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CONGRUENCE PROPERTIES MODULO POWERS OF 3
FOR 6-COLORED GENERALIZED FROBENIUS
PARTITIONS

DAZHAO TANG

ABSTRACT. In his 1984 AMS Memoir, Andrews introduced the family
of functions c¢y(n), which denotes the number of k-colored generalized
Frobenius partitions of n. In this paper, we prove three congruences
and three internal congruences modulo powers of 3 for c¢g(n) by utiliz-
ing the generating function of cgs(3n + 1) due to Hirschhorn. Finally,
we conjecture two families of congruences and two families of internal
congruences modulo arbitrary powers of 3 for c¢¢(n), which strengthen
a conjecture due to Gu, Wang and Xia in 2016.

1. INTRODUCTION

In his 1984 Memoir of the American Mathematical Society, Andrews [1]
introduced the notion of a generalized Frobenius partition of n, which is a
two-rowed array of nonnegative integers of the form:

a1 ao ay
by by -+ b)’

wherein each row, which is of the same length, is arranged in weakly de-
creasing order with n = r+ >""_(a; + b;). Furthermore, Andrews consid-
ered a variant of generalized Frobenius partition whose parts are taken from
k copies of the nonnegative integers, which is called k-colored generalized
Frobenius partitions. For any positive integer k, let cog(n) denote the num-
ber of k-colored generalized Frobenius partitions of n. Andrews [1, Corol-
lary 10.1] proved that for any n > 0,
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cp2(5n +3) =0 (mod 5).

Since then, many scholars investigated extensively a number of congruence
properties for c¢y(n) with different moduli; see, for example, [2,3,5-15,18—
20,20-35,37-41].

In 2015, Baruah and Sarmah [3] derived an expression of the generating
function of cgg(n) and established a 3-dissection formula of the generating
function of cgg(n). As an immediate consequence, they [3, Corollary 4.1]
proved that for any n > 0,

cps(3n+1) =0 (mod 9),

cps(3n+2) =0 (mod 9).
Baruah and Sarmah [3] further conjectured that for any n > 0,
(1.1) cps(3n +2) =0 (mod 27).

Soon after, Xia [38] proved (1.1) by utilizing the generating function of
cps(3n + 2), derived by Baruah and Sarmah [3]. Moreover, Xia [38] also
conjectured that for any n > 0,

(1.2) cpg(In+7) =0 (mod 27),
(1.3) cps(27n + 16) =0 (mod 243).

Later, Hirscchorn [16] obtained another expression for 3-dissection formula
of the generating function of cgg(n) and thus proved (1.1) and (1.2). Mo-
tivated by these work, Gu, Wang and Xia [15] proved eight congruences
and four internal congruences modulo small powers of 3 for c¢g(n). More
precisely, they proved that

Theorem 1.1. [15, Theorem 1.1] For any n > 0,

(1.4) cgg(81n +61) =0 (mod 3*),

(1.5) c6(27n +16) =0 (mod 3°),

(1.6) c¢6(729n + 547) =0 (mod 3°),

(1.7) co6(243n + 142) =0 (mod 3°) ,

(1.8) cgg(6561n +4921) =0 (mod 3°),

(1.9) c¢6(2187n + 1276) = 0 (mod 37),

(1.10) c¢(19683n + 11482) =0 (mod 37),

(1.11) c¢6(59049n + 44287) =0 (mod 37),

(1.12) c¢6(2Tn + 7) = 3cg(3n + 1) (mod 3%),
(1.13) c¢g(81n + 61) = 3cgs(9In + 7) (mod 3°),
(1.14) co6(729n + 547) = 3cpg(81n + 61) (mod 3°),
(1.15) c¢6(6561n + 4921) = 3cgg(729n + 547) (mod 37).
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Gu et al. [15] further posed the following conjecture:

Conjecture 1.2. [15, Conjecture 1.2] For any « > 8, there exist positive
integers 0, and k such that for any n > 0,

(1.16) co6(3Fn + ;) =0 (mod 3%).

