbit (Figure 4bB).
In tiling no. 5, there are two adjacent edges belonging to the same tile that
are sent to each other by a glide reflection, and in tiling no. 6, there are no
two adjacent edges belonging to the same tile that are sent to each other by
a glide reflection. Thus, these tilings are not homeomeric.

FIGURE 4. Non homeomeric (1,2,1) tilings with

symmetry group XX and edge transitivity symbol
<4C1_401;401.401>C1 (401.401;401'401>Cl'

We now present the result on (a,2,c) tilings of E2. The tilings are listed

in Table 1 with their respective symmetry groups and edge transitivity sym-
bols.

Theorem 4.1. There are 104 (a,2,c) tilings of E? distinct up to home-
omerism. Among these there are 15 (1,2, 1) tilings, 12 (1,2,2) tilings, seven
(1,2,3) tilings, 12 (2,2,1) tilings, 34 (2,2,2) tilings, eight (2,2,3) tilings,
seven (3,2, 1) tilings, eight (3,2,2) tilings and one (3,2,3) tiling of E2.

We give an example of the spherical case.

Ilustration 4.2. Figure 5 shows the construction of (1, 2, 2) tilings from the
infinite sequence of tilings (2-homeotoxal tiling 2HTS53(n)) Ty, := (32%;4.n)
(32;42) for n = 3,5,6 (Figure 5A) with symmetry group G, = (P, Q, R) =
xn22. As Stabg, (E1) = D; and Stabg, (E2) = Ds, where Ej, Ey are
edge orbit representatives under G, we choose subgroups H, such that
1 < [Gp : Hy] < 3. In particular, we take H,, = (QP, RP) = n22, |G, :
H,| = 2 (Figure 5B), where H,, forms two orbits of edges in 7,. Figures
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5C-5D show the construction of the (1,2, 2) tilings 7, = H, E{ UH,E5 with
symmetry group G} = H,, = (QP, RP) = n22 and edge transitivity symbol
Sy 1= (4020 391 361)C1(4C2 4C2; 3C1 301)C2 (Figure 5E).

The following theorem enumerates the (a,2,c) tilings of S2. The tilings
are listed in Tables 2-3 with their respective symmetry groups and edge
transitivity symbols.

Theorem 4.3.

i) There are 16 infinite sequences (each depending on a positive integer
n) of (a,2,c) tilings of S*. Among these sequences, five are (1,2,2)
tilings, five are (2,2,1) tilings, four are (2,2,2) tilings, one is a
(2,2,3) tiling and one is a (3,2,2) tiling of S%.

ii) In addition to i), there are 82 (a,2,c) tilings of S*>. Among these
there are two (1,2,1) tilings, 12 (1,2,2) tilings, siz (1,2,3) tilings,
12 (2,2,1) tilings, 24 (2,2,2) tilings, ten (2,2,3) tilings, siz (3,2,1)
tilings and ten (3,2,2) tilings of S?.

5. (a,3,c) TILINGS OF [E?

In this section, we present a list of (a, 3, ¢) tilings. These have been arrived
at from homeotoxal and 2-homeotoxal tilings from [17]. Moreover, we also
considered possible starting tilings from the list of a-uniform tilings from
[13]. These are (a, b, ¢) tilings by regular polygons where a < 4.

In arriving at the (a,3,c) tilings of E?, we follow a similar process used
for obtaining the (a,2,¢) tilings. Given a starting tiling (any of the afore-
mentioned types) with an automorphism or symmetry group G, we consider
every subgroup H of G, distinct up to conjugacy, that satisfies 3 < b[G :
H <(3-b+1) 22:1 | Stabg Ej|, where E; is an edge orbit representative;
and such that H forms three orbits of edges in 7. In constructing the tiling
T*, the edges EY, E3, E3 must be carefully selected such that gE # E7,
where g € G\ H and 4,5 € {1,2,3}, ¢ # j to ensure deriving an (a,3,c)
tiling.

The edge transitivity symbol for an (a,3,c¢) tiling is S =
<mA15'11 ‘nfm : pf13‘qi914>5'1 <m§21 ‘ngm : ngS-Q§Q4>SQ <m§31 .71?32 : p§33‘q3534>53‘ The
description of the symbol follows that of an (a,2,¢) tiling described in the
previous section.

We now present our result on (a,3,c) tilings of E? obtained from the
method described above. Each homeomeric type of (a, 3, ¢) tiling is described
by its symmetry group and edge transitivity symbol. The tilings are listed
in Table 4.

Theorem 5.1. There exist 170 (a, 3, c) tilings of E? up to homeomerism de-
rived from 1-homeotozal, 2-homeotoxal and a-uniform tilings, a < 4. Among
these there are seven (1,3,1) tilings, 11 (1,3,2) tilings, five (1,3,3) tilings,
one (1,3,4) tiling, 14 (2,3,1) tilings, 33 (2,3,2) tilings, 28 (2,3,3) tilings,
five (2,3,4) tilings, eight (3,3,1) tilings, 30 (3,3,2) tilings, 13 (3,3, 3) tilings,
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¢
¢

FIGURE 5. Construction of a (1,2,2) tiling 7, from 7, :=
(32;4.n)(3%,4%), n = 3,5,6: (A) T, with planes of reflections
P, Q, R; (B) 7, with axes of rotations QP and RP of sub-
group H, = (QP, RP) = n22; (C) V = Hyz1; (D) edges E
where Stabg,, (E7) = C; and Stabg,, (F5) = (RP) = Cy; and
(E) T = H,Ef U H, E}.

133
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four (3,3,4) tilings, one (4,3,1) tiling, five (4,3,2) tilings, four (4,3,3)
tilings and one (4,3,4) tiling of E2.

6. (a,b,c) oF E? TILINGS WITH CONVEX TILES

In this section we discuss this interesting question: which (a, b, ¢) tilings
of E? could be realized by convex tiles only?

Note that every tiling of E? by convex tiles is polygonal, where an n-gon
(n > 3) is a polygon with n corners and n sides, each of which is a straight
line segment joining two corners [18].

To answer the question, we recall that in the process of construction
of an (a,b,c) tiling outlined in Theorem 3.1, we choose an edge Ej* such
that hEY = E7 for all h € Staby (E;) where there are several possibilities
in constructing the edges depending on the group structure of Staby (E}).
Thus, an (a,b,c) tiling can be realized with convex tiles only, that is, the
tiling can be constructed using straight edges only, if

(6.1) Staby (E;) = Dy V j, E; an H edge orbit representative.

In the construction of an (a, 2, ¢) tiling with convex tiles only, one can first
check for a given starting tiling 7 if each of its edge orbit representatives has
a stabilizer group structure Ds in the symmetry group G of 7. Not all edges
of a 2-homeotoxal tiling of E? satisfy this condition. If 7 is a homeotoxal
tiling of E2, the condition is satisfied by the triangle tiling (32;62), square
tiling (42;42) and the hexagonal tiling (62; 3%). The next step is to check for
each of these three tilings if all the edge orbit representatives of the tiling
have stabilizer Dy under a subgroup H used to construct an (a,2,c) tiling.
Using Theorem 3.3, the subgroup H satisfying (6.1) is of index 2 in G. It
turns out that there is a situation where this happens, and this is when the
starting tiling is 7 := (4%;4%) with symmetry group G = (P, Q, R) = %442
and H = (P,R,QPQ,QRQ) = %2222, [G : H| = 2. The resulting tiling
is the (1,2,1) tiling appearing in no. 1 in Table 1. We have the following
result.

Proposition 6.1. There is only one (a,2,c) tiling of E? that can be realized
by convez tiles only, the (1,2,1) tiling given in no. 1 in Table 1.

For the case of the (a,3,c) tilings of E?, a check on the starting tilings
(32;62), (42;42) and (6%;3%) confirm that not all the edge orbit representa-
tives have stabilizer Dy under a subgroup H used to construct an (a,3,c)
tiling. Thus, we have not found an (a, 3, ¢) tiling of E? that can be realized
by convex tiles only.

7. (a,b,c) TILINGS OF H?

Hyperbolic (a, b, ¢) tilings remain scarce in the literature. In this section,
we exhibit examples that are obtained from regular and semi-regular tilings.
In constructing an (a,b,c) tiling from a regular or semiregular tiling with
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symmetry group G, it is helpful to consider Equations (3.1)-(3.3) in finding
a subgroup H to generate the desired (a, b, ¢) tiling.

