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ON THE FREIMAN-LEV CONJECTURE

YUJIE WANG AND MIN TANG

ABSTRACT. Let A be a set of k integers such that A C [0,1], 0, € A
and ged(A) = 1. Let 2" A denote the set of all sums of two distinct
elements of A. Write W = {w € [0,I\A : w,w+ 1 & 2" A}. In this
paper, we obtain the upper bound of |W| with some restrictions on .
As an application, we show that the Freiman-Lev conjecture is true for
I = 2k — 4 using the structure of A with |W| = 2.

1. INTRODUCTION

Let A be a finite set of integers. Let 24 and 2" A denote the set of all
sums of two elements of A and the set of all sums of two distinct elements of
A, respectively. Define the interval of integers [m,n| ={x € Z | m <z < n}
and gcd(A) the greatest common divisor of all nonzero elements of A. For
integer a and positive integer m, let a (mod m) be the least nonnegative
residue of a modulo m.

In 1959, Freiman [2] proved the following result (see also [5])

Theorem A. Let k > 3. Let A be a finite set of k integers such that
AC0,l], 0,l € A and gcd(A) = 1. Then

I+k  ifl<2k—3,
‘2A|>{ 3k—3, ifl>2%—2.

In 1999, Freiman, Low, and Pitman [3] obtained the following theorem
by using some combinatorial arguments together with Freiman’s theorem on

2A.
Theorem B. Let A be a set of k > 2 integers for which
|2"A| <2k -3 +C,

where 0 < C' < %(k —5). Then A is contained in an arithmetic progression
L such that |L| < k+2C + 2.
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In [4], Lev remarked that the following conjecture was posed by Freiman
(through personal communication) and independently by himself.

Conjecture. Let A be a set of k > 7 integers such that A C [0,1], 0, € A
and gcd(A) = 1. Then

I+k—2 ifl<2k—5,

N
2 A|>{ Sk—7,  ifl>2k—4.

Lev [4] showed that the Freiman—Lev conjecture holds if [ is a prime
number. Moreover, he obtained a result nearer to the above conjecture.

Theorem C. Let A be a set of k > 3 integers such that A C [0,1], 0,1 € A
and gcd(A) = 1. Then

I+k—2, if 1 < 2k — 5,

N
12 A|>{ O+ 1Dk—6, ifl>2%k—4,

where § = (1 4+ /5) /2.

After this, Ruzsa [6], Bourgain [1] and Schoen [7] almost solved the con-
jecture of Freiman and Lev.

Theorem D. Let A be a set of k > 7 integers such that A C [0,1], 0,l € A
and gcd(A) = 1. Then

I+ k-2 ifl<2k-5
A ) )
[2°4] 2{ 3k +o(k), ifl>2k— 4

Recently, the second author of this paper and Wang [9] gave a solution
to the Freiman—Lev conjecture in the cases of sets with a specific diameter.

Theorem E. Let A be a set of k > 5 integers such that A C [0,1], 0,1 € A
and gcd(A) = 1. Then

(1) if | = 2k — 3, then |2V A| > 3k — 7.

(2) if | = 2k — 4, then |2 A| > 3k — 8.

(3) if | = 2k — 4 = 25(s > 1), then |2/ A| > 3k — 7.

Let A be a set of k integers such that A C [0,1], 0,1 € A and ged(A) = 1.
For any integer w, let

S(w) = {w,w + 1}.

The following fact about S(w) is the key point in the proof of the Freiman—
Lev conjecture with [ < 2k — 5 (See Theorem 2.1 [8]).
Fact A. Let A be aset of k > 5 such that A C [0,1],0,] € A and ged(A) = 1.
If I < 2k — 5, then

S(w)N2"A#0

for all integers w € [0, ]\ A.

If I > 2k — 4, there may exist some elements w € [0,!]\ 4 such that w and
w + [ don’t belong to 2" A. We denote these “bad” elements by the set

W ={wel0,]\A]| S(w)n2"A=0}.
In this paper, we find a strong upper bound of |W].
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Theorem 1.1. Let A be a set of k > 5 integers such that A C [0,1], 0,1 € A
and gcd(A) = 1. If 1 < 2k — 3, then |W| < 2.

Moreover, we give the structure of A with |W| = 2.