For (1.4)—(1.16), there are two natural questions. First, are there other
congruences or internal congruences similar to (1.4)—(1.15) that do not ap-
pear in Theorem 1.17 Moreover, what are the exact values of k and J; in
(1.16) when « equals 8?7 Further, is it possible to give a specific expression
of arithmetic progression in (1.16)7 Therefore, one purpose of this paper
is to derive several congruences and internal congruences modulo 3% satis-
fied by c¢g(n) similar to (1.4)—(1.15). Moreover, we also prove an internal
congruence modulo 37 that is missed by Gu, Wang and Xia [15].

Theorem 1.3. For any n > 0,

(1.17) c(19683n + 11482) =0 (mod 3%),

(1.18) e (1771470 + 103336) =0 (mod 3%),

(1.19) coe(531441n + 398581) =0 (mod 3%),

(1.20) co6(243n + 142) = 3chg(27n + 16) (mod 37),
(1.21) c¢6(2187n + 1276) = 3cgs(243n + 142) (mod 3%),
(1.22) c(59049n + 44287) = 3cgs(6561n + 4921) (mod 3%) .

We note that (1.17) is a stronger form of (1.10). The other purpose of
this paper is to provide an explicit form for (1.16) based on Theorems 1.1
and 1.3.

Conjecture 1.4. For anyn >0 and a > 1,

(1.23) cog <32an + 320:1“) =0 (mod 3*™?),
(1.24)
e <32a+1 + 7><3j1a+1> =0 (mod 3a+4) :
(1.25)
chg (32°‘+2n + 32&?“) = 3co <32°‘n + 32a+41+1> (mod 3%1),
and
(1.26) e (32a+3n + 7X32if“>

7Tx 341
= 3cop (32"+1n + ﬁ) (mod 3*%6) .
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Remark: Two remarks on Conjecture 1.4 are in order. First, (1.2), (1.4),
(1.6), (1.8), (1.11) and (1.19) are initial cases of (1.23); (1.3), (1.5), (1.7),
(1.9) and (1.17) are initial cases of (1.24). However, (1.12) seems to be an
isolated phenomenon. Second, (1.13)—(1.15) and (1.22) imply that (1.25)
seems to hold. Moreover, (1.23) can be derived by (1.2), (1.25) and induc-
tion. Thus, a natural question is whether there exists a similar family of
internal congruences modulo powers of 3 which implies (1.24). This question
prompts us to discover congruences (1.20) and (1.21), which further led us
to conjecture (1.26).

2. PRELIMINARIES

To prove Theorem 1.3, we first collect some necessary notation and lem-
mas.

Throughout the rest of this paper, we always assume that ¢ is a complex
number such that |¢| < 1 and adopt the following customary notation:

o0

(A;q)o0 == [J(1 = A¢).

=0
For notational convenience, we denote
By, = (4" ¢") .
First, we need the following 3-dissections.

Lemma 2.1.
2.1) B} _ By +2qE§E9E36
' E2E?  EZEZ E3E3Eg’

E\Ey  E3EnE})y  EgEs

(2.2) - q :
E, E2E2E2, Eis
(2.3) Bi _ Enbiy q2Eiﬁ
Ey  EgEsg Eig’
(2.4) B _ By 2 > BoE

Ey  Ese EpEs
Proof. The identity (2.1) follows from Corollary (i) on page 49 of Berndt’s
book [4]. Moreover, from [4, p. 19, Corollary (ii)] we find that
B _ 5 5
Ey  E3En Ey
Replacing ¢ by —¢ in (2.1) and (2.5) and utilizing the fact
E3
E\E,’

(2.5)

(=4 =)o =

we obtain
E? FE2 EsE?
(2.6) —L= 9 9218
Ey Eig E¢Ey
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and (2.2), respectively. Finally, (2.3) and (2.4) follow by replacing g by ¢?
n (2.5) and (2.6), respectively. O
Next, recall that a(q) is one of Borweins’ cubic theta functions, given by

0
m2+mn+n?
> a -

m,n=—0oo

Hirschhorn, Garvan and Borwein [17] established the following 3-dissections
related to a(q):

Lemma 2.2. [17, Egs. (1.3) and (1.4)]

(2.7) a(q) = a(q®) + 67—
3
(2.8) E} = a(¢®)Es — 3¢E}.