An example of a (2,2, 2) tiling 77" is shown in Figure 6A. 7" is obtained
from a regular tiling 77 := (42;5%) by 4-gons with symmetry group G; =
<P1,Q1,R1|P12 = % = R% = (P1R1)2 = (P1Q1)4 = (Q1R1)5> >~ x542. An
index 6 subgroup H; = (Q1P1, R1Q1R1) = 4+ 5 is used to obtain 77" which
has symbol S := (5P1.5P1;4P1 4C4)C1(5D1 5D5. 4D1 4P1yD1 and symmetry
group G7 = Hy = 4 % 5.

A second example is the (4,3,2) tiling 75" shown in Figure 6B obtained
from the semiregular tiling 75 = (4.6;42) by regular 4-gons and 6-gons using
the subgroup He = <P2,Q2,R2Q2P2Q2R2> = x663. Here [Gg : HQ] =4
where Gy = (Ps, Q2, R2| Py = Q3 = R} = (PRs)? = (P2Q2)® = (Q2R2)*) =
%642 is the symmetry group of 73. The resulting tiling 75" has symbol Sy :=
(4P1 4D1; 4 D1 6P6) D1 (4D1 4D1; 4P1 gD3)C1(4P1 41, 4D1 §D6\ D1 and symme-
try group G5 = Ha = %663.

Finally, we have the (3,2,2) tiling 75" shown in Figure 6C. This tiling
is obtained from a semiregular tiling 73 := (3.8;4.4) by 3-gons and 8-gons
using a subgroup Hz = (P3, R3, Q3P3Q3) = %842, where [G3 : Hj] = 3,
G3 = (Ps3,Qs3,R3|P§ = Q3 = R} = (P3R3)* = (P3Q3)® = (Q3R3)?) = %832
is the symmetry group of 73. T3 has symbol Sz := (471.4P1; 301 8Ds) D
(4P1 4Pz, 301 8D\ and symmetry group G4 = Hs = x842.

FIGURE 6. (A) (2,2,2) tiling; (B) (4,3,2) tiling; and (C)
(3,2,2) tiling of H?2.

8. CONCLUSION AND FUTURE OUTLOOK

In this work, a method is presented of constructing edge-to-edge (a, b, ¢)
tilings of X (E2, H? or S?). Parameters are given for the starting tiling with
symmetry group G and its subgroups for which, through the given method,
an (a, b, c) tiling is obtained.

Applying the given method facilitates the complete enumeration of (a, 2, ¢)
tilings of E? and S? up to homeomerism based on the symmetry groups of
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the tilings and their edge transitivity symbols. The approach employed is ex-
haustive by considering all homeotoxal and 2-homeotoxal tilings as starting
tilings, and determining all the possible subgroups (distinct up to conju-
gacy) of their automorphism groups with the aid of the software GAP that
will give rise to (a,2,c) tilings. From the enumeration in Theorem 4.1, we
confirm the existence of 34 normal (2,2,2) tilings of E? that coincide with
the tilings obtained by Dress and Scharlau [12]. In their study, they enumer-
ated the 37 types of minimal, nontransitive, equivariant tilings of E2, three
of which are tilings that have tiles with disconnected intersection. In [6],
Delgado-Friedrichs and O’Keeffe enumerated seven (3,2, ¢) tilings of E? and
12 (3,2, ¢) tilings of S2. These are tilings numbered 94, 98, 99, 100, 101, 102
and 103 in Table 1 and tilings numbered 69, 71, 73, 74, 75, 76, 77, 78, 79, 80,
81 and 82 in Table 2. Our method points towards nine additional (3,2, c)
tilings of E2, numbered 89, 90, 91, 92, 93, 95, 96, 97 and 104 in Table 1; four
additional (3,2, ¢) tilings of S?, numbered 67, 68, 70 and 72 in Table 2; and
one additional infinite sequence of (3,2, ¢) tiling of S?, numbered 15 in Table
3. The list of (a, 2, ¢) tilings of E? and S? is also in essence, the enumeration
of 2-isotoxal tilings of E? and S2. In [12], the numbers of 2-isotoxal tilings
of E? and S? are provided by the authors, but no lists are given.

Our work also gives a list of (a,3,c) tilings of E2. Although the enu-
meration is not complete as there is no known list of 3-homeotoxal tilings,
however, we were able to arrive at a substantial list of (a, 3, ¢) tilings that are
obtained from homeotoxal and 2-homeotoxal tilings, as well as from (a, 3, ¢)
tilings consisting of regular polygons, a < 4. In the process, 11 (4,3,¢)
tilings are obtained, numbered 160-170 in Table 4 that contribute to the
search for (a,a — 1, ¢) tilings that are not found in the literature. An inter-
ested reader may refer to [28] for details on the construction of the tilings
in Tables 1-3.

There are other methods that may be employed to construct (a,3,c)
tilings to add to the list. One may start with a uniform tiling having one
or two orbits of edges and consider various dissection techniques to arrive
at an (a, 3, c) tiling. For example, starting with the (1,2,2) uniform tiling
T := (3.122) (Figure 7TA), dissecting the edges of its 3-gons gives the (2,3,3)
tiling in Figure 7B; and dissecting the red and blue edges, respectively of its
12-gons, yields the (2,3,3) tiling shown in Figure 7C and Figure 7D. These
tilings are of different homeomeric types: each having symmetry group type
x632 and edge transitivity symbols labeled in the caption of Figure 7. It
will be interesting as a future study to arrive at a systematic way of carry-
ing out dissections on uniform (a, b, c) tilings to arrive at (a/,¥, ') tilings,
b > b, and completing the list of (a, 3, ¢) tilings in the process. A dynamic
geometry software can be helpful for this purpose (see another related study
[4]).

A natural extension of this paper is to consider the three-dimensional
analogue of the (a,b,c) tiling, that is, an (a,b,c,d) tiling having a orbits
of vertices, b orbits of edges, ¢ orbits of faces and d orbits of cells. One
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Sreeee

3D1 18D‘3 3D1 4D1 (et 3D3 4D1 3D1 3D1>D1 4D1 6D3 3D1 4D1 Cq

18D5 18D6 301, 3D1 Dy 4D1 4DP1; 3D 6D2 Dy 4D1 4D1, 301, 3D1 Dz

<3D1 3Ds 4D1 4D1>D1 <4D1 6Ds 6Pz, 6D2>D1 <4D1 6D6 401, 4D1>D1
(a) (B) () (D)

FIGURE 7. (A) The (1,2,2) uniform tiling 7 := (3.12%); and
(B)-(D) (2,3,3) tilings obtained from 7 through dissection.
The edge transitivity symbols of the (2,3, 3) tilings are pro-
vided.

FIGURE 8. (A) The fundamental regions of H, with axes
of reflections of generators of H,, n = 1,2,3,4; (B) (1,1,2)
tiling obtained using Hip; (C) (2,3,4) tiling obtained using
Hs; (D) (4,6,6) tiling obtained using Hs; and (E) (6,10,9)
tiling obtained using Hy.

can study how the method discussed here can be adapted to systematically
construct (a, b, ¢, d) tilings.

Another problem that may be considered is to determine (a,b,c) tilings
with a particular symmetry group type, from a given starting tiling with
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symmetry group G. The well-known characterization of the subgroup struc-
ture of plane crystallographic groups may be helpful in this direction [25, 26].
For example, given a tiling by squares with symmetry group G = (P, @, R)
x442. Consider the subgroup H, = (P, RQR,(QPQR)"Q(QPQR)™")
%442 of index 2n?. By analyzing the number of vertices, edges and tiles in a
fundamental region for all n, a conjecture on the type of (a, b, ¢) tiling can be
obtained. H; gives the (1,1,2) tiling 77" (Figure 8B), H» gives the (2, 3,4)
tiling 75" (Figure 8C), H3 yields the (4,6,6) tiling 75* (Figure 8D) and Hy
yields the (6,10,9) tiling 7, (Figure 8E). In general, starting with a square
tiling with symmetry group G, we obtain a tiling 7, with symmetry group

H,, = %442 and vertex-edge-tile transitivity as <[(nzl)2J , "2;'", L("f)w).

[l 11
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TABLE 1. (a, 2, c) tilings of E2. The symmetry group in Con-
way notation and edge transitivity symbol of each tiling are
given. Vertices, edges or tiles belonging to one orbit under
the symmetry group of the tiling are given the same color.
Tilings numbered 1, 2, 3, 4, 5, 6, 7, 47, 48, 49, 50 and 104
are self-duals.