Proposition 1.2. Let A be a set of k > 7 integers such that A C [0,1],
0,l € Aandl <2k—3. Let W = {wy,ws} with ged(wg —w1,1) =m. Write
V.= {“;2, W—H} NZ. Fiz an integer v € V, for any integer x € [O — 1],
let q(x) be the integer such that 0 < v + x(wy — wi) — q(x)l < 1. Write
ry(x) == v+ x(wy —wy) — q(z)l. Define

IT@%:{m@%xe[Qin—ﬂ},

D+@y—{m@yxe{l+1,l—q}.
Then

(1) D~ (v) C A for allv e V;
(2) DY (v)NA=0 for allv e V;
(8) If v =0 (mod m) for some v € V, then 0 € D~ (v).

Proposition 1.3. Let A be a set of k > 7 integers such that A C [0,1],

0,l € Aandl <2k —3. Let W = {wy,ws} with ged(we — w1,l) = m. For

any integer x € [0, = — 1], let q(x) be the integer such that 0 < x(wg—w1)—
q(x)l <. Write r(x) := z(we —wy) — q(x)l. Define

H::{r(m):xe [0,;—1]}.

Ifue|0,m—1]NA and 2u # wy (mod m), then u+ H C A.

Proposition 1.4. Let A be a set of k > 7 integers such that A C [0,1],
0,l € A andl < 2k — 3. Let wi,wy € W with ged(wy — w1,l) = m. Write

Vi {U;wz—“} NZ. Then
={juWU+HU|JD
veV
where U = {u € [0,m — 1] N A : 2u # wy (mod m)}, H=mZnN|0,1) is
defined as in Proposition 1.3 and D~ (v) is defined as in Proposition 1.2.

Using the structure of A with |W| = 2, we prove that the Freiman-Lev
conjecture holds for 2k — 4 < | < 2k — 3. (For | = 2k — 3, see Theorem E
[9]. Here we give a new proof.)

Theorem 1.5. Let A be a set of k > 7 integers such that A C [0,1], 0,1 € A
and ged(A) = 1. If 2k — 4 <1 < 2k — 3, then |2"A| > 3k — 7.
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2. PROOF OF THEOREM 1.1.

Lemma 2.1. Let A be a set of k > 5 integers such that A C [0,1], 0,1 € A,
ged(A) =1 and I < 2k — 3. For any w € W, we have
(1) |S(w) N2A| = 2 if and only if | = 2k — 4. In this case, w is even
and {§, “31} C A;
(2) |S(w) N2A[ =1 if and only if | = 2k — 3. In this case, § € A for w

s even and U’TH € A for w is odd.

Proof. By Fact A, we know that W = () if [ < 2k — 5. Since | < 2k — 3 and
w € W, we have
(2.1) | =2k —4or2k—3.

By the proof of Theorem A (See Theorems 1.13 and 1.14 of [5]), if | < 2k—3,
then S(w) N 2A # 0, thus

(2.2) |S(w)N2A| =1 or 2.
We will make use of the following decompositions
L5 ] 15
23)  [Ouw=J{w-i}, wt+1,]= |J {w+il-i}u{}.
i=0 i=1

Since w,w + 1 & 2" A, we have

(2.4) {i,w—i}NA|l <1, i:o,L,._,[EJ_L

(25) Hiw+l-NnA<L, i=w+lw+2,...,w+ V;wJ - L

(1) If |S(w) N 2A| = 2, then w,w + 1 € 24\ 2" A. Therefore, we have
3 “’TH € A, thus w,[ are even. Hence | = 2k — 4.
On the other hand, assume that [ = 2k — 4, we shall show that

|S(w) N2A| = 2.
In fact, if % € A and “ ¢ A, then by (2.3)-(2.5), we have
I —
(2.6) 0elnAl<S+1, Jw+ 1104 < ——.

If 3 ¢ Aand w%'l € A, then as [ is even, and w + [ must be even, w is also
even. Thus, by (2.3)—(2.5), we have

] —
(2.7) |[O,w]ﬂA|<%, \[w+1,zmAy<Tu’+1,
By (2.6) and (2.7), in either of the above cases we have
w l—w 1
A< +l+—— <o Hl=k—1,
k= |A] 5 T1+— 5 T k

a contradiction.
Hence, |S(w) N2A| = 2 if and only if | = 2k — 4.



