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SPLIT LATTICE PATHS AND ROGERS–RAMANUJAN

TYPE IDENTITIES

B. MARWAH AND M. GOYAL

Abstract. In this paper, an open problem posed by the second author
[On q-series and split lattice paths, Graphs and Combinatorics, 2020]
is addressed. Here, we provide combinatorial interpretations of four
generalized basic series in terms of split lattice paths. Out of these
series, two series have been studied by Adiga et. al [On Generalization of
Some Combinatorial Identities, J. Ramanujan Soc. of Math. and Math.
Sc., 2016] using split (n + t)-color partitions and R-weighted lattice
paths but a direct one-to-one correspondence between these two classes
was missing. We are successful in the quest of establishing bijections
between the combinatorial graphical interpretations in terms of split
lattice paths and combinatorial interpretations in terms of split (n+ t)-
color partitions using a purely algebraic approach. In this process, we
encounter Rogers–Ramanujan type identities and we are able to provide
their graphical interpretations using a constructive approach.

1. Introduction and Definitions

One of the most beautiful results in mathematics is the Rogesr–Ramanujan
identities. After the discovery of such elegant sum–product identities, a
quest was started to find more such types of identities in which several
mathematicians have succeeded [8, 11, 12, 13]. As these identities have
numerous applications in different fields [7], a new pursuit was started to
explore such identities analytically, combinatorially, and graphically [2, 4, 9].
In 2014, Agarwal and Sood introduced a new combinatorial object, viz.,
split (n+ t)-color partitions and used this new set of partitions to interpret
unexplored basic series and basic series identities combinatorially [5, 14].
Recently one of the authors has introduced a new combinatorial object,
viz., split lattice paths to study the graphical representations of Rogers–
Ramanujan type identities [10]. In that paper, Gordon–McIntosh eighth
order mock theta functions were explored graphically and an open problem
was posed to explore Rogers–Ramanujan type identities graphically. To
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answer this posed problem, we provide graphical meanings to the following
four generalized basic series constructively:
Let m, l, p, t ∈ Z+ and k ∈ {x : x = 2y; y ∈ Z+ ∪ {0}}. For | q |< 1 and
1 ≤ j ≤ 4, we define gj(q) by

(1.1) g1(q) =

∞∑
π=0

qmπ2
(−ql; q2l)π

(qp; q2p)π(qk; qk)π
,

(1.2) g2(q) =
∞∑
π=0

qmπ2+tπ(−ql; q2l)π
(qp; q2p)π+1(qk; qk)π

,

(1.3) g3(q) =
∞∑
π=0

qmπ2+tπ(−ql; q2l)π
(qp; q2p)π(qk; qk)π

,

(1.4) g4(q) =

∞∑
π=0

qmπ2−tπ(−ql; q2l)π
(qp; q2p)π(qk; qk)π

(provided m > t),

where the following standard notation is adopted:

(a; q)∞ = (1− a)(1− aq) · · ·

(a; q)n =

n−1∏
i=0

(1− aqi).

In this paper, we provide combinatorial interpretations of (1.1)–(1.4) using
split lattice paths in Section 2. Recently, Adiga et. al [1] interpreted (1.1)
and (1.2) in terms of split (n + t)-color partitions and R-weighted lattice
paths but a direct one-to-one correspondence between the graphical aspect
and the partition theoretic interpretation was missing. Hence in Section 3,
the successful establishment of bijections between different classes of split
(n+ t)-color partitions and their graphical counterparts in terms of split lat-
tice paths accomplishes the one-to-one correspondence which was expected
in [1]. In Section 4, we provide some particular cases of these generalized
basic series leading to entirely new 3-way combinatorial interpretations of
some elegant Rogers–Ramanujan type identities found in [8]. Finally, we
conclude by discussing the potential of this work in shedding light on the
graphical aspects of some other Rogers–Ramanujan type identities in the
future that have not been interpreted to date.

Before we state our main results we first recall some definitions:

Definition 1.1 ([3]). A partition with “(n + t) copies of n”, t ≥ 0, is a
partition in which a part of size n, n ≥ 0, can come in (n + t) different
colors denoted by subscripts: n1, n2, . . . , nn+t. Note that zeros are permitted
if and only if t is greater than or equal to one. Also, zeros are not permitted
to repeat in any partition.
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Remark: We note that if we take t = 0, then these are nothing but the n-
color partitions. If the order of the parts is considered then these are n-color
compositions.