Hirschhorn et al. [17, Eq. (1.5)] also proved that
g1
=146 Z Z g1
from which one readily ﬁnds that

(2.9) a(q) =1 (mod 3) and a(g)®=1 (mod 9).

Finally, with the help of the binomial theorem, one can easily establish
the following congruence, which will be used frequently in the sequel.

3n2

Lemma 2.3. For any o > 1,
(2.10) E¥ =E" (mod 3%).

3. PROOF OF THEOREM 1.3

In this section, all the following congruences are modulo 3% unless other-
wise specified.

Proof of Theorem 1.3.
Proof of (1.17). Hirscchorn [16] proved that (a misprint has been cor-
rected)

D
E3E? E9E4E2
3 D™ = 18 s Loy g6 23 6
T;)C¢6( n+1)q a(q) E23E2 + (q) E123E2E12
E5E18 E18E4E2
1701 22273 4 3402 323 56
E12E2 E27E4E
— 324 12 1 1312942 =3 =6
qa(q)” E24E + EPEyEys
E2'E?
— 17496¢%a(q)* 22

E¥Eg
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Utilizing (2.9), we obtain that

(3.1)

o0

Z cpe(3n + 1)q"

n=0

= 18a(q)°

E
+ 3402qa(q)® =3

= 18a(q)®

+ 3402qa

E2 E2 E234

B3B3 6 ESEJEG 2 ESES®
18a ———2 4+ 1701
pep 1800 g o 1T014a(0) a5
8E E2 E12E2 E21E2
456 543 2 3 12
—————= + 6237 2187¢>
E5 E708 E-E E705E
2 =51 T 18a(Q)6 — 2134 . 212
Ey E3*Eq ETE}
N YN E3 E? < EYTE2, EE?,

6237¢ 218742 =3 12
B By T a()E15E+ Eg

(a)°

E5
+ 1701qa(q)* =25 ES ES

65

where the last congruence follows from (2.9) and (2.10). According to (2.8),

we find that

(3.2) E[® =

(3.3) E[% =

a(q3)236E§36 +21qa(q3)235E§35ES’ + 252q2a(q3)234E§34Eg

+81¢%a(q®) B3 B3 ES + 243¢%a(¢®) P2 B2 B (mod 729),

a(q3)235E§35 + 24qa(q3)234E§34Eg +324q2a(q3)233E§33E96

+324¢°a(¢®)*? B3P E§ + 4864" a(q®)**' E5* E§® (mod 729)

(3.4) B} = a(¢®)EL° 4 24qa(¢®) " EA3ES (mod 81).

Substituting (2.1), (2.

the terms of the form ¢>*2, after simplification, we obtain that

o
(3.5) > ego(9n+7)q"
n=0
FEi’E? E3E3E? E%E3E
37 37 23 1+-3+4 2 37 2 L1 L3Lg
+ 4 X 35a( )239E§E§ + 28 X 33a(q)240E%E§E12
E%Q E FEg
E2E13E12
7 % 36 237 L2 L3
In view of (2.9) and (2.10), we can rewrite (3.5) as
(3.6)
oo
E? E3E} EiE?
D eps(In+T7)q" =2 x 3TLES + 2 x 37270 4 4 x Ba(q)? =250
n—0 Es E12 Ef,

E2EAE
240 2 312+7

28 x 33
28 x 3a(q) Ey FEs Ey Eg

36qu EYEEr

2), (2.7), (2.8) and (3.2)-(3.4) into (3.1), collecting all
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Moreover, with the help of (2.7), we find that

