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ENUMERATION OF PARALLELOGRAM POLYCUBES

A. ARABI, H. BELBACHIR, AND J.-PH. DUBERNARD

Abstract. In this paper, we give the Dirichlet generating function of
parallelogram polycubes according to the volume and the width in terms
of multivariate zeta functions. We also enumerate them according to
the width, the length and the depth. All these results are generalized
to polyhypercubes.

1. Introduction

In Z2, a polyomino is a finite connected union of cells without a cut
point and defined up to translation [21]. This object, introduced in 1954
by Golomb [15], has been studied since and the main problem is finding
the number of polyominoes for a given number n of cells. This problem is
considered a hard problem in combinatorics. To date, no exact formula is
known. However the number of polyominoes is known up to n = 56 (Jensen
[20]). In the absence of formulas for the general case and to approximate
their enumeration, polyominoes with special properties, such as convexity
and direction, were defined and enumerated in the literature. Let us cite,
for instance, the column-convex polyominoes [11], the convex polyominoes
[9], the diagonally convex polyominoes [14] and the directed polyominoes
[17]. Exact enumerations exist according to the number of cells for some
of them and others were enumerated according to additional parameters
such as the perimeter, the height and the width. One can find a survey in
[18]. Several methods of enumeration were used as Temperley methodology
[26], Bousquet Melou method [4] and ECO method [3]. One particular
studied family is parallelogram polyominoes, the polyominoes of this class
have columns without holes glued together with the bottoms and the tops of
the columns forming two increasing sequences. Exact enumeration exists for
them according to different parameters. Let us cite for instance the results
of Delest and Viennot[12] according to the perimeter by using a bijection
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with Dyck paths, Delest, Dubernard and Dutour [10] according to the area,
width, right and left corners, Bousquet-Melou [4] according to the area,
width, height and length of the leftmost and rightmost column and more
recently, Alofi and Dukes [2] established connections between EW-tableaux
and parallelogram polyominoes.

Figure 1. Example of a polyomino.

The extension of polyominoes in dimension 3 is called polycubes. In Z3, a
unit cell is defined as a unit cube. A polycube is a finite face-connected union
of elementary cells defined up to translation. As with the 2-dimensional case,
the enumeration of polycubes with n cells is still an open problem. Many
authors have enumerated the first values of polycubes. In 1971, Lunnon
enumerated them up to n = 7 [22]. In 2008, Aleksandrowicz and Barequet
gave the bound up to n = 18 [1] and the known upper bound is from
Luther and Mertens up to n = 19 [23]. Unlike polyominoes, only a few
classes of polycubes have been enumerated. Let us cite, for instance, the
plane partitions [8], the directed plateau polycubes [6], and the partially
directed snake polycubes [16]. However some tools were developed for the
enumeration of polycubes, in particular the generic method [7], an extension
of the Bousquet–Melou method [4] and the Dirichlet convolution for the
enumeration of polycubes [5].

These methods only enumerate directed polycubes with convex restric-
tions. The problem for other classes is still open and no method for the
2-dimensional case has been adapted to the 3-dimensional case. One partic-
ular class that could not be enumerated is the class of parallelogram poly-
cubes. In [6], the authors found a differential equation for the generating
function according to the volume, the width, the area of the rightmost face,
the height of the last plateau and the depth of the last plateau, but this
equation could not be solved. Nevertheless, some asymptotic results, which
are the only ones known, are given.

Our objective in this paper is to enumerate the family of parallelogram
polycubes in two different ways by new approaches. The first one uses a
Dirichlet generating function to enumerate them according to the width and
the volume. It leads us to enumerate parallelogram polyominoes. Then we
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Figure 2. Example of a polycube.

generalize it to the polycube case. We also show the relation between these
generating functions and the multivariate zeta functions [19]. The second
enumeration is done according to the width, the height and the depth. In this
case we project the polycubes and, using the known results for polyominoes,
we deduce an explicit formula for polycubes. These two enumerations allow
us to explore new parameters for polyominoes and polycubes different from
the classic ones. This leads to the possibility of studying new enumerations.
In Section 2, we give some definitions and notations. Then, in Section 3,
we enumerate the parallelogram polycubes according to the width and the
volume. In Section 4, we explore the parallelogram polycubes according
to the width, the height and the depth. Finally, in the last Section, we
generalize some results to any dimension d ≥ 4.

2. Preliminaries

Let (0, i⃗, j⃗) be an orthonormal coordinate. The area of a polyomino is the
number of its cells, its width is the number of its columns and its height is
the number of its rows.