46 YUJIE WANG AND MIN TANG

(2) By (2.1), (2.2) and (1), we can obtain that |S(w)N2A| = 1 if and only
if | =2k — 3.
This completes the proof of Lemma 2.1. O

Lemma 2.2. Let A be a set of k > 5 integers such that A C [0,1], 0,1 € A,
ged(A) =1 and I < 2k — 3. For any w € W, we have
(1) If i € A\{%, Y, then |S(w — i) N A| = 0;
(2) If i € [0,]]\A ori e AN{%,“H}, then |S(w—1i)NA| = 1.
Proof. By (2.3)-(2.5), if | = 2k — 4, then
I —
0wl NAl< S +1, Jw+10n4 <2 +1

and if [ = 2k — 3, then

w )
2 +1, wiseven
0,wlNAl < 2 ’ . ’
10, w] < w+ w is odd,
lzwtl w is even,

2 )
[[w+1,1]NA| < {210_1_17 w is odd.

By the above cases and a trivial fact

k=A| =[0,w]NA|+|[w+1,1]NA],

we have
(2.8) Hi,w—i}NAl=1, 1<i<w-—1,
(2.9) Hi,w+l—i}NnAl=1 w+1<i<l—1

If1<i<w-1andie€ A\ {F}, then by (2.8), we have w —i ¢ A.
Moreover, w + 1 — i > I, thus, w+1 —i & A.

fw+l<i<l-landic€ A\{UJT“}, then by (2.9), we have w+1—1i ¢ A.
Moreover, w — i < 0, thus, w — i ¢ A.

In addition, for the trivial cases ¢ = 0 or [, we have S(w —1i) = {w,w +1}
or {w —l,w}, thus |S(w —i) N A| =0.

Hence, if i € A\{%, %}, then [S(w—1i)NA| = 0. Similarly, if i € [0,1]\A4
orie AN{%, %}, then [S(w —i)NA| = 1.

This completes the proof of Lemma 2.2. O

Proof of Theorem 1.1. If 1 < 2k—5, then W = (). Now, we consider 2k —4 <
[ < 2k — 3. Assume that there exist distinct wi,ws, w3 € W with w; =
min(W) and ws = max(WW). We now make a case distinction depending on
the parity of w;.
CASE 1: 2 | wy.

Then % < wz < ws. By Lemma 2.1, we have g~ € A. Hence,

A\ wQ wey + 1 ’wl A\ w3 wg + 1 '
2 2 2 2
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By Lemma 2.2(1), we have wp — G, w3 — 5+ ¢ A. Noting that we, w3 €
W, by Lemma 2.2(2), we have

(2.10) ‘S (w3 - <w2 - ﬂ)) ﬂA’ ~1, )S <w2 - <w3 - ﬂ)) mA’ —1.

2 2
Clearly, w3 — (w2 — —) >0, so
(2.11) ws — <w2 - %) € A.
If wg — (’LU2 — %) = &L, then wy = w3, which is impossible.

If wy — (wy — %) = “’1+l , then wg — wg = % Thus | = 2k — 4. By

Lemma 2.1(1), we have 2 ] wo and ZZ, “’ZH € A. Hence

wo + 1

8= 2 S+
which contradicts the assumption that ws € W.
By (2.11) and the above discussion, we have

(2.12) w3 — <w2 - %) A\ {wl wl;l} .

€ 2N A,

Noting that w; € W and

oo (o= ) = (o o2 2)).

by Lemma 2.2(1) and (2.12), we have

S(wg— (ug—%))ﬂA‘ =0,

which contradicts with (2.10).

CASE 2: 2{w.

By Lemma 2.1, we have | = 2k — 3. Let
A=l-A={l—a:ac A}.

Then A is also a set of nonnegative integers that contains 0, [ and
ged(A) = 1. Define @ = [ — w for any w € W. If S() N2°A # 0,
then there exist two distinct integers a, b € A such that v = a + l;, that
is,|—w=1—a+1-0b,thus, w+1=a+b. Hence, S(w)N2"A #0, a
contradiction. So

S(w)N2"A = .
Write R
W={l-w:weW}
Then |W| = |W], minV:V = —ws, max W = [ — wy.
If 2 4 ws, then min W is even. By Case 1, we know that this case is

impossible.