E3 ES
(3.7 a(@)® =a(¢®)*® + 3qa(q3)23852 + 9q2a(q3)237E% (mod 27),
3

E3
(88)  a(@)* =a(g)™ +225qa(¢")*

6

E E)
+ 216q2a(q3)238—g + 27q3a(q3)237—g (mod 243) .
E3 E3

If we substitute (2.3), (2.4), (2.8), (3.7) and (3.8) into (3.6) and extract all
the terms of the form ¢®", then replace ¢ by ¢, we deduce that

[e.9]

(3.9) > cgs(2Tn+ 7)q"
n=0
E*E,E? E{E2 EYE3
=9 37 1 6 2 37 12 4 35 23912
X 7E2E12 + 2 x 7EZ +4 x 3%a(q) 7E§
o0 1 E4E§ 037 E1ESE4E§
E2E12 E2E12
E12E2 E3E3E2
—i—4><36qa(q)239 1 12+4X35qa(q)239 13 12.
E(; E6

+ 28 x 3%a(q) + 3%qa(q)

Thanks to (2.9), we further get that

o0
(3.10) > cs(2Tn+ T)q"
n=0
E\Ey E3E§ 7 By 5 030 BS 6
=2x3—= 2% 3 E2+4x3 2
“VTE Bp P mE TS a(9) 2R
E\E, E3E? E\E, EYE?
92 3 240 16 6 36
+ 28 x 3%a(q) 7E2 7E12 + 3 qiE2 o

B,

E2
+4 x 3%a(q)*E? 22 4 4 x 3°qa(q)** E}
E6 Eﬁ

Plugging (2.1), (2.2), (2.8), (3.7) and (3.8) into (3.10) and taking all the
terms in the form of ¢3" 12, after simplification, we arrive at

[e.9]

(3.11) > ce(81n + 61)¢"

n=0
EAE? E?FE2EsFE
536a(q)239 3 6+8X36a(q)237 1o L3512
E.E¢
037 B3 E3° B _
E}E4Fg

2 4
240 E2 E3 Eqp

A 4
+ 43 x 3%a(q) 1 Eq

+37qa(q)
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Now if we substitute (2.4) and (2.7)—(2.10) into (3.11) and collect all the
terms of the form ¢®", then replace ¢> by ¢, we obtain that

(e 9]

(3.12) > cs(243n + 61)g”

n=0

EE
ESGa( )239 272 +8 x 3% (q)

s E1EyE§
EyFqo
240 E1 B4 5§ %_:37qa(q)237f§1f§§f§é§%§
EyEq9 EsEqs

7 1 12 6 239
—L T2 g
+3q 2 + 3%qa(q) i

+ 43 x 3%a(q)

In view of (2.9) and (2.10), we find that, modulo 3%,

o0

(3.13) > cd(243n + 61)g"
n=0
E\E4 E3E?
= 36a 239 6 176
(q) B I
910 E1E4 Ei”E6 s E\E,4 E3E6
E2 E12 E2 E12
E3E3E?
239 ~1+~3-12
Eg

E2E2 E1 +8x 30— =

+ 43 x 3%a(q)
E4E2

+ ?)76173%12 + 3%ga(q)

Plugging (2.1), (2.2), (2.8), (3.7) and (3.8) into (3.13) and picking all the

terms of the form ¢3"*2, after simplification, we deduce that
o
(3.14) > che(729n + 547)q"
n=0
E3E? EYE2E3E1
— 37q(q)239 5376 | o o 37E1T2
(9) E3, E.Eg
E3E; B 210 B3B3 Eno

2 x 37 +13 x 3%a(q)

E Eg E Eg

With the help of (2.9) and (2.10), we further find that

oo
EAE? E2 EXEq,
3.15 § coe(T29n + 547)q" = 37376 | 4 « 3722283722
( ) s ¢6( )q E%2 E4 EG