A polyomino is said to be column-convex (resp. row-convex ) if its inter-
section with any vertical (resp. horizontal) line is connected. If it is both
column and row convex, it is called convex polyomino.

A North (resp. East) step is a movement of one unit in i⃗-direction (resp.

j⃗-direction). From these two steps, a directed polyomino is defined as if from
a distinguished cell called root, we can reach any other cell by a path that
uses only North or East steps.

The bottom (resp. top) of a column is the height of the closet (resp.

furthest) cell to the axis (0, i⃗).
A parallelogram polyomino is defined as a convex polyomino such that the

bottoms and the tops of its columns form two increasing sequences, see Fig.
3.

Let (0, i⃗, j⃗, k⃗) be an orthonormal coordinate system. As for polyominoes,
several parameters can be defined for a polycube. The volume is the number
of its cubes. The width (resp. height, depth) of a polycube is the difference

between its greatest and its smallest indices according to i⃗ (resp. j⃗, k⃗).
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Figure 3. A parallelogram polyomino.

A polycube is said to be directed if each of its cells can be reached from
a distinguished cell, called the root, by a path only made of East (one unit

in the i⃗-direction), North (one unit in j⃗-direction) and Ahead (one unit in

k⃗-direction) steps.
A stratum is a polycube of width 1 and a plateau is a rectangular stratum

with no holes; it is the equivalent of a column for a polycube.
The front (resp. the back) of a plateau is the closest (resp. the furthest)

side of the plane (0, i⃗, j⃗). The bottom (resp. the top) of a plateau is defined

as the closest (resp. the furthest) side of the plane (0, i⃗, k⃗).
A plateau polycube is a polycube whose strata are plateaus glued together.

A subclass of plateau polycubes are parallelogram polycubes. A parallelo-
gram polycube is a plateau polycube such that the bottoms, the tops, the
fronts and the backs of its plateaus form an increasing sequence, see Fig. 4.

Figure 4. Example of a parallelogram polycube.

For more details about polyominoes and polycubes, one can see [6].
We define S(X) of a finite set X as the set of all the ordered partitions

of the set X. For example if X = {a, b, c} then

S(X) = {({a}, {b}, {c}), ({a}, {c}, {b}), ({b}, {a}, {c}), ({b}, {c}, {a}),
({c}, {a}, {b}), ({c}, {b}, {a}), ({a, b}, {c}), ({a, c}, {b}), ({b, c}, {a}),

({a}, {b, c}), ({b}, {a, c}), ({c}, {a, b}), ({a, b, c})}.
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Given a sequence {an1,n2,...,nk
}n1,n2,...,nk≥1, the ordinary generating func-

tion OGF [27] is the formal power series of the form:

F (x1, x2, . . . , xk) =
∑

n1,n2,...,nk≥1

an1,n2,...,nk
xn1
1 xn2

2 · · ·xnk
k .

For this sequence, the Dirichlet generating function DGF [27] is the formal
power series of the form:

V (x1, x2, . . . , xk) =
∑

n1,n2,...,nk≥1

an1,n2,...,nk

nx1
1 nx2

2 · · ·nxk
k

.

For k ≥ 1, the multivariate zeta functions [19] are defined as:

ζk(x1, x2, . . . , xk) =
∑

n1>n2>···>nk≥1

1

nx1
1 nx2

2 · · ·nxk
k

.

Note that the case k = 1 is the classic Riemann zeta function [27], defined
as

ζ1(x) =
∑
n≥1

1

nx
.

3. Enumeration of parallelogram polycubes according to the
width and the volume

In this section, we give an expression of the Dirichlet generating function
of parallelogram polyominoes. Then we deduce a relation between this case
and the case of polycubes.

We start by giving formulas for the number of parallelogram polyomi-
noes according to the width and the area, and their extension for polycubes
according to the width and the volume.

3.1. Formulas for parallelogram polyominoes and polycubes. Let
am1,m2,...,mk

be the number of parallelogram polyominoes of width k and
whose area (or height) of the ith column is equal mi, where 1 ≤ i ≤ k. The
following proposition is a consequence of the definition. However, as we use
a similar reasoning in the 3-dimensional case, we give its proof.

Proposition 3.1. For integer k and m1,m2, . . . ,mk ∈ N, we have:

am1,m2,...,mk
=

{
1, if k = 1,∏k−1

j=1 min(mj ,mj+1), otherwise.