Definition 1.3 ([3]). The weighted difference of two parts gk, hl (g ≥ h) is
defined by g − h− k − l and is denoted by ((gk − hl)).

Definition 1.4 ([5]). Let ap be a part in an (n + t)-color partition of a
nonnegative integer ν. We split the color ‘p’ into two parts-‘the green part’
and ‘the red part’ denoted by ‘g’ and ‘r’ respectively, such that 1 ≤ g ≤ p,
0 ≤ r ≤ p− 1 and p = g + r. An (n+ t)-color partition in which each part
is split in this manner is called a split (n+ t)-color partition.

Example 1.5. In 52+1, the green part is 2 and the red part is 1.

Remark: We note that if r = 0, then it will not be written. Thus, for
instance, we will write 53 for 53+0.

Definition 1.7 ([6]). All “associated lattice paths” will be of finite length
lying in the first quadrant. They start on the y-axis (origin included), end
on the x-axis, and use three kinds of unitary steps:

• Northeast: from (x, y) to (x+ 1, y + 1).

• Southeast: from (x, y) to (x+ 1, y − 1), only allowed if y > 0.

• Horizontal: from (x, y) to (x + 1, y), only allowed when the first
step of a sequence of consecutive horizontal steps is preceded by a
northeast step and the last is followed by a southeast step.

The following terminology is used in describing associated lattice paths:

Truncated isosceles trapezoidal section (TITS): A section of the path which
starts on the x-axis with northeast steps followed by horizontal steps and then
followed by southeast steps ending on the x-axis forms a truncated isosceles
trapezoidal section. Since the lower base lies on the x-axis and is not a part
of the path, hence the term truncates.

Slant section (SS): A section of the path consisting of only southeast steps
which starts on the y-axis (origin not included) and ends on the x-axis.

Height of a slant section: It is ‘d’ if it starts from (0, d). Clearly, an SS can
only be at the beginning of the path. An associated lattice path can have at
most one SS.

Weight of a TITS: Every TITS is represented by an ordered pair {u, v},
where u denotes its altitude and v the length of the upper base. The weight
of a TITS with ordered pair {u, v} is u.

Weight of an associated lattice path: It is the sum of weights of its TITSs.
Note that the weight of the Slant Section is zero.
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Figure 1. One SS of height 1 and one TITS with ordered
pair {2, 3}

Example 1.8. In Figure 1, the associated lattice path has one SS of height
1, one TITS with ordered pair {2, 3}, and its weight is 2.

2. Split lattice paths and split (n+ t)-color partitions

Now we recall the split lattice paths and describe the terminology used
in these paths.

Definition 2.1 ([10]). In split lattice paths, the length of the upper base
‘v’ of each TITS in an associated lattice path is split into two parts—the
left part is called a ‘ray’ and the right part a ‘segment’ and their lengths are
denoted by ‘r’ and ‘s’ respectively, such that 1 ≤ r ≤ v, 0 ≤ s ≤ v − 1, and
v = r+ s. An associated lattice path in which the lengths of the upper bases
of all the TITSs are split into rays and segments is called a split lattice path.
In a split lattice path, the ray is represented by a solid line and the segment
is represented by a dotted line.

Remark: For all types of calculations and logic, the length of the upper base
‘v’ is considered as a whole and not as its parts r and s, separately.

Definition 2.3 ([10]). The following order is defined on the set of all TITSs
of a split lattice path which firstly depends upon their weights and then on
the length of their upper bases:

If u < w then TITS with ordered pair {u, v} will appear before the TITS
with ordered pair {w, x} and if u = w then the TITS with ordered pair {u, v}
will appear before the TITS with ordered pair {w, x}, where v < x. Further
if u = w and v = x, then the order of these TITSs depends upon the length of
the ray, that is, say v = r1+s1 and x = r2+s2, then TITS with ordered pair
{u, v} will appear before the TITS with ordered pair {w, x}, where r1 < r2.
Thus, the TITSs satisfy the order: {1, 1} < {1, 1 + 1} < {1, 2} < {2, 1} <
{2, 1 + 1} < {2, 2} < {3, 1} < {3, 1 + 1} < {3, 2} < {3, 1 + 2} < {3, 2 + 1} <
{3, 3} < · · · .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Figure 2. One SS of height 1 and two TITSs with same
ordered pair {2, 3}.
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Example 2.4. In Figure 2, the split lattice path has one SS of height 1 and
two TITSs with ordered pair {2, 3}. Here, the weights and the lengths of the
upper bases (as a whole) of both the TITSs are equal. Thus given Definition
2.3, TITS with a ray of length 1 will appear before the TITS with a ray of
length 2 in the corresponding split lattice path. Here, the weight of the split
lattice path is 4.