1 (1,2,1);%2222;
(4P2.4Pz2; 4P2 4P2)D2

(4P2 4Pz, 4P2 4P2)D2

2 (1,2,1);%
<4D| 4D1 4D1 4D|>D|
4D1 4D1 4D1 4D1 Dy

3 (1,2,1);22%;
(4P1.4P1;4P1 4P1)C2
(4P1 4P1; 4P1 4P1)C2

4 (1,2,1);2222;
(492402, 4C2 4©2)C2

(42 4C2;4C2 4C2)C2

Hi

5 (1,2,1);
(461 41, 4c| 4(, e
401 401 461 4C1) C

6 (1,2,1);xx;
4C1 .401;401 A4C'1>C'1

(491 491541 41

i

(1,2,1);05
461 4C'1 4C'1 401>C’1
(401, 401 4C1 4C1)C

8 (1,2,1);22%;
4P1 4P1;4C2 4C2)C2

(4P 4P1; 42 4C2)Pn

M

A
9 (1,2,1);22%;
4C2 402, 4D1 4D1)C2
(492,42, 4P1 4P1yP1

s

10 (1,2,1);2%22;
(6P2.6P2; 371 371)C2

(672.672;3P1.3P1) P2

11 (1,2,1);%x
(671.671;3%1.391)1
(61615361 391) P

e

12 (1,2,1);22x;
(602 602 3C'1 3CJ>C’1
(62,602,301 301)C

13 (1,2,1);2%22;
(371.3P1;672.672)C2

(3P1.3P1, 602 gP2) D2

14 (1,2,1);%x
(3%1.391; 671,671y
(391,391,671 .6P1) P

15 (1,2,1);22x;
(301 3C'1 602 6C2>Cl

<301 f;Cl 602 602>Cz

16 (1,2,2);%632;
(673.673;3P1.3P1) P2
(6P3.6Ps;3P1 3P1y D1

e

17 (1,2,2);632;
<601 6C1 301 3CJ>C2
(673605 3C1 301)C

R
g
VAVAVAVAVAY)

18 (1,2,2);%x;
(871.3P1;6P1.601)

(301 3P1; 601 6P1) 1

19 (1,2,2);2%22;
(4P2 4Pz, 4C2 4C2) D1

(4P2 4P2;4%2 42) D1

20 (1,2,2);22x;
(492.492; 42 4©2)
(492 .4C2; 402 42\

21 (1,2,2);4%2;
(3P1.4%4; 501 501y
(371 301,501 5D1)D2

B

22 (1,2,2);%632;
303 1200 301 31-)1 D1
12[’G 1206301, 3”1 b2

23 (1,2,2);3x3;
(3%.12P3; 31 361) 1
(1203 12P3; 361 301y D1

24 (1,2,2);632;
(393,126,391 361)1
(12%.12%%; 31 361)C2

25 (1,2,2); %442;
(8P1.8Pa; 301 3P1yD2
(4P4.8P1; 301 3b1yD1

L] }
=
S

26 (1,2,2);4%2;
(8P2.8P2; 301 361y D1
<404.8D2;3CI.301>01

o

27 (1,2,2);442;
(8%, 804 301 301y Cy
404 801 301301} c'

28 (1,2,3);3x3;
(3P1.3D3; 601 D1y D1
(3P1.3%; D1 6P1)C1

29 (1,2,3);x333;
(8Ds.6P3;4P1 4P1) P

(3P3.6P3;4P1 4P1yD1

30 (1,2,3);333;
(393,695,491 4°1)

(393.693; 41 4611

31 (1,2,3);%442;
(4772.4174 4171 4771)771

(4P2 4P1;4P1 4P1yD1

22

32 (1,2,3);442;
402 404 401 401 Cy

<4('2 404 401 4cl>cl

33 (1,2,3);%632;
(373472, 41 4P1yD1

(4P2.6P0;4P1 4Py P

34 (1,2,3);632;
(393.462; 41 4C1)C1

(492.6%; 491 491

)
A\YAWAVAVAWA

35 (2,2,1);%632;
(3171 3771 6773 6D6>Dl

<3D1 301 ; 6P3 _6D3>D2
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36 (2,2,1);632;
(391.361;6%.6%)
(391.3%;6%.6%)

37 (

2,2, 1);%%;
(671.671;3P1.3P1)1

<6D‘ 601 ; 3P1 301 >D|

38 (2,2,1);2%22;
(4€2 4C2; 4P> 4P2)D1

(492 4C2, 4P 4D2)Dr

39 (2,2,1);22x;
(491401, 402 4C2)C

(491491492 4C2)

40 (2,2,1);4%2;
(5P1.5P1;3P1 404

(D1 5D1; 301 3D1) D2

N ﬂ‘ﬂ (7
PK
S SO50<0
XD
VZAN\V/ZAN\
41 (2,2,1);%632;
(3P1.3P1;3P3 12P6) D1
(3P1.3P1;12P6 12P6) P2

SRR
ORI
QIR
EREY
LR
42 (2,2,1);3%3;
(391,391, 3% 12P3)

(3¢1.391; 1273 12P3)P1

43 (2,2,1);632;
(391,391, 3% 120) 1

(3¢1.391;12% 1292

44 (2,2,1);+442;
(301 301, 8Ps gP4) D2

<3D1 .3D| ;4D4A8D4>D1

45 (2,2,1);4%2;
(361,361, 8P2 gP2) 1

<3C‘1 ‘3(11 :4(}4A8D2>C‘

46 (2,2,1);442;
(391.3¢1;894.804)C2

(30] A3C‘] ; 46448(}“)(}‘

47 (2,2,2);2%22;
(41 4P2;4P1 4P2)Cr

48  (2,2,2);#x;
(4P1.4P1; 41 4Py
(4P1.4P1; 41 4Py

49 (2,2,2);22%;
(492.4P1;492 4P1YO

<402'4D|;402A4D1>C‘1

50 (2,2,2);2222;
(4€2 402, 4C2 4C2)C1

(4C2 402, 4C2 4C2)C1

51 (2,2,2);%632;
<6D2 AGDZ; 3D1 _3D3>D1

(672.67¢; 371 3P1y D1

2

52 (2,2,2);3%3;

Dy 4Dy, 4Dy D1\ C2o
(471 4P1;4P1 4P1)

C3 pD3, oDy oD1\Cqp
(6C5.673; 3P 3P1)

(655 .675; 3P1 3PP

53 (2,2,2);632;
(692.692;391.3%)

(692.6%; 31 361y

\VAVQVAYQVAVS
ANANAN

YN YN
AINANAN
54 (2,2,2);%632;
(3P1.3P1;672.670) 1
<31:>1 .3D3; 6D2A6D2>D1

VawaY,Vaway,
SR
Vaw),Vaw,
NAEAAA
Vawa,Vaw,
NASANA
55 (2,2,2);3%3;
(3D1 301 ; 6Cs A6D3)D1
<3D1 301 ; 6Cs A6D3)C‘

%

SOARAL
SRSNSY
AN

56 (2,2,2);632;
<3Cl _301 ; 602_605>Cl
(391.3%,;6%2.692)

57 (2,2,2);2%22;
<402_402;3D1_6D2>D1

(492 4P2; 3P1 gP2)

0
0"'

R
00
SRR
)
o
o

s

N

2

58 (2,2,2);2%22;
<3D1_6D2;462_402>D1

(3P1.6P2; 462 4P2)

59 (2,2,2);3%3;
(5015015395 4P1)

(373,501,401 4P1yD1

60 (2,2,2);3%3;
(3C3_4D1;5D1_5D1>C1

(4P1.4P1; 303 501D

61 (2,2,2);%2222;
<4D2.6D2; 3D1_4D2>Cl
(672.6P2; 371 3P1yD2

e

62 (2,2,2);%2222;
<3D1_4D2; 4D2_6D2>Cl
(3P1.3P1;672.672) P2

63 (2,2,2);%632;
<3D3 _GD‘Z; 301 _3D1>D1
(672.672;371.670) 1

64 (2,2,2);3%3;
<303_6D1;301_301>C1
<6D\l6D1;301A6D3>C1

65 (2,2,2);632;
(303_602 ; 3(71 _3(71)(71
(602602 301 AﬁC@)D,

66 (2,2,2);+632;
(3P1.3P1;3P3 6P2) 1

(3P1.670;672.672) 1

67 (2,2,2);3#3;
(391.391;3% 6Py
(391.6"5;671.671)

68 (2,2,2);632;
(391,361, 3% 692) 1
(391.6%;692.62) 1

69 (2,2,2);%333;
(3Ps.9Ps;3P1 3P1) D1

(9P3 gPs; 301 3D3) D1

70 (2,2,2);333;
(303_903 ; 3(71 _301>Cl
(995.9%;3%1.3%)




142

TABLE 1. (continued)