If 2J(w1, 2 | wa,2 | w3, then by Lemma 2.1, %2, %% € A. Noting that

A\ w1 w1 + 1 ’ A\ U}3 ws + 1 ,
2 2 2 2




48 YUJIE WANG AND MIN TANG
by Lemma 2.2(1), we have
(2.13) ‘S(wl—%>ﬁA‘ — 0 and ‘S(wg—%)ﬂfl‘ —0,

thus, %2 # w;. We divide into the following two cases:
SUBCASE 2.1: If %2 < wy, then wy — %2 > 0, thus by (2.13) and Lemma
2.2(2), we have

‘S(wg— (wl—%)>ﬁA‘ =1 and ’S(wl— (wg—%))ﬂA‘ =1.

Clearly, w3 — (w1 — %) > 0, thus w3 — (w1 — %) € A. It is easy to
see that

s == (11~ ) 5 (11~ (n-2)

o (o= 2 25 (- (- 2).

S(wg) N2 A =+ @,

and

thus,

which contradicts the assumption that w2 e W.
SUBCASE 2.2: If % > wy, then wy +1 — %% > 0. Since w3 — §* > 5 >
% > wi, by (2.13) and Lemma 2.2(2), we have

‘S(wl— (w;;—%))ﬂfl‘ — 1 and ls(wg— (w1+1—%))m4\ — 1.

2
Since wy — (w3 - *) < 0, we have wy +1— (w3 - —) € A. It is easy
to see that
and

ot s 2) 5 o 1 2),

thus,
S(wsz) N 2" A # 0,

which contradicts the assumption that wy € W.

If 24 w1,2 f w2,2 | wg, then by Lemma 2.1, I = 2k — 3. Thus,
2+ minW,2 | iy, 2 | max W. This case as same as the above case, it is
also impossible.

In all, we have W] < 2
This completes the proof of Theorem 1.1. O
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3. PROOF OF PROPOSITIONS 1.2, 1.3 AND 1.4

Lemma 3.1. Let A be a set of k > T integers such that A C [0,1], 0,1l € A
and | < 2k — 3. If W = {w1, wa} with ged(wa — w1,l) = m, then
L'=1 (mod 2).

Proof. Obviously, if [ = 2k — 3, then m is odd, so % =1 (mod 2). Now
we assume that [ = 2k — 4 and w; < wy. By Lemma 2.1(1), we have
2| wy,2 | wy, s0o m = 2. If% =0 (mod 2), then

1 _
(3.1) % = w22+ (mod m), mewl =1 (mod 2).
Thus =241 ¢ 7, 5k 57 € 2.
For any integer x € [0, ﬁ], write
w
(3:2) r(z) = 71 + 2 (wz —w1) — q(z)l,

where ¢(x) is the unique integer such that r(x) € [0,1).

Next, we shall show that if r(x) € A for some z € [1 then r(x —1) €

a%}a

A.
By ged(wg — wy,1) = m and (3.2), we have
r(x) = % (mod m).
Moreover, by (3.1) we have %2 # %+ (mod m). If r(z) € A, then
wy wg + {
. €A .
(33 et

If r(z) < wa, then by (3.3) and Lemma 2.2(1), we have we — r(z) ¢ A.
Noting that w; € W, by Lemma 2.2(2), we have

[S(wy — (w2 —r(x))) N A| = 1.
By (3.2) we have

(3.4) wi — (wy —r(z)) = % + (2 — 1) (ws — wr) — q(2)l.

If wy —(wy—r(x)) € A, then wy—(wy—r(z)) € [0,1). Thus, ¢(z—1) = q(z).
By (3.2) and (3.4), we have

r(z—1) =w; — (w2 —r(x)) € A
If wg — (wa —r(z))+1 € A, then wy — (wg — r(x)) +1 € [0,1). Thus,
q(z —1) =q(x) — 1. By (3.2) and (3.4), we have
r(z—1)=w; — (we —r(z))+1 € A.

If r(x) > wa, then by (3.3) and Lemma 2.2, we have wy +1 —r(z) € A
and

|S(w; — (w2 +1—7r(x)))NAl=1.
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Similar to the above discussion, we also have r(z — 1) € A. Moreover, since
we can write

w1—|—l_w1 l (wg—wl 1>l

5~ Topemw) -5 = 5

we have 7 (55-) € A. Hence, 7(z) € A for all z € [0, #] So

2m

r(O):%eA, r(1):%+(w2—w1)e,4,

therefore, wy = r(0) + (1) € 2" A, which contradicts the assumption that
wy € W.