3. Split Lattice Paths and Generalized Series

Adiga et. al [1] proved that the q-series (1.1) and (1.2) have their com-
binatorial counterparts in terms of split (n + t)-color partitions. A slight
modification in the combinatorial interpretation of (1.1) leads us to the
combinatorial interpretations of basic series (1.3) and (1.4) in terms of split

(n + t)-color partitions. These results are enumerated by P
(m,l)
1(p,k)

(ν) and

P
(m,t,l)
j(p,k)

(ν), 2 ≤ j ≤ 4 as defined in Theorems 3.1–3.4. It is worth noting

that the direct bijections between combinatorial identities (1.1) and (1.2)
were not established in terms of split (n+t)-color partitions and R-weighted
lattice paths in [1]. Our objective in this section is to extend the results of
these four generalized basic series in terms of split lattice paths and provide
a one-to-one correspondence between different classes of split lattice paths
and split (n+ t)-color partitions algebraically.

Theorem 3.1. Let P
(m,l)
1(p,k)

(π, ν) denote the set of split n-color partitions of

ν with exactly π parts which satisfy the following conditions:

(1) parts and subscripts have the same parity,
(2) if ui is the smallest or the only part in the partition, then u ≡

i (mod k),
(3) the red part of the subscript is 0 or l,
(4) the green part is congruent to m (mod p),
(5) the weighted difference between any two consecutive parts is nonneg-

ative and is congruent to 0 (mod k).

Let Q
(m,l)
1(p,k)

(π, ν) denote the set of split lattice paths of weight ν with exactly

π TITSs and no SS, satisfying the following conditions:

(1) for any TITS with ordered pair {u, v}, v does not exceed u and u ≡
v (mod 2),

(2) the path begins with a TITS with ordered pair {u, v}, where u ≡
v (mod k),

(3) the length of the segment is 0 or l,
(4) the length of a ray is congruent to m (mod p),
(5) for any two TITSs with respective ordered pairs {u1, v1} and {u2, v2}

(u1 ≤ u2), u2 − v2 ≡ u1 + v1 (mod k) holds.
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Let P
(m,l)
1(p,k)

(ν) =
⋃∞

π=0 P
(m,l)
1(p,k)

(π, ν) and Q
(m,l)
1(p,k)

(ν) =
⋃∞

π=0 Q
(m,l)
1(p,k)

(π, ν), then∑∞
ν=0 P

(m,l)
1(p,k)

(ν)qν =
∑∞

ν=0Q
(m,l)
1(p,k)

(ν)qν = g1(q), where

P
(m,l)
1(p,k)

(ν) = |P(m,l)
1(p,k)

(ν)| and Q
(m,l)
1(p,k)

(ν) = |Q(m,l)
1(p,k)

(ν)|.

Example. P
(2,2)
1(1,4)

(12) = 10, the relevant partitions are: 1212, 1210+2, 128,

126+2, 124, 122+2, 106 + 22, 104+2 + 22, 102 + 22, 93 + 33.

Theorem 3.2. Let P
(m,t,l)
2(p,k)

(π, ν) denote the set of split (n+t)-color partitions

of ν with exactly π parts which satisfy the following conditions:

(1) the parts and their subscripts have the same parity if t is even, oth-
erwise the parity is opposite,

(2) the red part of the subscripts is 0 or l,
(3) the green part is congruent to m (mod p) and it is greater than or

equal to m,
(4) the smallest part is of the form uu+t and u ≡ 0 (mod p),
(5) the red part of the subscript of the smallest part is 0,
(6) the weighted difference between any two consecutive parts is nonneg-

ative and is congruent to 0 (mod k).

Let Q
(m,t,l)
2(p,k)

(π, ν) denote the set of split lattice paths of weight ν with exactly

π TITSs satisfying the following conditions:

(1) for any TITS with ordered pair {u, v}, v does not exceed u + t and
u ≡ v (mod 2) if t is even, otherwise u ̸≡ v (mod 2),

(2) the length of the segment is 0 or l,
(3) the length of ray is congruent to m (mod p),
(4) there is an SS of height t or a TITS with ordered pair {u, u+ t} and

u ≡ 0 (mod p),
(5) the length of the segment of the first TITS is 0,
(6) for any two TITSs with respective ordered pairs {u1, v1} and {u2, v2}

(u1 ≤ u2), u2 − v2 ≡ u1 + v1 (mod k) holds.