2 4
240& EsEq

+ 13 x 3%a(q) o
4 6
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Substituting (2.4) and (3.8) into (3.15), collecting all the terms of the form
¢>", then replacing ¢® by ¢, we deduce that

o0

(3.16) > che(2187n + 547)q"
=0
LB BB o PR
E? EsEny Eg
+ 13 x 35a(q)240EEiL,f§ig
=2 x 37 E?%Z E3 + 3%%5‘?2 + 13 x 35G(Q)240E]15?E51E2g’

where the last congruence follows from (2.9) and (2.10). Substituting (2.1),
(2.2), (2.8) and (3.8) into (3.16), collecting all the terms of the form ¢3"2
after simplification, we find that

S 6 210 B3E{Ers
(3.17) D co(6561n + 4921)¢" = 3a(q)* 0=
n=0 4126
Thanks to (2.4) and (2.9), we further find that
[ee]
E2E3E,
3.18 che(6561n + 4921)¢" = 36 =23—""<
(3.18) r;) b6 ( )q FLB,
EXE,y [ E? EgE2
(3.19) :36312(18_22636)
Eg Esg E19E13

The congruence (1.17) follows from (3.19) immediately.
Proof of (1.18). The congruence (3.19) implies that

o0
FE\E, E3E2
3.20 E che(19683n + 4921)g" = 36— 7176
(3.20) 2 o6 ( )q B Eo

Substituting (2.2) and (2.8) into (3.20) and picking all the terms of the form

¢>" 12, after simplification, we deduce that
e.)
E3E3E

3.21 che(59049n + 44287)¢" = 37232
(3.21) nz_;) 6 ( ) oo
According to (2.4), we find that

- 7E§E12 E128 2 EGEBZ»G
3.22 che(59049n + 44287)¢" = 3' —=—= ( -2 >
52 7;) ol ) Ee \ Esg 1 Er2Fqg

The congruence (1.18) follows from (3.22) immediately.
Proof of (1.19). Taking out the term of the form ¢3" in (3.22) gives that
o
EtELE§ E\E4 EsE}
3.23 (1771470 + 44287)¢" = 37— ——56 =37 6.
(3.23) Z 96 Ja EsEr Ey  Eig

n=0
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Thanks to (2.2), we further see that

o
EsE? [ EsEoE? E9Esg
3.24 coe(1TT147n + 44287)¢" = 37 6 ( 18 _ .
( ) T;) ¢6( )q E12 EgEQQEgﬁ q E18

Now (1.19) follows from (3.24) immediately.
Proof of (1.20). Plugging (2.9) into (3.11), we have

o0

69

EiE? E2 E3E:,
' 1 D" = 364(g)239 2356 6Ly B3 b2
(3.25) gc%(s n+61)¢" = 3%(q) i +8x3 T
E2 E4{E1 E2 EX?Ey
43 % 34 240 &2 3 37,22 3 ‘
+ 43 x 3%a(q) B, B, T°YE, B
It follows from (2.9), (2.10), (3.6) and (3.25) that
oo
> (ces(81n + 61) — 3egs(9n + 7)) "
n=0
BAES E2 ELE, E2 BB,
— 362376 | g 3672153 43 x 34 240 L2 Li3
2, U B B ) g, TR,
EiE? E2 E3E1>
_4><36 36—28)(34 240 ~2 ~3
E2, A E, " E,
E2 E4E E2 E4E
— 62 23412 5L L3 £i12 7
= 280 pxgp 232 d37).
8><3E4 e + 5 x B, Fe (mo )
According to (2.4), we obtain that
o0
> (c6(81n + 61) — 3ege(9n + 7)) q"
n=0

Es \FEs | BEiPis
E3E <E2 EGE} )

5312 18 2 =636 7
— | = - 2¢" — mod 3'),
E@ E36 a E12E18 ( )

from which we obtain (1.20).
Proof of (1.21). It follows from (2.9), (3.15), and (3.25) that

_ 8y 36E§El2 <Ef8 0,2 EsE3g )