Proof. In the case k = 1, the considered polyominoes (that are of width 1)
are reduced to one column. Thus, for any value of m1, there is only one
possible polyomino. To determine am1,...,mk

in the case k ≥ 2, we have to
build all possible corresponding polyominoes. We start by considering a
column of height m1 and we successively glue all the other columns one by
one. When we add the ith column of heightmi onto the (i+1)th one of height
mi+1 (1 ≤ i ≤ k− 1), there are exactly min(mi,mi+1) possibilities of gluing
these two columns to obtain a parallelogram polyomino. An illustration of
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this building is given Fig. 5. As we do this for each pair of columns, we get
the product. □

Figure 5. Example construction of different gluings to
obtain a parallelogram polyomino.

Note that, summing over all ordered partitions of an integer n into k
parts, we get bk,n the number of parallelogram polyominoes of width k and
area n in the following corollary.

Corollary 3.2. For integers n ≥ k ≥ 1,

bk,n =
∑

m1,m2,...,mk∈N
m1+m2+···+mk=n

am1,m2,...,mk
.

The first values of bk,n are given in the following table.

n\k 1 2 3 4 5 6 7 8 9 10
1 1 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0
3 1 2 1 0 0 0 0 0 0 0
4 1 4 3 1 0 0 0 0 0 0
5 1 6 8 4 1 0 0 0 0 0
6 1 9 17 13 5 1 0 0 0 0
7 1 12 32 34 19 6 1 0 0 0
8 1 16 551 78 58 26 7 1 0 0
9 1 20 89 160 154 90 34 8 1 0
10 1 25 136 305 365 269 131 43 9 1

Table 1. The first values of bk,n, the number of
parallelogram polyominoes having k columns and area n.

Summing the values of each line we obtain the number of parallelogram
polyominoes with n cells, which corresponds to sequence A006958 of the
OEIS [24].

The Proposition 3.1 can be generalized to the 3-dimensional case in the
following way.

https://oeis.org/A006958
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Proposition 3.3. Let pn1,n2,...,nk
be the number of parallelogram polycubes

of width k and whose ith plateau has a volume ni with i = 1, . . . , k.

pn1,n2,...,nk
=

∑
v1|n1,...,vk|nk

k−1∏
i=1

min(vi, vi+1)min

(
ni

vi
,
ni+1

vi+1

)
.

Proof. First for a fixed volume of a plateau ni, there are exactly τ(ni) pos-
sible plateaus, where τ(ni) is the number of divisors of ni. Note that it cor-
responds to the sequence A000005 of the OEIS [24]. An example is shown
in Fig. 6. Given a plateau of volume ni and height vi, we deduce that its
depth is ni

vi
. Recall that the width of a plateau is 1. Then we have to glue

two plateaus in the same way as for polyominoes. For the 2-dimensional
case, we glued according to the height but in the case of polycubes, we do it
according to the height and the depth. Therefore for a plateau i of volume
ni and height vi, and a plateau i+1 of volume ni+1 and height vi+1, we have
exactly min(vi, vi+1)min(ni

vi
, ni+1

vi+1
) possible gluings. An example is shown in

Fig. 7. Moreover by summing for all possible heights of each plateau, we
get the formula. □

Figure 6. All plateaus of volume 6.

Figure 7. Example of gluing two plateaus.

Thus, by summing for all partitions of an integer n into k parts, we get
ck,n, the number of parallelogram polycubes of width k and volume n in the
following corollary.

Corollary 3.4.

ck,n =
∑

n1,n2,...,nk∈N
n1+n2+···+nk=n

pn1,n2,...,nk
.

https://oeis.org/A000005
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The first values of ck,n, the number of parallelogram polycubes of width
k and volume n, are given in the following table.

n\k 1 2 3 4 5 6 7 8 9 10
1 1 0 0 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0
3 2 4 1 0 0 0 0 0 0 0
4 3 10 6 1 0 0 0 0 0 0
5 2 18 22 8 1 0 0 0 0 0
6 4 32 59 38 10 1 0 0 0 0
7 2 44 132 132 58 12 1 0 0 0
8 4 70 264 374 245 82 14 1 0 0
9 3 84 469 916 836 406 110 16 1 0
10 4 126 808 2015 2438 1614 623 142 18 1

Table 2. The first values of ck,n, the number of
parallelogram polycubes of width k and area n.

Note that the values of the diagonals correspond to the results found
experimentally in [6].