Hence L =1 (mod 2).

This completes the proof of Lemma 3.1. ([

Remark 3.2: Let the notations be as in Lemma 3.1. Noting that if “2-%1 is
even, then

wy W l 1 w2 — wy
(3.5) 5 =7 + <2m 2) (wg — wy) 5 l,
wy+1 wy+ l 1 w9 — W1
(36) 5~ 2 ° <2m - 2) (wg —wn) = =571

If #2221 is odd, then

(3.7) w1+l:m+<l_1>(w2_w1)_<71)2—wl_1>l’

2 2 2m 2 2m 2
w1 wy + 1 l 1 Wy — W1 1
. v ) (we —wn) — (2L 2
(38) 2 2 T (Qm 2> (wy =) ( om ¢ 2)
By the above (3.5)—(3.8), we know that 4L and “Lt can be represented as

the form r(x) defined in (3.2). These equations will be used later.

Proof of Proposition 1.2. For any two integers x1, z2 € [0, % —1], if ry(x1) =
ry(22), then we have

(z1 — x2) (w2 —w1) = (q(z1) — q(22)),

noting that (*2-*%, %) =1, we have

| (w1 - aa),
thus z1 = z9. Hence
(3.9) D~ () UD* ()] = -,
(3.10) D (v)NDT(v) =

By Lemma 2.1, we have

vforalze[l, ;= — 1] By

' 2m

0
(1) We begin by proving that D~ (v) C A
v=ry(0) € VC A By (3.9), we have r,(z) #
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Lemma 3.1, we have % # “2* (mod m). Since r,(z) = v (mod m) and

vE {ﬂ wﬁl}, we have

20 2
wy wa +1
n ¢ {522
for all z € [1, 55 — 4]. By the analogous discussion of Lemma 3.1, we have
if r,(z) € A\ {%, w%“} for some z € [1, ;5 — 3], then ry(z — 1) € A. By

(3.5)—(3.8), we have

LIy e wi
"\om " 2) 7 2 9

l 1 wo wo + 1
o )eay® .
r”<2m 2)6 \{2’ 2 }

Hence, r,(z) € A for all z € [0, 55 — 3]. So D~ (v) C A.
(2) We now prove that D (v) N A is empty. For any r,(z) € D~ (v) with
1

x#%—i,weha‘/e

thus,

v—1<q@)—z(w2 —wi) <v,

v+<;—1—m> (wg—wl)—<w2mwl—q(:c))l

= v+ (g(x)l — z(wy —wy)) — (w2 — wy)
€ (2v—1—(wy —wy),2v — (wg —w1)].

thus

Since v € {2, w22+l}, we have

(3.11) v+ (;—1—35) (ws — wy)

_ <“’2;Lw1 q(:v)) L€ (wi — 11+ w.

It is clear that

l 1 l l
3.12 — Ft - < ——1—-2<— -1
( ) 2m+2 m v m

By (3.11) and (3.12), there exists an integer ¢ € {—1,0,1} such that

(L) = e ()

_ <w2—w1 - q(x)) I € DH(v).

m

rY <Tfl—1—x>7érv(x).

By (3.10), we have
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If r, (% —1—=x) € A, then r, (% —1—2) €[0,1], thus,

l
ro(z) + 1y < -1- :L’> =2v — (wg —wi) + il € [0,2]].

m

Hence l
ro(x) + 1y < —1—3@) = wy or wy + [,
m

it implies that wy or wy + 1 € 2" A, which is contradicts with w; € W. So
Dt(v)NA=10.

(3) Finally, we prove that 0 € D~ (v) if v =0 (mod m) for some v € V.
Let v =0 (mod m). Then by (3.9) and (3.10), we have

D (v)UDT(v) = mZN|0,1).