MARK D. TOMENES AND MA. LOUISE ANTONETTE N. DE LAS PENAS

71 (2,2,2);%333;
(371.31;3P3.9Ps) D1
(3P1.3P3;9P3 gPs) 1

72 (2,2,2);333;
(391.391;3% 9%
(391.3%;9% 9%

73 (2,2,2);x442;
(672.672;3P1.4P1) D1

(4P 6P2; 301 301) 1

74 (2,2,2);4%2;
(6D1 .6D|;3C1 ‘4D2>C|
(494.671;371.391)4

75 (2,2,2);442;
(672.672;3C1.4%4)™
(491,672,391 391) A

76 (2,2,2);%442;
(301 .4P4; 672 P2) D1
(3P1.3P1,4P4 gP2)D1

7T (2,2,2);4%2;
(361,402, 6P1.621)1
(361.361; 404 D1y

78 (2,2,2);442;
(361 464, 6C2 6C2)Cn

(361.361;4%4 6C2)1

79 (2,2,2);4%2;
<804 .804; 3Dl ‘3Dl >Dl

(4P2 8C4;3D1 gD1y D

80 (2,2,2);4%2;
(3P1.3P1, 8% g0y
(3P1.3P1;4D2 gC4y

81 (2,2,3);%632;
(301,673 41 4Py
(301,670, 41 4P1yD1

82 (2,2,3);2%22;
(492402, 4P1 4P1) O
(492 402, 4P1 4P1)

83 (2,2,3);%632;
(3P1.4P2; 41 P3O

(3P1.676; 41 4P1)P1

84 (2,2,3);%442;
(3D1.4P2, 4P1 gP1yCn
(3P1.4Pa;4P1 4D1yD1

85 (2,2,3);%632;
(3P1.4P2; 471 12P6)
(301.3Ds; 4P1 4D1yDy

86 (2,2,3);%333;
(3P1.673;4P1.603) 1

(3P1.3P3; 41 4P1yDs

87 (2,2,3);*442;
(3P1.8P4;4P1 4P2) 1

(3P1.4P4;4P1 4P1yP1

88 (2,2,3);%632;
(3P1 12D, 4D1 4D2)C1

(3P1.3P3; 41 4P1yD1

89 (3,2,1);3%3;
(671671, 3P1 3P5) D1
(671671 ; 3P1.305)C

90 (3,2,1);%333;
<4D1 ‘4D1;3D3.6D3>D1
(4P 4P1;3P3 603) 1

91 (3,2,1);333;
<4<71 .401;3C3.603)Cl
(491.41;3% %)

N
n

A
(L
N

92 (3,2,1);*442;
<4D1_4D1;4D2A4D4>D1
<4D1 4P, 4D7A4D">D1

-

-

EATAR

93 (3,2,1);442;
(4C1.4€1; 42 4C3)Cr
(41 491542 4C3) O

94 (3,2,1);%632;
(4P1.4P1;3Ps 4P2yD1
(4P1.4P1; 4P2 gPe)D1

95 (3,2,1);63
(49141305 4C2)C
(491 491,492 6%)C

——

96 (3,2,2);%632;
(4D1 _4D2; 3D1 _6D3)cl

(4P1.4P1; 301 6Ps) P

97 (3,2,2);2%22;
(4P1 4P1;4C2 4P2)

<4D1 4P ; 402_4D2>Cl

98 (3,2,2);%632;
<4D1 4P ; 301 _6D6>Dl
(4P1.673; 31 .4P2)

99 (3,2,2);%442;
(4D1 4P ; 3D1 _4D4>D1
(4P1.8P4;3P1 4P2)C1

100 (3,2,2);%632;
<4D1 _12D5; 3D1 _4D2>Cl
<4D1 4P ; 301 _3D3)D1

101 (3,2,2);%333;
(4P 6P3; 31 6P3) 1
(4D1 »4D1;3D1 .3D3)D1

102

(3,2,2); x442;
(4P1.4P2; 301 g4y C1
(4P1 4P1; 301 4Pa) Dy

103 (3,2,2);+632;
(4P1.4P2; 301 12P6)C1
(4P1 4P1; 301 3Ps)

104 (3,2,3);+2222;
(4P1.4P2;4P1 4P
(4D1 .4D2; 4D1_4D2>Cl
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TABLE 2. (a,2,c) tilings of S?. The symmetry group in Con-
way notation and edge transitivity symbol of each tiling are
given. Vertices, edges or tiles belonging to one orbit under
the symmetry group of the tiling are given the same color.
Tilings numbered 1 and 2 are self-duals.

€
¢

1 (1,2,1);2%2;
<3D]‘3D];3D1.3D]>Cg

<3D1 301 ; 3DP1 3D >D2

2 (1,2,1);2x;
(391.391;391 391

(361.361; 361 301)C2

e

3 (1,2,2);3+2;
(3P1.3P1; 501 5P P2
(80139501 5P1)

O

4 (1,2,2);%332;
(675.673; 351 301 P2

(3Ps.673;3P1 3P1yD1

&

5 (1,2,2);332;
(692.6%2; 361 3912
(39,63 3¢1.361)C1

%

6 (1,2,2);%432;
(8P4.3P3; 301 3P1yD1
<8D448D4;3D1.3D1>D2

© Qe &

7 (1,2,2);3%2;
(872.39%;3% 39y
(8P2.8P2;3¢1 3¢y

8 (1,2,2);432;
(894.3%3; 361 361)C1
(894 .8%4;391 3¢1)C2

9 (1,2,2);%532;
(10P5.3P3; 3P1 3D1)y D1
(10Ps.10Ps; 3P1 3P1)D2

10 (1,2,2);532;
(1095.3%; 391 31
(1095.10%5; 31 361)C2

C1

&
S
@

&
&

11 (1,2,2);%432;
(673.4P4; 3P1 3P1yD1

(673,673,301 3P1) P2

12 (1,2,2);432;
6¢3.4C4; 301 361)C1

(693,693,361 3¢1)C2

13 (1,2,2);%532;
(6756733301 301y P2

(575.673;3P1 3P1) P

14 (1,2,2);532;
63.602;3C1,361)C2

(59563361 391)

15 (1,2,3);%332;
(3P3.4D2;4P1 4P1)D1

(3P3.4P2;4P1 4P1)P1

=
&

16 (1,2,3);332;
(363.4C2;401 401y
(392.42;4%1 491)n

17 (1,2,3); #432;
(373.4P2;4P1 4P1)D1

(4P1.4P2;4P1 4P1)Dr

&
&
@

18 (1,2,3);432;
(303,402,401 401)
(494 42,491 4€1Y

19 (1,2,3);%532;
(3P3.4P2; 4P1 4P1yD1

(472 5P3;4P1 4P1)Pr

20 (1,2,3);532;
(3%3.42;4C1 41O

(492 59491 4€1)

21 (2,2,1);3%2;
(501 5015301 39
(571 571;3P1 3P1)D2

O
&

22 (2,2,1);%332;
(3P1.3P1;3D3 P3)D1
(3P1.3P1; 63 gPs) P2

23 (2,2,1);332;
(391.391;3% 693) 1
(391.361;6C2 672 )C2

&
S

24 (2,2,1);#432;
(8P1.3P1;8P4 3Ps)
(3P1.3P1; 8P gPa) D2

25 (2,2,1);3%2;
(391.391;8P2 3%5)1
(361.361; 8P2 P2y D1

@
@
e
&

26 (2,2,1);432;
3€1.3C1, 804 3C3)C1

(391.391;8C 804) 2

27 (2,2,1);#532;
(3P1.3P1;10P5.3P3)P1

(3P1.3P1;10P5.10P5) P2

28 (2,2,1);53%;
(391.391;10% 393)

(361.361;10%5.10%5) 2

29 (2,2,1);#432;
(3P1.3P1; 673 4P1)D1

(3P1.3P1;675.673) P2

@

30 (2,2,1);432;
361,361,603 4C4)C1

(391391695 .695) 2




144

TABLE 2. (continued)

MARK D. TOMENES AND MA. LOUISE ANTONETTE N. DE LAS PENAS

31 (2,2,1);%532;
(371,301,505 gP3)Da

(371371, 62 6P2) P2

&

32 (2,2,1);532;
(391391, 5% 6%y

(391.391;693.693) 2

&
)

33 (2,2,2);%332;
602 6P2; 301 3Ds) D1

<3D3 6D2, 3D1 .3D1>D1

34 (2,2,2);33%
(692.62;391.392)1
(393.692;391.39) %

©

35 (2,2,2);%332;
(3P1.3P1;3P3 gP2)Da

(371372, 602 6P2) P2

36 (2,2,2);332
(361,361,393 692) 1
(391.393;692.692)

e

@ @

37 (2,2,2);#432;
(672,672,301 4P1) 1
(3P3.6P2;3P1 301y

38 (2,2,2);3x2;
<6D1 .6D1 ; 301 .4D; )Cl
(39,671,391 391)