3.2. Dirichlet generating function. Let Vk(x1, x2, . . . , xk) be the Dirich-
let generating function of the parallelogram polyominoes of width k, where
xi codes the area of the ith column where 1 ≤ i ≤ k, it is defined as follows

Vk(x1, x2, . . . , xk) :=
∑

n1,n2,...,nk≥1

min(n1, n2) · · ·min(nk−1, nk)

nx1
1 nx2

2 · · ·nxk
k

Before giving an algorithm to how express this generating function in terms
of multivariate zeta functions, we give the formulas for k = 1, k = 2,k = 3
and k = 4.

• For k = 1,

V1(x1) =
∑
n1≥1

1

nx1
1

= ζ1(x1).

• For k = 2,

V2(x1, x2) =
∑

n1,n2≥1

min(n1, n2)

nx1
1 nx2

2

=
∑

n1>n2≥1

1

nx1
1 nx2−1

2

+
∑

n2>n1≥1

1

nx1−1
1 nx2

2

+
∑

n1=n2≥1

1

nx1+x2−1
1

.

So

V2(x1, x2) = ζ2(x1, x2 − 1) + ζ2(x2, x1 − 1) + ζ1(x1 + x2 − 1).
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• For k = 3

V3(x1, x2, x3) =
∑

n1,n2,n3≥1

min(n1, n2)min(n2, n3)

nx1
1 nx2

2 nx3
3

=
∑

n1>n2>n3≥1

1

nx1
1 nx2−1

2 nx3−1
3

+
∑

n1>n3>n2≥1

1

nx1
1 nx2−2

2 nx3
3

+
∑

n2>n1>n3≥1

1

nx1−1
1 nx2

2 nx3−1
3

+
∑

n2>n3>n1≥1

1

nx1−1
1 nx2

2 nx3−1
3

+
∑

n3>n1>n2≥1

1

nx1−1
1 nx2−1

2 nx3
3

+
∑

n3>n2>n1≥1

1

nx1−1
1 nx2−1

2 nx3
3

+
∑

n1=n2>n3≥1

1

nx1+x2−1
1 nx3−1

3

+
∑

n1=n3>n2≥1

1

nx1+x3
1 nx2−2

2

+
∑

n2=n3>n1≥1

1

nx1−1
1 nx2+x3−1

2

+
∑

n3>n1=n2≥1

1

nx1+x2−2
1 nx3

3

+
∑

n2>n1=n3≥1

1

nx1+x3−2
1 nx2

2

+
∑

n1>n2=n3≥1

1

nx1
1 nx2+x3−2

2

+
∑

n1=n2=n3≥1

1

nx1+x2+x3−2
1

.

So

V3(x1, x2, x3) =ζ3(x1, x2 − 1, x3 − 1) + ζ3(x1, x3, x2 − 2)

+ζ3(x2, x1 − 1, x3 − 1) + ζ3(x2, x3 − 1, x1 − 1)

+ζ3(x3, x1, x2 − 2) + ζ3(x3, x2 − 1, x1 − 1)

+ζ2(x1 + x2 − 1, x3 − 1) + ζ2(x1 + x3, x2 − 2)

+ζ2(x2 + x3 − 1, x1 − 1) + ζ2(x3, x1 + x2 − 2)

+ζ2(x2, x1 + x3 − 2) + ζ2(x1, x2 + x3 − 2)

+ζ1(x1 + x2 + x3 − 2).

Let Xk be the set of variables

Xk = {x1, x2, . . . , xk}.

For k ≥ 2, we have the following theorem

Theorem 3.5. For k ≥ 1,

Vk(x1, x2, . . . , xk) =
∑

S=(S1,S2,...,Sl)∈S(X)

ζl(e1, e2, . . . , el),

where, for 1 ≤ i ≤ l, ei =
∑

xj∈Si

xj − fi, fi =
∑k

j=1 f
+
i,j + f−

i,j,

f+
i,j =

{
1, if xj+1 ∈ St, 1 ≤ t ≤ i− 1
0, otherwise.
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and

f−
i,j =

{
1, if xj−1 ∈ St, 1 ≤ t ≤ i
0, otherwise.

Proof. First, let us decompose the sum to make apparent all the nj ’s possible
orders, using the relations > and =, 1 ≤ j ≤ k. Note that the number of
these decompositions is equal to the Fubini numbers which corresponds to
the sequence A000670 of the OEIS [24].

Then to each decomposition we associate the partition
S = (S1, S2, . . . , Sl) ∈ S(X) and to each xj we associate a nj , 1 ≤ j ≤ k.