Assume that 0 € D~ (v), so 0 € Dt (v). By Lemma 3.1, we have
=1 (mod 2), so £ > 3. As 0 € D*(v), there exist an integer zy €

[ﬁ %, % — 1] and an integer q(x() such that
v+ xo(we —wi) — q(xo)l =0,
thus

m

v (=) ) = (222 ) )1 =2

Hence, there exists i € {0,1} such that

v+<7ln—3:0—1) (wg—wl)—<w2_wl—q(1‘o)—|—i>l:w1.

m
Since l l 5
0<——20—-1<——,
m 0 om 2
we must have w; € D~ (v), so by (1), we have wy € A, a contradiction.
This completes the proof of Proposition 1.2. ([

Remark 3.3: By Proposition 1.2, we actually obtain (5L + 3)|V| integers of
A. In particular, if m =1, then [ = 2k — 3 and

A=D () UL},

Proof of Proposition 1.3. Since u € A\ {%, “’22+l}, by Lemma 2.2(1), we
have wy —u ¢ A. By Lemma 2.2(2), we have
|S (w1 — (we —uw)) N A| = 1.
Moreover, w; — (w2 — u) = u — (wg —wy) < 0, thus w; — (w2 —u) +1 € A.
Noting that
u—|—r<rln—l> =u+1l—(wy—wi) =w — (wg —u)+1,

Wehaveu—kr(%—l) € A.
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Similar to the proof of Lemma 3.1, we can show that if u 4+ r (z) € A for
some x € [1,% — 1], then u +r(x — 1) € A. Hence, u+ H C A.
This completes the proof of Proposition 1.3. O

Proof of Proposition 1.4. Let H be as in Proposition 1.3. Then
H =mZn|0,1). By Proposition 1.2(1) and Proposition 1.3, we have

{Buw+HU|D
veV

Conversely, let a € A be an integer with a # [ and a € |,y P~ (v). By
Proposition 1.2(2), we have a € J,cyy DT(v). If a = v (mod m) for some
v € V, then there exist an integer z € [0, % — 1] and an integer ¢(z) such
that

a=v+x(wy —wy) — q(z)l,
a contradiction. Thus, a # v (mod m) for any v € V.

Let u' € [0,m — 1] be an integer such that «' = a (mod m). Then there
exists an integer xq € [0, % — 1] such that a = v’ + r(z), where r(zo) € H.
If a ¢ U+ H, then «’ € [0,m — 1]\ A. Similar to the proof Lemma 3.1, we
can show that if v’ + r(z) € A for some = < zg, then v/ + r(x — 1) € A.
Thus, v’ € A, which is impossible. Hence a € U + H.

So,
A={}uU+HU|JD
veV
This completes the proof of Proposition 1.4. U

Remark 3.4: Let the notations be as in Proposition 1.4. Then

L) [U] = ["32];
(2) If w € [0,m — 1]\ A4 and 2u #Z we (mod m), then (u+ H) N A = .

4. PROOF OF THEOREM 1.5

Let A={0=ayp < -+ <ag_1 =1} and | = 2k — 4 or 2k — 3. Consider
the set
T={a;:1<i<k—1}{a; +1:1<i<k—2}
Then T' C 2" A and |T| = 2k — 3. Let B = [0,1]\A. Then we have |B| =
[ 4+1— k. By Theorem 1.1, we have |W| < 2 and
1S(w)N2"A| > 1

for each w € B\W. Since B\W C [0,1] and BNA = (), we have TN(B\W) =
(). Hence

2" Al > |T| + |B\W|.
It | = 2k — 3, then

2"A] > |T|+|B| -2
2k —3)+ (1 +1—k)—2
= 3k-—T.
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If | =2k — 4 and |W| < 1, then
2°Al > [T+ |B|] -1
= (2k-3)+(+1-Fk) -1
= 3k-—T1.
Now, we consider that [ = 2k — 4 and |W| = 2. Let W = {w,wa} with
ged(wg — w, 1) = m. By Lemma 2. 1(1) we have w; and w9 are both even,

thus m > 2. By Lemma 3.1, we have is odd, thus, ;- > 3. By Proposition
1.4, we have

A={BuU+H)U|]JD (v
veV

wat }, H =mZnN|0,l) and U is defined as in Proposition

where V = { ,
1.4.
We will show that there exists an integer w € [0, ]\ A such that

|S(w) N2 4| =2.
CASE 1: v# 0 (mod m) for allv e V.
Then by Proposition 1.4, we have 0 € U. By Proposition 1.3, we have
mZNn|[0,l) =0+ H C A.