39 (2,2,2);432;
(692.6C2; 31 4%4) P
(3936923391 .391) 1

%

40 (2,2,2);%432;
(3P1.3P1; 3Ps gD2)D1
(3P1.4P4;6P2 gP2) 1

@

41 (2,2,2);3%2
(391.391;3% D1y
(391.4P2; 671 6P1) 1

&
&

42 (2,2,2);432;
(361.391,3¢3 6C2)D1
C1 4Ca.C2 gC2\D1
(3%1.4%4;,6°2.6

43 (2,2,2); ¥532;
(6P2.6P2; 301 5Ps) P
(3Ps.6P2;3P1 3P1yD1

&
@

44 (2,2,2);532;
(6©2.692; 361 ,5C5)1
(392,692,391 .391)

45 (2,2,2);#532;
(3P1.3P1;3Ps gD2yD1

(3P1.5P5; 6P2 gP2) D1

@
3P
3

46 (2,2,2);532;
<3C1 .301 ; 303 .GC2>Cl
<301 5Cs ; 6C2.692\C1

47 (2,2,2);%432;
<6D2 .6D2 ; 3D1 ‘3D3>D1

<4D4 602 ; 3P1 3P1yD1

48 (2,2,2);432;
(6©2.662;3¢1.3%3)

(464,652,361 361)Cn

&
&

49 (2,2,2);%432;
(3P1.3P1,4P1 gP2)D1
(3P1.3Ps;672.672) P

50 (2,2,2);432;
(361.361;4% 692)
(391.39%;672.672)

e @

51 (2,2,2);%532;
(6D2.6D2 ; 3D1 '3D3>D1

(5P5.6P2;3P1 3Dy D1

52 (2,2,2);532;
<602.662;3C‘.3C3 C1
(5%.62;3¢1.3C1)C1

@ @

53 (2,2,2);%532;
<3D1 301 ; 505 '6D2>D1
(3P1.3P3; 6P2 gP2) D1

54 (2,2,2);532;
(301 3¢ ; 5Cs '602’)01
(361,39, 6%2,6C2)1

&

55 (2,2,2);3%2;
<603'4D2;3D1'3D1>Cl
(692.693; 301 3P1y 1

D
&

56 (2,2,2);32;
(3P1.3P1,6% 4P2)
(301 3P1; 6% 6C3) P

57 (2,2,3);%332;
<3D1 4Pz ; 4P1 46D3>Cl

(3P1.3P3;4P1 4P1)D1

@
&

58 (2,2,3);%432;
(3P1.4P2; 4P1 GD3)C1
(3P1.4P1, 4P1 4P1yD1

59 (2,2,3);%532;
(3P1.5P5,4P1 4P1yD1
(3P1.4P2; 4P 6P3)C1

&

60 (2,2,3);%432;
(3P1.4D2;4P1 gP1)C1
(3P1.3P3;4P1 4P1) D1

61 (2,2,3);%532;
<3D1 4Dz ; 4P1 '10D5>Gl
(3D1.3P3; 4P1 4D1yDa

O

&
&

62 (2,2,3);%332;
(301,673,401 4P2)1
(3P1.3D3; 4D1 4P1yDr

63 (2,2,3);%432;
301 .6D3;4D1 _4D2>C'1
(3D1.4P4; 4P1 4P1yDr

64 (2,2,3);%532;
<3D1 603 ; 4D1 '4D2>Cl
(3P1.5DP5; 4P1 4P1yD1

&

65 (2,2,3);%432;
<3D1 ASDA; 4P1 '4D2>Gl

(3P1.3P3;4P1 4P1yD1
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66 (2,2,3);%532;
(3P1.10P5; 4P1 4P2)C1
(3D1.3D3; 4D1 4P1yDa

67 (3,2,1);%322;
(4P 4P, 3Ps g2y D1

<4D1 ‘4D1 ; 3D3'4D2>D1

68 (3,2,1);332;
(491 491,303 402y
<401 41 ; 303'402’)01

69 (3,2,1);%432;
<4D1 4D ; 4D4'4D2>D1
<4D1 4D ; 3D3'4D2>D1

70 (3,2,1);432;
<4C1'401;404'402>C1

<401 41 ; 3Cs '462>Cl

&
&

71 (3,2,1); %532;
(4P1.4P1; 4 D2 5P5)Da

(4P1.4P1; 305 4P2)

72 (3,2,1);532;
(401 461 ; 402.505)01
(401 4% ; 303‘402)01

73 (3,2,2);%332;
<4D1 4D1 ; 3D1 '3D3>D1
(4P1,6P3; 301 4P2)C1

74 (3,2,2);%432;
<4D1 4D ; 3P1 '4D4>D1

(4P1.6P3; 301 4P2)C1

75 (3,2,2);%532;
<4D1 '4D1 ; 3D1 '5D5>D1
(4P1.6P3; 301 42y

76 (3,2,2); %432;
(4P1 8P4, 301 4D2)C1

(4P1 4P, 3P 3Ds)y D

T (3,2,2);%532;
(4P1.10P5; 301 42y
(4P1.4P1; 301 3Dy D

78 (3,2,2);%332;
(4P1 . 4P2; 301 gP3)C1
(4P1.4P1; 301 3Da) D1

79 (3,2,2);%432;
(4P1.4P1; 301 4DayDa
(4P1.4P2; 301 gPs)C1

80 (3,2,2);%532;
(4P1.4P1; 301 505y D1
(4P1.4P2; 301 gDy

81 (3,2,2);%432;
4D1 4 D2 ; 301 .8D4>Cl

(4P 4P, 3P 3Ps) Dy

82 (3,2,2);%532;
(4P 4P 3P 10Ps)
(4P 4P, 3P 3Ds) D1
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TABLE 3. Infinite Sequences of (a,2,c¢) tilings of S%.

MARK D. TOMENES AND MA. LOUISE ANTONETTE N. DE LAS PENAS

The

symmetry group in Conway notation and edge transitivity
symbol of each tiling are given. Vertices, edges or tiles be-
longing to one orbit under the symmetry group of the tiling

are given the same color.
self-duals.

Tilings numbered 11 and 12 are

o600 ©

(1,2,2); 2 % n; (3P1.3P1;4P1 4P1)C2 (3D1 nDn gDy 4D1yDr.gy > 3

wlalad i

2 (1,2,2);nx; (361,361,461 461)C1 (3C1 nCn gC1 4C1\C1 y > 3

VWeOO

3 (1,2,2);%n22; (4P2.4P2;3P1 3P1)P2 (4P2 P 301 3Dy D1y > 3

@ooe

4 (1,2,2);n%; (4P1.4P1;39.390)P1 (qP1 5 On 361 301Gy > 3

, Lol ol s

5 1 2, 2),n22 402 402 3C| 301 Ca (402 Chn. 3C| 301 Ci. in>3

OO0

6 (2,2,1);2%mn; (4P1.4P1; 301 nDnyDr (41 41, 3D1 3D1YC2s gy > 3

GCCOD

7 (2,2, 1);nx; (4914939 nOr)Or (49 40139 39 > 3

QOD®

8 (2,2,1);%n22; (3P1.3P1;4P2 nPryby (3D1 3D1 D2 yD2yD2oy > 3

ea9d

9 (2,2,1);n%; (361,361,401 nCn)C1 (361 3C1,4D1 D1y D1y > 3

AR

10 (2,2,1);n22; (361.361;4%2 nCn)C1 (301 3C1,4C2 4O2)C2. py > 3

2P6®

11 (2,2,2);%nn; (3P1.301;3P1 pPryD1 (301 5y Dny 3Dy 3D D1s gy > 3

VPP

12 (2,2,2);nm; (361,391,361 nCn)C1 (3C1 nCn; 301 361YC1 > 3

® ®

13 (2,2,2); 2*7

46‘2 4¢2.3P1 3D1)D1 42 pPn/2; 301 3D1)Cl

n is even, n > 4

S ©

14 (2,2,2);2% 7, (301.3P1;4C2 pPny2)C1 (3D1 3D1,4C2 4C2y D1,
n is even, n >4

VLD

15 (3,2,2);#n22; (4P1.4P1,3P1 nPyP1 (4P1 4P2.3D1 4D2\C1. > 3

SOV

16 (2,2,3);#n22; (371.4P2;4P1 4P2)C1 (3D1 nDn g1 4P1YD1, > 3
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TABLE 4. (a, 3, ¢) tilings of E2. The symmetry group in Con-
way notation and edge transitivity symbol of each tiling are
given. Vertices, edges or tiles belonging to one orbit under
the symmetry group of the tiling are given the same color.
Tilings numbered 1, 2, 3, 39, 40, 41, 42, 143, 144 and 170 are
self-duals.