For 1 ≤ j ≤ k − 1 and 1 ≤ i, t ≤ l, let xj ∈ Si and xj+1 ∈ St with
i > t (resp. i < t). This means that for the associated n′

js, nj < nj+1

(resp. nj > nj+1), so min(nj , nj+1) = nj (resp. min(nj , nj+1) = nj+1). It
implies that in simplifying the fraction, we can decrease the power of nj

(resp. nj+1). Thus, in the denominator of the fraction we get the factor

n
xj−1
j n

xj+1

j+1 (resp. n
xj

j n
xj+1−1
j+1 ). So the variables in the zeta-functions are

ei = xj − 1 and et = xj+1 (resp. ei = xj and et = xj+1 − 1).
If xj , xj+1 ∈ Si, then nj = nj+1. Using the same reasoning, we get in the

zeta-function ei = xj + xj+1 − 1.
Applying the same reasoning for xj and xj−1, we add −1 to the variable

ei or et. The variable −fi is therefore defined to count all the −1’s of the
xj ’s in Si. Finally if Si contains more than one element, ei is the sum of its
variables and −fi. □

Let Pk(x1, x2, . . . , xk) be the Dirichlet generating function of parallelo-
gram polycubes of width k and where xi codes the volume of the ith plateau,
with 1 ≤ i ≤ k, defined by

Pk(x1, x2, . . . , xk) :=
∑

n1,n2,...,nk≥1

∑
v1|n1,...,vk|nk

∏k−1
j=1

min(vj,vj+1)min

(
nj
vj

,
nj+1
vj+1

)
n
x1
1 n

x2
2 ···n

xk
k

.

This generating function can be expressed according to the generating
function of parallelogram polyominoes Vk(x1, x2, . . . , xk) in the following
theorem.

Theorem 3.6. For k ≥ 1,

Pk(x1, x2, . . . , xk) =
(
Vk(x1, x2, . . . , xk)

)2
.

Proof. We know from Proposition 3.3 that the volume of each plateau is the product of
its width and height. Therefore we can deduce the following decomposition.

Pk(x1, x2, . . . , xk) =
∑

n1,n2,...,nk≥1

∑
v1|n1,...,vk|nk

∏k−1
j=1

min(vj,vj+1)min

(
nj
vj

,
nj+1
vj+1

)
n
x1
1 n

x2
2 ···n

xk
k

=
∑

n1,n2,...,nk≥1

∏k−1
j=1

min(nj,nj+1)

n
x1
1 n

x2
2 ···n

xk
k

∑
n1,n2,...,nk≥1

∏k−1
j=1

min(nj,nj+1)

n
x1
1 n

x2
2 ···n

xk
k

Thus we get the result. □

https://oeis.org/A000670
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4. Enumeration according to the height, the width and the
depth

As seen in Section 3, the enumeration of parallelogram polycubes is related
to the case of polyominoes. In fact, by definition of parallelogram polycubes

in [5], the projections on (0, i⃗, j⃗) and (0, i⃗, k⃗) of a parallelogram polycube
gives two parallelogram polyominoes. Both have the same width as the
polycube. Also, the height of the first polyomino is equal to the height
of the polycube and the height of the second one is equal to the depth of
the polycube. Moreover, each pair of parallelogram polyominoes having the
same width corresponds to a unique parallelogram polycube. The example
in Fig. 8 illustrates the projections of the previous polycube.

−→
j

−→
k

−→
i

Figure 8. Parallelogram polycube and its projections.

In this section, we enumerate parallelogram polycubes according to the
width, the height and the depth. We first start by giving in Lemma 4.1, the
number of parallelogram polyominoes according to the width and height.
Then, from this result, we deduce a formula for the polycubes.

Lemma 4.1. [13] Let k, n ∈ N and gk,n denote the number of parallelogram
polyominoes of width k and height n. Then,

gk,n =
1

n+ k − 1

(
n+ k − 1

k

)(
n+ k − 1

k − 1

)
.

From this lemma, the following theorem is deduced.

Theorem 4.2. Let sk,n,m be the number of parallelogram polycubes, of width
k, height n and depth m. Then for k, n,m ≥ 1, we have,

sk,n,m =
nm

k2(n+ k − 1)(m+ k − 1)

(
n+ k − 1

k − 1

)2(m+ k − 1

k − 1

)2
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Proof. Recall that for each pair of parallelogram polyominoes having the
same width k, we build a unique polycube of width k. If the height of the
first one is n, then the height of the polycube is also n and if the height
of the second polyomino is m, it implies that the depth of the polycube m.
From Lemma 4.1, the number of polyominoes of width k and height n is

1
n+k−1

(
n+k−1

k

)(
n+k−1

n

)
, therefore by the rule of product, the formula is:

1

(n+ k − 1)(m+ k − 1)

(
n+ k − 1

k

)(
n+ k − 1

k − 1

)(
m+ k − 1

k

)(
m+ k − 1

k − 1

)
.