By Lemma 3.1, we have - =1 (mod 2), thus 2(ws — wi) # I. Now we
divide into the following three cases:
SUBCASE 1.1: 2(wg —wy) <.
By the definitions of D~ (v) and DT (v) of Proposition 1.2 and (3.5)—
(3.8), we have %t + (w2 — wy) € D¥(v), thus,

%ng—wl)g/x.

If %% = wa — w1, then again by (3.5)-(3.8), we have v =0 (mod m),
giving a contradiction. Hence %' # wy — wy. Since wy ¢ A, by
Lemma 2.2(2), we have |S(wy —wi) N A| = 1, thus, wy —w; € A.
Also, 5 € A, we have

v + (ZUQ — wl) c 2N A.

w1
2
w1
5= |—2—1.
ol

By (3.5) and (3.8), we have

bl w L
2m 2 2(we —wi)  2m

(4.1)
Let

0<0<

Since m < wy — w1 and wy < [, we have

l 1
0<oi< — — .
<2m 2
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It is clear that 26(wg — wy) < wy < I, thus,
(26 + 1) (w2 —wy) < wa <.
Hence,
clwy —wy) €emZN0,]]C A
for any ¢ € [0, max{2J +1,2}]. Since 0 +2 < max{20+ 1,2}, we have
(0 +2)(we —wy) € A.

0= 7
wo — W1 ’

we have (0 +1)(w2 —w1) > 5, thus,

Since

% — (64 1) (wy —wy) +1 € [0,1].
By (3.5) and (3.8), we have

%—(Hl)(wg—wl)ﬂ:m <an—;—(5+1)> €D (v) C A.

Since v Z 0 (mod m), we have r, (ﬁ —1—(64+1)) £0 (mod m),
thus,

(% — (0 + 1)(ws = wi) +1) £ (0 +2)(ws — wy).

Hence

(4.2)

%ng—wl)ﬂ - (% — (6 4 1) (ws — wy) + z) F(042)(wa—wy) € 2V A.
By (4.1) and (4.2), we have

‘S (% + (wq — wl)) N 2&4‘ =2.

SUBCASE 1.2: 2(wg —wi) >l and [ — 2m > wy — wy.

Then | < 2(wg —w1) < 2(1 — 2m), thus | > 4m. Hence % > 5. By
Proposition 1.4, we have
4.3) em,l+cm—(wyg—wy1) €emZNI0,]CA V1<e< Y27 —1.
( ) ) )
m

We have the following inequality

(l - 1) (wg —wr) = (w2 Z ), %(wz —wi)

2m 2 2m

[ —2m 1 l 1 wi + 1
< [ — = (wsy — 1)1 .

om |22 w1)<<2m 2 >+ 2

Let = be the smallest integer with z € [2, ﬁ — %] such that

l
x(we —wi) < (z— 1)+ w12+ :
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Write
l
A= w12+ —z(wy —wr) + (z — 1)1,

o= ULl D —wn) + (2 — 1)L

2
Then by (3.6) and (3.7), we have
1

l l 1
)\1:7”v<2,rn—2—x>; /\2:Tv<27n_2_(x_1)>'

By Proposition 1.2(1), we have Aj, A2 € D™ (v) C A.
Noting that

_ l 3 w9 — W1 3
D A - T s Tz
there exists an integer 1 < ¢p < *2-* —1 such that A\;+com € D~ (v),
thus,
A+ com & A.

Since v # 0 (mod m), we have A\; # 0 (mod m), thus, A\ # ¢om. By
(4.3), we have

A1+ com € 2" A.
Similarly, we have
A +com+1= g+ 1+ com— (wy —wy) € 2 A,

Therefore
S (A1 + com) N2MA| = 2.

SUBCASE 1.3: 2(wg —wy) >l and | — m = wy — wy.
1

For any integer 0 < ¢ < ﬁ — 5, we have 2 — cm and “’2T+l —cm are
all greater than zero. By Proposition 1.2(1), we have
w2 wg + 1 l 1
-2 —emeA, VO<e< — — =,
5 M= cm , c<5-"5
that is,
w1 Wi we w2 +m wy+m wo + 1
—, = ey — . C A.
{ 2 ) 2 —"_m? b 2 ) 2 ) 2 —"_m? ) 2 } =

thus,
wi+m e 2MA, wy+2m=w; +m+1e2 A

Hence
|5 (w1 +m)N2"A| = 2.
In addition, by Remark 3.4(2), we have w; +m ¢ A.
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CASE 2: v =0 (mod m) for some v € V.
Then wy = we =0 (mod m). Thus, [ —m > we — wy, it implies that

l 1 wo — W1

2m 2> 2m

By (3.5)—(3.8), there exists an integer z € [0, ﬁ — 1) such that

ro(x+ 1) = ry(z) + (we — wy).