1 (1,3,1);22x;
(4914015401 412
(4914915401 491
(491401401 401)C2

L~
2 (1,3,1);2%22;
(4P1.4P1; 4P 4D1yD2
(4P1.4P1; 4P 4D1)C2
(4P1.4P1; 4P 4 b1y D2

3 (1,3,1);22x;
(461 .4%1; 41 4C1)
(461,461 4C1 4C1)C2
(4914914 4012

SIS
(333333
) ) ) )

' aa "tij
Yy

N e N A L
I3
4 (1,3,1);22%;

(6P1.6P1;3¢1.3¢1) P

(6P1.671;3% 39102
<GDI 6Pt : 3C1 .3cl>02

5 (1,3,1);22%;
(361.3%1; 61 6P1)C2
(3¢1.3%1;6P1 6P1) D1
(891391, 671.671)

QNN
[T LT 7T

[ 177777

6 (1,3,1);2222;
(672.672;3C1.391)C>
(62.672;361,3¢1)Cz
(692.692;391.361)C2

7 (1,3,1);2222;
<3cl 341 : 6C2.6C2 >c2
(3¢1.391;6%2.692)C2
(361,391, 6%2,692)C2

8 (1,3,2);22x;
<3D1.3D1;6D1.6D1>C2
(3P1.3P1; 6P1 D1y D1
(3P1.3P1;6P1 gP1)C2

9 (1,3,2); xx;
(891.3%;6%1.671)
(3¢1.391; 61 .691)C1
(361.3%1; 691 .6C1)1

IR

DY)
Bo
L)
10 (1,3,2); xx;
<3Cl_301;601‘601>01

(391.391;671.691)
(391.391;6%1.691)

11 (1,3,2);05
(3¢1.3%1; 691 .6C1) 1
(3¢1.361;61.6C1)C1

<301 3¢ ; 6°1.6%1 >Cl

P S

SN R A

12 (1,3,2);%2222;
(4P2 4P2; 4P1 4P1yD2
(4D2 D2, 4D1 4P1yD1
<4D2 4P2.4D1 4 D1 >D2

( L~

13 (1,3,2);xx;
(401 4P1, 401 4C1yD1
<4D1‘4nl;401.401>01
<4D1 4P ; 4C1 41 >D1

14 (1,3,2);22%;
(401 4P1, 401 4C1yD1
(4P1 492, 4C1 41\

<402 462 ; 4C1 41 )Cz

5%

15 (1,3,2);%x;
(401,451,491 4C1) 1
<4D1‘4DL;401.4C1>01
<4D1 4P ; 4C1 41 )D1

16 (1,3,2);2222;
<402.4024 401 '401 >Cz
(4C2.4C2; 401 4O1)©2
(492,492, 41 401\

17 (1,3,2);22x;
(35‘1 .402; 5C1 5C1 )01
<301‘4C2;5C1.501>Cl
(391,391,591 .51)

18 (1,3,2);2%22;
<4D2 802 ; 3C1 3% >D1
<802_8U2;301.3C1>C2
(4P2 8P2; 3% 3¢y

19 (1,3,3);333;
<6D3 .6D3 ; 36‘1 Agc, >D1
(673.673;31.391) 1
(673673539 391) P

20 (1,3,3);4%2;
<4D1 4Dz ; 4C1 41 )D1
(4P1.4C4;4Cr 4Oy
(4P1.4P2; 401 4C1yD1

21 (1,3,3);442;

(391.4%; 591 561y
(391,391,591 51Oz
(391.4%4; 5 5C1)A

22 (1,3,3);3%3;
(392.4P1,4C1 4€1) 1
(4P1 673,491 491y
(4P 6P3;491 401y

23 (1,3,3);*442;
(472 8P4; 3% 391y D1
(8P4.8P4; 361 3¢1) D1
(472 8P1; 301 301y D1

(391.3%;691.691)

(391393691 691)
(391.3%3;6%1.671)

25 (2,3,1);22x;
(6P1.6P1;3P1 3P1)C2

(6P1.6P1;3P1 301y
<6Dl.6D1;3D1.3D1>C'2

26 (2,3,1); xx;
(691.671;371.391)
(61.6%1;3C1.361)C1
(691.61;391.361)1

27 (2,3,1); xx;
(601 4601 ; 301 .301 >Cl
(691,691,391 3911
(6©1.6%1;31,361)C1

J

(2,3,1);05
(691.67r;371.391)

(6%1.6%1; 31 .3¢1)C1
(691.61;31.361)1

-

29 (2,3,1);%2222;

(4P1.4P1; 4P2 4 D2\ D2

(401 .4P1; 4P2 42D
(4P1 4P1;4P2 4 P2y D2

30 (2,3,1);%x;
(491491 4Py 4Py Py
Cy1 4C1.4D1 g4D1\D1
(461 4%1; 4P 4P1)
(461 .4%1; 4P1 4P1)
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31 (2,3,1);22%
(491,461, 4P1 4P1yD1
(491 4% 4C2 4C2)C2
(491 491542 4Py

32 (2,3,1);%x;
(491 4% ;4P 4Py
(49146141 4P1yD1
(491 4C ;4P 4Py

33 (2,3,1);2222;
(461401, 402 402)C2
(461,401, 402 402)C2
(461401, 492 4021

34 (2,3,1);22x;
(591,501,301 402y
(591,501,361 3C1)C2
(591,501,361 402y

35 (2,3,1);2%22;
(361.361;4P2 gP2) D1
(3¢1.301,8P2 gD2)C2
(391,391,472 8P2) 1

36 (2,3,1);2%22;
(5P1.5P1; 301 3P1,H 02
(5P1.5P1;4P2 4P2;)D2
(5P1.5P1; 301 4P2) D

37 (2,3,1);%x;
(591,591,391 3¢1)1

’

(591.591;4P1 4Py D

(591,591,391 4P1)

38 (2,3,1);22x;
(591.591;301 3¢1;)C2
(591.591;492 4C2;)C2
(591.591;301 492;)

39 (2,3,2);22x;
(4P1 4P1; 4P1 4P1)C2
(4P1 4P1; 4P1 4P1)C2
(4P1 4P1; 4P1 4P1\ 1

|9
\

40 (2,3,2);442;
(491,461, 4%1 404y
(491,494 4C1 461) 1
(461461461 4C1)C2

41 (2,3,2);%X;
(491.4P1; 41 4Py
(46141461 401\
(491 .4P1; 4% 4Py

42 (2,3,2);22x;
(491.492; 401 402\
(491 4C1; 491 4C1)
(491 492,491 4C2)r

43 (2,3,2);22%;
(4P1.4P1; 4C2 4C2)D1
(4P1.4P1; 4C2 4C2)D1
(4P1.4P1; 402 4C2)C1

44 (2,3,2);22x;
(492,42, 4P 4Py
(492 402, 4P1 4P1yD1
(492 .4%2; 4P1 4Py

45 (2,3,2);%2222;
(672.6P2; 3P1 3P1yD2
(672.672; 371 301 P2
(672.672;3P1 3P

46 (2,3,2);3 % 3;
(6716795391 .3¢1)
(6P1.6P3;3C1 3¢1) D1
(671,671,301 305\

VAVAVAVAVAV,
AWAVAVAVAVA!
VAVAVAVAVAV,
AWAVAVAVAWA!

47 (2,3,2);%2222;
(3P1.3P1; 6Pz gP2) D2
(3P1.3P1; 6Pz gP2) D2
(3P1.3P1; 62 gP2)1

48 (2,3,2);3 x 3;
(361.3C1;6"1.673) 1
(361.3%;6"1.671)
(391.3¢1;6"1.673) 1

49  (2,3,2);%X;
(491 491,30 gP1Y
(461 .4P1; 3% D1y
(41 4P1; 301 P11

50 (2,3,2);22x;
(491 491,391 602y
(491 492,391 602y
(491 492,391 602y

51 (2,3,2);%x;
(361.6P1;4%1 411
(361.6P1; 41 4Py

(391671349 4Py

52 (2,3,2);22x;
(361.692;4%1 461)1
(361.692;4%1 4C2)1
(3¢1.692;4%1 4021

53 (2,3,2);%%;
(4Pr P13 4Py O
(671.671;391.39) P
(4P 6P 391 4Py

54 (2,3,2);22x;
(492,671,391 4C2)1
(6°1.671;391.3¢1) Py
(492,671,391 492) A

55 (2,3,2);22%;
(4P1.6%2; 39 4P1)C1
(692.672; 391 391) 2
(471,692,391 4P1)1

56 (2,3,2);22x;
(492,671,391 4P1y
(671,671,301 391)02
(492,671,391 4P1y

57 (2,3,2);2222;
(492 692,301 402y
(692.602;361.301)C2
(492 692,301 402y

58 (2,3,2);%x;
(31.3¢1;6"1.671) 1
(361.4P1; 4P1 gP1)C1
(361471471 6P1)