Using the binomial identity [25](
n+ k − 1

k

)
=

(
n+ k

k

)
−

(
n+ k − 1

k − 1

)
,

we obtain,(
n+ k − 1

k

)(
n+ k − 1

k − 1

)
=

[(
n+ k

k

)
−

(
n+ k − 1

k − 1

)](
n+ k − 1

k − 1

)

=

[
(
n+ k

k
− 1)

(
n+ k − 1

k − 1

)](
n+ k − 1

k − 1

)

=
n

k

(
n+ k − 1

k − 1

)2

,

By replacing in the formula, we get the result. □

There are several appearances of specific instances of the numbers sk,m,n

in the OEIS [24]. The following table gives these cases.

Sequence Index OEIS
sk,n,n A174158
s2,2,m A045943
sn,n,1 A000891

al =
∑

n+k=l sk,n,n A319743

Table 3. Sequences of the OEIS that appear in the
enumeration of parallelogram polycubes.

5. Extension to any dimension

In this section, the results found for polycubes will be extended for any
dimension d ≥ 4. In Zd, a polyhypercube of dimension d, also called d-
polycube, is a finite union of cells (unit hypercubes), connected by their
hypercubes of dimension d− 1, and defined up to translation.

Let (0, i⃗1, i⃗2, . . . , i⃗d) be an orthonormal coordinate system. The volume of
a polyhypercube is the number of its hypercubes. The width is the difference
between its greatest index and its smallest index according to i⃗1. The jth-
height is the difference between its greatest index and its smallest index

https://oeis.org/A174158
https://oeis.org/A045943
https://oeis.org/A000891
https://oeis.org/A319743
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according to i⃗j , with 2 ≤ j ≤ d.

An elementary step is a positive move of one unit along the axis i⃗j with
1 ≤ j ≤ d. A polyhypercube is directed if each cell can be reached from a
distinguished cell, called the root, by a path made only by elementary steps.

The bottom (resp. top) according to i⃗k, is the closest (resp. furthest)

side of the hyperplane (0, i⃗1, . . . , ⃗ik−1, ⃗ik+1, . . . , i⃗d), with k = 2, . . . , d − 1.

The bottom (resp. top) according to i⃗d is the closest (resp. furthest) side of

the hyperplane (0, i⃗1, . . . , ⃗id−1). A stratum is a polyhypercube of width one.
A plateau is a hyperrectangular stratum without holes. A parallelogram
polyhypercube is a polyhypercube whose bottoms and tops of its strata
according to i⃗k form increasing sequences, k = 2, . . . , d.

From these definitions, we deduce that the projection of a parallelogram
polyhypercube on each plane gives a parallelogram polyomino. Therefore,
the results of the two previous sections can be extended to any dimension
d ≥ 4.

Let Pd,k(x1, x2, . . . , xk) be the generating function of parallelogram poly-
hypercube of dimension d and width k. Then, Pd,k can be expressed accord-
ing to Vk the generating function of parallelogram polyominoes of width
k.

Theorem 5.1. For d ≥ 4 and k ≥ 1,

Pd,k(x1, x2, . . . , xk) =
(
Vk(x1, x2, . . . , xk)

)d−1
.

Proof. The proof is the same as the case of dimension 3. It is deduced from
the fact that the projection of a parallelogram polyhypercube on each plane
gives a parallelogram polyomino. The volume of the ith hyperplateau is
obtained by the product of the volumes of ith column of each polyomino
obtained in the projection 1 ≤ i ≤ k. □

Let sk,n1,...,nd−1
be the number of parallelogram polyhypercubes of dimen-

sion d, width k and the ith height is equal to ni, with i = 1, . . . , d−1. Using
the same reasoning as for Theorem 4.2, we obtain

Theorem 5.2. For d ≥ 4, k ≥ 1 and ni ≥ 1 with i = 1 . . . d− 1,

sk,n1,...,nd−1
=

1

kd−1

d−1∏
i=1

ni

ni + k − 1

(
ni + k − 1

k − 1

)2

.
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