In this part, we assume that V' = {v;,v2} such that v; =0 (mod m),

SO m
V2= (mod m) .

By Proposition 1.2(3), we have 0 € D~ (v), thus, there exists an integer
0<xo<ﬁ—%suchthat

(4.4) oy (20) 1= v1 + xo(w2 — w1) — q(z0)l = 0.
Moreover, by the definition of D~ (v) of Proposition 1.2, we have
(4.5) Ty, (X0 — €) = Ty, (x0) — c(wa —wy) +1=1—clwy —wy) € A

for any ¢ € [1, min{| —Lt— |, 20}].

wo—w1

SUBCASE 2.1: m > 4.
By Remark 3.4(1), we have U # (. By the definition of U of Propo-

sition 1.4, we have one of ¢ and 377” belong to U. Without loss of

generality, we assume that 7 € U, so 37’” ¢ U. By Proposition 1.4,

we have
moigca (2 iH)na=p
4 4

thus,
%GA, %—i—l—(wz—wl)EA.
— 3m

Since Bt +vp = =* (mod m), we have
(% +H +D’(vg)) nNA=9.

Based on the previous discussion, there exists an integer

z € [0, 5- — 1) such that
Toy (X + 1) = 1y () + (wo — w1).
Hence m
n + 7y, (z) €2 A
and
Bt = (= (= wn) + (o +1) €214,
=)

’S (% + rw(:n)) N 2%4‘ =2.
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SUBCASE 2.2: By Lemma 2.1, we have | = 2k — 4 and w;, wy are even,
thus, m is even, so we only need consider m = 2. If m = 2, then
U = (. By Proposition 1.4, we have

A={yu D (.
veV

By the definition of D~ (v) of Proposition 1.2, one of the following
three conditions holds:
(1) %, %+ (w2 — wi), B B 4 (wp —wi) € 4
(2) %,%—i—(un—un)—l,wQTH,wQTH—i—(wQ—wl)—lEA;
(3) %,%4—(102—101),%“,%“4—(102—101)—lEA.
We assume that (1) holds. It implies that
|S(2we — wy) N 2" A| = 2.
Now we prove that 2wy —w; € A. First, Condition (1) implies that
wy + 1

w
72+(w2—w1)<l,

By (4.4), we have z > 1 and [ > 2(wy — w1), and by (4.5), we have
[ —2(wy —wp) € A

If 2wy —wy = 2 + % + (w2 —w1) = — (w2 — wy), then

+ (we —wy) < L.

wy =1 —2(we —wy) € A,
which is impossible. Hence
2wy —wy # 1 — (wy — wy).
If 2wy — wy € A, then
2wy — wy + 1 — (wy —wy) = wa +1 € 2"A,

which is impossible. Hence, 2ws — w1 & A.
If (2) holds, then the proof is similar to (1), we omit it.
If (3) holds, then

S <2w2 — w1 — ;) 02/\14‘ = 2.

Now we prove that 2wy — w1 — % ¢ A. If not, then 2wy — wy — é €
D~ (vq), thus, there exists a positive integer y such that

l
rvg(y) = 2wy —wy — 5 S A,

it follows that,
v+ (1 = y)(wz —wi) = (1 —q(y))l = 0.
By (4.4), we have 7, (z9) = 0, thus,
T (20) = v1 + (1 = y) (w2 —w1) — (1 —q(y))l.
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Hence

(zo +y — 1) (w2 —w1) = (q(z0) +q(y) — 1)1,

(wo-+y- 12 (g(ao) +at) - 1)L

Since ged(we — w1, 1) = 2, we have ged (254, %) =1, thus,

l

l

Since g,y € [1, 7 — %], we have

l
O<$0+y—1<§,

giving a contradiction. Hence, 2wy — wy — % ¢ A.

In all, we have
12"A| > |T|+ |B\W| > 3k — 7.
This completes the proof of Theorem 1.5.
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