59 (2,3,2);22x;
(391.391;671.671) 1
(391.492;4%2 P1)
(361.4%2,4C2 D1y

60 (2,3,2);22x;
(361.4P1;4P1 692)
(361,361,692 6°2)C2
(361.4P1; 4P1 6C2) 1

61 (2,3,2);22x;
(3914715492 6Py
(391.391;671.601) 2
(391.4P1;492 P11

62 (2,3,2);2222;
(391,492,492 6O2)1
(391.391;692.692) 2
(391,492,492 692)

63 (2,3,2);4%2;
(6P1.6P1;391 .40y
(472 6P1;391 3¢ P
(472 6P1; 391 39) P

64 (2,3,2);4 %2
(3¢1.3¢1;4P2 D1yD1
(361.4%; 6P1 6P1)1
(3¢1.361;4P2 gP1yD1

65 (2,3,2);%222;
(8P2.8DP2; 3D1 3D1yD2
(8P2.8D2; 3D1 3P1yD2
(4P2 8Pz, 301 3P1yC1
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66 (2,3,2);22x;
(872.872;391.391)1
(492,892,301 301)1
(462 862,361 3611

X
X

67 (2,3,2);%2222;

(371,301,872 g2y D>

(371,301,872 gP2) D>
(3P1.3D1; 4Pz gP2)C1

68 (2,3,2);22x;
(391391492 8%2)
(391.391;872.87%2)
(391.391;4%2 82)1

VAT <\
AVAYAYAVAYAS

VATAVAVATAY,
AVaYAYAVAYAS

VAYAVATAYAY
VATAVAVAS!

69 (2,3,2);*632;
(4P1 6P6; 301 3D1 )1
(4P 4P, 6P3 603 ) D2
(4P 4P, 3P1 6P3; )1

70 (2,3,2);632;
(491.6%;391.39;)
(461 .491; 6% 6% )¢
(401 4C1 ; 31 Cs ; >Cl

71 (2,3,2);%2222;
(401 4D ; 3P1 301 ; >D2
(4P 4P, 672 672;) P2
(4P 4P2;3P1 gP21)

5

72 (2,3,3);333;
(693.6%3;3%1 361)
(693.6%5;3%1 391)
(693.6%3;3%1 391)A

73 (2,3,3);22%;
(492 .42, 361 gP1)C1
<4c2'4D1;301'6D1>C1
(4:0241:)1 ;391,621 )Cl

74 (2,3,3);2222;
(492.4%2;3% §C2)
(492.4%2;3% §2)
(492 492,301 6C2)

75 (2,3,3);632;
(391.6%; 4% 491)
(391.6%; 491 .4C2) 1
(391,693,491 4C2)1

(2,3,3);632;

(361,492,441 %)
(31,6941 41)1
(391492491 %)

76

77 (2,3,3);4%2
(3€1.4P1;4C1 802y
(391,494,451 491)O
(3€1.4P1;4%1 8P2)y1

78 (2,3,3);442;
(3€1.4C2; 401 84
(361,494,451 461YO
(391.492;4%1 8C4)

79 (2,3,3);3%3;
(361.4P1; 41 12P3)
(3¢1.3%;4%1 4y
(391 415491 12P8)

80 (2,3,3);632;
(361,492, 41 12%%)
(391.3%; 41 491y
(391,492,491 12%)

S

&
TR

81 (2,3,3);333;
(39,4915 5%)
(393,491,591 591)n
(461461, 3% 5C1)C1

82 (2,3,3);333;
(891,693,416
(391,39, 4% 491)
(361.693;4C1,63)C1

83 (2,3,3);4%2;
(3918025491 4Py
(391.8P2;4%1 4P1y1
(391494, 4% 491)

84 (2,3,3);442;
(361,864,401 402)C1
(361,864,461 42)C1
(361.4C4;4C1 401\

Ly
3,
RIS
Q s
85 (2,3,3);3%3;
(3611203, 461 4P1y1
(361,363,461 40101
(361.12P3;4C1 4P1yC1

86 (2,3,3);632;
(491.492;3%1 12%)
(491491539 3%) A
(461492391 129

87 (2,3,3);2#22;
(492,672,391 401y
(672.672;3C1 391) P
(492 625391 4Py

88 (2,3,3);%x%;
(301 4P1; 471 601y
(3P1.3P1; 671 6P1)P1
(3P1.4P1; 401 gP1)O1

C1

89 (2,3,3);22+
(8014925401 692y
(8P1.3P1;692 62) 1
(3P1.492;4P1 62y

90 (2,3,3);2%22;
(391.4P2; 471 6Py
(3C1.301;GD1A6D1>C2
<3C1 .4D2;4D1A6D1>01

91 (2,3,3);42222;
672.672;371.4P2)1
(472,672,391 391y P
(4P2 6P2; 3% 30y

92 (2,3,3);2%22
301 4P2, 6C2 C2)D1
3P1.3P1,4P2 692)
(8P1.4P2;692.692)

93  (2,3,3);%333;
(3021273, 3P1 3P1) D1
(3P2.12Ps;3P1 3P1) 1
(12031273, 3P1 3P1y Py

94

(39.12¢%;3C1 3C1) D1
(39.12¢%;3C1 3C1) D1
(1262126, 361 361y D1

95 (2,3,3);+442;
(4P1.8P2;3P1 301y Dy
<8D2 .8D2; 3D1 ‘3D1>D1
(404 .8P2;3P1 301y 1

96 (2,3,3);442;
(894,894,391 361y
(492,894, 3%1 361)h
(4¢2.8%1; 31 3611

97 (2,3,3);442;
(892.8¢2;3C1 3611
(491,892,361 3C1)C1
(491,892,361 30101

- - { ¢ -
YBYAY8VAT8Y,
DTITVITS
NSO

PSS T
TAVATRVA%RY,
DTV

98 (2,3,3);%632;

(4P 6Po; 301 301 )P

(303 4P1; 672 6P2;) P

(4P1 4P1;3P1 D2, ) D1

99 (2,3,3);632;
(491,690,391 3¢1;)1
(393.461;692.6%2;)
(491461, 3% 62,y

5

100 (2,3,4);%333;
(801 3Ps; 601 601) 1
(301 3Ps; 671 601) 1

(801 301,601 673) 1
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101 (2,3,4);+632;
(3P1.6P2;4P1 41y
(301,670,471 4P1) 1
(3P2.673; 471 4P1)P1

102 (2,3,4);%442;
(4P 4Pa; 4P1 4Py
<4D1'4D4; 4D1_4D1>D1
(491 4Pz 4P1 4P1YCr

000000
HeaHs=g

LSy
(AU
HooHo<h

\/ \/ \/
GO

103 (2,3,4);+442;
(801 4Pa;6P1 6P1) 1

(801 351, 4P2 gP1)Cr
(8P1.4Pa; 671 671) 1

104 (2,3,4);%333;
(4P .6Ps;4P1 4P1)
<3D3_4D1;4D1'4D1>D1
(3D3A4D1 ;401 4P )Dl

105 (3,3,1);%333;
(39139673 6P3) D1
(39139673 673) D1
(391,391,675 673) 1

SA&S
By
RESAR

106 (3,3,1);4x2;
(491 4915 4P1 4P2) D1

(491 4915 4P1 4P2) D1
(4914915 4P1 4C)

107 (3,3,1);442;
(591.591;391 494
(591.591;391 301)C2
(5915915391 4C4)A

108 (3,3,1);3x3;
(4914915 4P1 gP3)Pr
(491 4915 4P1 gP3)Pr
(491491539 4Py

XN
109 (3,3,1);*442;
(361,361, 4P2 gP1) D1
(391,391, 4P2 gPa) D1
(361,361, 8P1 gP1) Py

ORI
NSO
PN
110 (3,3,1);%632;
(391.391;4P2 6P3;) D1
(391,391, 4P2 12P8;) D1
(391.391;673.1275;) 1

111 (3,3,1);632;
(391.391;4%2,6%; )1

(391.391;42.12%;)
(391.391;693.129%; )1

STTN
KD

LS ks
112 (3,3,1);632;
(591.5%;391.6%; )
(591.5%1;8%2.3%;) 2
(561,561,301 303 )1

NAYAYAAVAY
AYAYAVATAVAN
NAVAVAVANAY)
AVAYAYATATAN
YAV,
AVAYAAVATAN

113 (3,3,2);333;
(391.391;6% 6%)
(391.391;6% 6%)
(391.391;6% 6C5)