+5x3

o
> (ce6(729n + 547) — Bcgg(81n + 61)) "
n=0
E4E5 E2 E4E12 E2 E4E12
=3"250 +4x 3T 222 413 x 30a(g)* 0 22—
Ef Ey FEg (@) E, Fg
E4E5 E2 E4E12 E2 E4E12
372376 g 37273 _ 43 % Pa(g)24022 53
By Ey Es (@) E; FEs
=2x 37E% E§E12 +8x 36@@'

E, Es E, Eg
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In view of (2.4), we find that

> (c6(729n + 54T) — e (81n + 61)) "
n=0

=92 x 377E§E12 (E%B —2 > Bolgs. )
E@ E36 E12E18
E3E1 (Efg o2 FoEls >

+8x 30
Es \ E36 1 E19Fqg

from which we obtain (1.21).

Proof of (1.22). The congruence (1.22) follows by combining (3.18) and
(3.21) immediately.

This completes the proof of Theorem 1.3. O

4. FINAL REMARKS

We conclude this paper with three remarks.
First, with the help of (2.1), (2.2), (2.7) and the following 3-dissection
due to Wang [36, Eq. (2.28)]:

3

% = %(a(q?))QE? +3qa(q®) B3 E§ + 9¢°E3),

1 3
after simplification, we find that there are 35 terms in the generating function
of cpg(9In + 7). Based on this generating function and following a similar
technique of proving Theorem 1.3, one can also derive some congruences
modulo 3% for cgg(n) similar to (1.17)—(1.22), where o > 9 is a fixed inte-
ger. However, the steps and process in proof will become more and more
complicated as « increases.

Next, (3.11), (3.14), (3.18) and (3.22) seem to imply that for any o > 1,

[e'¢)
3t 41 E3E3FE1,
4.1 3204 n— 30¢+2 23 d 30l+3
(1) S (son s T ) =0 R (mod 90,
[e'¢)
32a+1 + 1 E2E4E
E 2 = +2 oy B2 +4
(42) Z C¢6 <3 O‘n + 4>qn = Cqo * 3(1 TE‘G (mod 3(1 ) s

where ¢, is an integer dependent on «. Obviously, the congruences (1.23)
and (1.24) can be derived by combining (2.4), (4.1) and (4.2).

Finally, Andrews [1, Corollary 10.2] proved that for any prime k and any
n>1,

0 (mod k?) if k1n,

(4.3) cpr(n) = {c¢1(n/k¢) (mod k) if k|mn.
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In 1987, Kolitsch [20] extended (4.3) to all positive values of k. More pre-
cisely, he proved that

(4.4) cop(n) == Z M(d)c¢k/d<g) =0 (mod k2) ,

dlged(k,n)

where pi(d) is the Mébius function. In particular, Kolitsch [20] also provided
a combinatorial interpretation of the function c¢y(n), i.e., co,(n) denotes
the number of the generalized Frobenius partitions of n with k& colors whose
order under cyclic permutation of the color is k. From (4.4) one sees that

_ n n n
(4.5) cBs(n) = co(n) — cos (3 ) — oo (5) +p(5)-
Moreover, Wang [37, Eq. (1.44)] established the following family of congru-
ences modulo powers of 3 for c¢s(n):

7 x 320¢+1 + 1
(4.6) ch3 <32°‘n e

where n > 0 and « > 1. The identity (4.5), together with (4.6), reveals that
there is an inseparable relation on congruence properties modulo powers
of 3 between cgg(n) and chg(n). Upon a little calculation, we find that if
(1.23)—(1.26) are true, then the following are also valid:

i

> =0 (mod 340""5) ,

- 2a+1 1
(47) C¢6 (320% + 34—’_> =0 (mOd 3a+2) )
2a 1
(4.8) chg (326““ 7X34+> =0 (mod 3**%).
ii
(4.9)
- 2043 4 1 o 2a+1 1
cog <320‘+2n + 34+) = 3cog (320‘71 + 34+) (mod 3°*1)
(4.10)
2a 1 - 20 1
¢ <320‘+3 77 x 34 + ) = 3cpg (SQO‘Hn + 77 X 34 + > (mod 3a+6) .
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