114 (3,3,2);632;
(491 41,361 6%0)
(461.492;3%1 %)
(491 492,361 695

115
C1 gDP1.4C2 4C2\C1
(391.671;492.42)
(391.6P1;4C2 4P1)n
(391.6P1;4%2 41y

117
(461 692,391 492
(491 461,39 g\
(491 693,391 4C2)

118 (3,3,2);4%2;
(461.8P2; 3C1 4P1y1
(461.8P2; 361 4P1yC1
(491 491,39 4O

119 (3,3,2);442;
(491 8%, 301 402y
(491 894,301 402
(491 491,391 49O

120 (3,3,2);3 % 3;
(491.12P3; 361 4P1Y
(491.12P3; 361 4P1Y

(491 491,391 305

121 (3,3,2);632;
(49112931 402y
(491,129,361 42\
(461 4€1, 301 3CsyCn

122 (3,3,2);333;
(591.5%1;3% 491)@
(392,501, 4% 461)
(591.591;3% 461)&

<
123 (3,3,2);333;
(491.6%; 3% .6%)
(491.693;3%1.673)1
(491 491,391 305

124 (3,3,2);4%2;
(461.4C1,301 44y
(41 401,361 8P2)1
(491.4P1;361 8P2)

125 (3,3,2);442;
(461,461 301 464y
(461.4C2;301 8041
(491 .4%2; 3% 804y

126 (3,3,2);3x3;
(461 .4P1; 361 12P3)C1
(491 4P1;301 12P5)
(491 491,391 30y

127 (3,3,2);632;
(491.4%2;3%1 12%)
(491.4C2; 39 129%)
(491 491,39 3%

128 (3,3,2); %%
(671.671;3P1 3P1) P
(4P 6P1;3P1 4Py Cr
(4P1.6P1; 301 4Py

129 (3,3,2);22%;
(692.692;3P1 3P1) Py
(4P1.692; 31 492)A
(4P1,602;3P1,4C2)

130 (3,3,2);2%22;
(4P1 671539 4P2)n
(671.671;391.361)C2
(471,671,361 4P2)

131 (3,3,2);2%22;
(361,361,602 gP2) D1
(391.4P1;4%2 6P2)1
(391.4P1;4%2 6P2)1

132 (3,3,2);2%2%
(692.692;3P1 4P2) D1
(692.692;3P1 4P2) D1
(4P2 692,371 3Py

PIPIRT
WIWAY
PAPAD
AP
PIPINT
133 (3,3,2);%2222;
(391.4P2; 602 gP2)r
(361.361;4P2 gP2) D1
(391.391;4P2 gP2) D1

(\J‘.‘
J( \N\/ 1
LANNLANN,
134 (3,3,2);%333;
(3P1,3P1; 303 12P3)D1
(3P1.3P1; 12D 12Ps)P1
(3P1.3P1;3P3 12P3) D1

AV ZA\=2Y74
P28, 2V
AR 724
Vg 7g

135 (3,3,2);333;
(391.391;3% 1203)P1
(391.391;12% 129%) 1
(391.361;3% 1203)P1




CONSTRUCTION OF (a,b,c) TILINGS OF E2, H2 AND §2?

TABLE 4. (continued)

151

136 (3,3,2);%442;
(3P1.3P1;4P1 gP2)
(301,301,802 8P2) 1
(301 3P1;4Pa gP2) D1

137 (3,3,2);442;
(391.391;804.8%4)
(361391492 8%)1
(391.391;4%%2 804y

138 (3,3,2);442;
(3€1.361;4% 82\
(391,391,802 892)
(361,361, 4% 8C2)C1

EX

139 (3,3,2);#442;
(4P1.4P1;3P1 4Py

N

(3P1.3P1;1274.12P4;) P2

(301 .4P1; 301 12P4)

140 (3,3,2); x632;
(571,571,373 4P2;) P
(5P1.670;3P1.3P1,) D1
(501 .5P1;3P1 4Pz ) Dr

141 (3,3,2);632;
(591.591;3% 492,)1
(59169391 391,)
(5915915391 492y

H

142 (3,3,2);%632;

(51 .5P1;3P1 6P, ) D1

(51 .5P1;3P1 3P1;) P2
)

(571.5P3; 301 4P,

143 (3,3,3);2 % 22;
(4P 4P2;4P1 4P2)
(401 4P, 4P1 4P1)C2
(4P1 4P, 4P1 4Py

144 (3,3,3);%x;
(401 4P, 4P1 4Py
(401 4P, 4P1 4Py
(41 .4P1;4P1 4Py

145 (3,3,3);3%3;
(4P1.6%3; 31 4P1)C1
(4P1.4P1; 361 6P3)Cr
(41695391 4Py

146

(3,3,3);3 % 3;
(391,673,471 4Py
(361401401 69)
(391 4P 4P 693

147 (3,3,3);4% 2
(471,864,361 4P1)C1
(401 4P1; 301 4P2)C
(4P 8%4;361 4Py

148 (3,3,3);4%2;
<3C] .4D1;4D1A8C4>C1
(361.4P2; 401 4 P14
<3C’1.4D1;4D1_8C4>Cl

><
52 %
149 (3,3,3);2%22;

(401 4P1; 301 4P2)C1
(4P1.4C2; 361 gP2)
(4P1 462,361 gP2)C1

150 (3,3,3);2%22;
(391,802,401 4021
(3918025401 402)n
(391.4P2; 4P 4Py

&

151 (3,3,3);%2222;
(4P1.6P2; 301 4P2)
(672.6P2; 361 361)P1
(4P 6P2;361 4P2)

152 (3,3,3);2%22;
(692.672; 371 3P1) P
(4P2,6C2; 3P1 4P1)C1
(4P2 692,371 4Py

SRR
GO

153 (3,3,3);%2222;
<301 .301 ; GDQ .6D2 >D1
(361.4Pz2; 41 P2)C1
(3891.4P2;4P1 P2y

CAXAX)
’V SV
V'é‘?‘v’

>V

154 (3,3,3);2%22;
(301 .4P1;4P2 6C2)n
(3P1.3P1,6%2 692) P
(301 .4P1;4P2 §C2)

155 (3,3,3);632;
(4P2.5P1;3P1 gP3; )
(5016705301 301, )P
(571 .5P1;3P1 3P1) Py

156  (3,3,4); x333;
(361.673; 4P1 4P1)C1
(3916733471 4Py
(391,603,421 4Py

157 (3,3,4);%2222;
(361.4P2; 4P1 4P1)C1
(361.4P2; 4P1 gD2)Ch
(391.4P2; 41 gD2)h

i

158 (3,3,4);%442;
<3C1 .8D4;4D1 4P >Cl
(391.8P4;4P1 4Py
(391 .4P2; 4P 4Py

159 (3,3,4);%2222;
(3P1.3P1; 671 gP1yD1
(3P1.4Pz2; 4P2 gD1)C1
(3P1.4Pz2; 4P2 gD1)1

3

160 (4,3,1);333;
(6916915391 36)
(6°1.6°1;3°1.3)C1
(691,691,391 3%

161 (4,3,2);%333;
(671.671;371.3P3) D1
(671.6P1;3P1 D3y D1
(671.6P3; 301 3P1)

162 (4,3,2);%632;
(401 4P1;3P1 gP2)
(4P 4P, 301 670 ) D1
(4P 4Pr; 3P2 gPs )P

N

163 (4,3,2); ¥442;
(401 4P1; 401 4Py D1
<4D1.4D1;4D1_4D2>C’1
(4P 4P, 4P1 4Pay D

7
D)
P2

P
P
LT

164 (4,3,2);x442;
(671.671;371.4P4) D1

(6°1.671;371.4P4) 1
(4P2 gP1; 301 3P1yC

DD ID AP
ki
KA

REZHE
KA

165 (4,3,2);%333;
(4P1.4P1;3P3 4P1yDr
(4P1.4P1;3Ps 4P1)P
(4P 4P 4Pr 6Py

(4,3,3);%333;
(4P1.4P1; 361 6P3)C1
(4P1.4P1; 361 6P3)C1
(4P1.4P1; 361 6P3)C1

166

167 (4,3,3);%2222;
(4P P2, 391 4 P2y
(4P1 4P, 3% 42y
<4D1 .8D2; 3(,‘1 A4D2 >(71

168 (4,3,3);%442;
(4P 4P, 36 4Py
(4P 4P, 36 ghayer
<4D1 .4D1 ; 301 .8D4>Cl

169 (4,3,3);%2222;
(6716715351 301y
(42 6P1;3P1 4P2)
<4D2 AGDI ; 3D1 '4D2>Cl

170 (4,3,4);%2222;
(4P1.4P1; 4P1 gP1yCL
(451 4P2;4P1 4P2)Cr
<4D1 '4D2; 4D1 A4D2>C]
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