Let P
(m,t,l)
2(p,k)

(ν) =
⋃∞

π=0 P
(m,t,l)
2(p,k)

(π, ν) and Q
(m,t,l)
2(p,k)

(ν) =
⋃∞

π=0 Q
(m,t,l)
2(p,k)

(π, ν),

then
∑∞

ν=0 P
(m,t,l)
2(p,k)

(ν)qν =
∑∞

ν=0Q
(m,t,l)
2(p,k)

(ν)qν = g2(q), where P
(m,t,l)
2(p,k)

(ν) =

|P(m,t,l)
2(p,k)

(ν)| and Q
(m,t,l)
2(p,k)

(ν) = |Q(m,t,l)
2(p,k)

(ν)|.

Example. P
(2,1,1)
2(2,4)

(13) = 7, the relevant partitions are: 1312 + 01, 138 + 01,

134 + 01, 104+1 + 32 + 01, 92 + 42+1 + 01, 116 + 23, 112 + 23.

Theorem 3.3. Let P
(m,t,l)
3(p,k)

(π, ν) denote the set of split n-color partitions of

ν with exactly π parts which satisfy the following conditions:

(1) if ui is the smallest or the only part in the partition, then u ≡ i +
t (mod k) and u ≥ i+ t,

(2) the parts and subscripts have the same parity if t is even, otherwise
the parity is opposite.



SPLIT LATTICE PATHS AND RR TYPE IDENTITIES 247

(3) the red part of the subscript is 0 or l,
(4) the green part is greater than or equal to m and it is congruent to

m (mod p),
(5) the weighted difference between any two consecutive parts is nonneg-

ative and is congruent to 0 (mod k),
(6) all parts are greater than or equal to m+ t.

Let Q
(m,t,l)
3(p,k)

(π, ν) denote the set of split lattice paths of weight ν with exactly

π TITSs and no SS, satisfying the following conditions:

(1) the path begins with a TITS with ordered pair {u, v} where u ≡
v + t (mod k),

(2) for any TITS with ordered pair {u, v}, v does not exceed u and u ≡
v(mod 2) if t is even, otherwise u ̸≡ v (mod 2),

(3) the length of the segment is 0 or l,
(4) the length of ray is congruent to m (mod p),
(5) for any two TITSs with respective ordered pairs {u1, v1} and {u2, v2}

(u1 ≤ u2), u2 − v2 ≡ u1 + v1 (mod k) holds,
(6) the altitudes of all TITSs are greater than or equal to m+ t.

Let P
(m,t,l)
3(p,k)

(ν) =
⋃∞

π=0 P
(m,t,l)
3(p,k)

(π, ν) and Q
(m,t,l)
3(p,k)

(ν) =
⋃∞

π=0 Q
(m,t,l)
3(p,k)

(π, ν),

then
∑∞

ν=0 P
(m,t,l)
3(p,k)

(ν)qν =
∑∞

ν=0Q
(m,l,t)
3(p,k)

(ν)qν = g3(q), where P
(m,t,l)
3(p,k)

(ν) =

|P(m,t,l)
3(p,k)

(ν)| and Q
(m,t,l)
3(p,k)

(ν) = |Q(m,t,l)
3(p,k)

(ν)|.

Example. P
(1,3,1)
3(1,4)

(11) = 6, the relevant partitions are: 118, 117+1, 114,

113+1, 72 + 41, 71+1 + 41.

Theorem 3.4. Let P
(m,t,l)
4(p,k)

(π, ν) denote the set of split n-color partitions of

ν with exactly π parts which satisfy the following conditions:

(1) if ui is the smallest or the only part in the partition, then u ≡
i (mod k),

(2) the parts and their subscripts have same parity,
(3) the red part of the subscript is 0 or l,
(4) the green part is greater than or equal to m − t and it is congruent

to (m− t) (mod p),
(5) the weighted difference between any two consecutive parts is greater

than or equal to 2t and is congruent to 2t (mod k).

Let Q
(m,t,l)
4(p,k)

(π, ν) denote the set of split lattice paths of weight ν with exactly

π TITSs and no SS, satisfying the following conditions:

(1) the path begins with a TITS with ordered pair {u, v} where u ≡
v (mod k),

(2) for any TITS with ordered pair {u, v}, v does not exceed u and u ≡
(mod 2),

(3) the length of the segment is 0 or l,
(4) the length of ray is ≥ m− t and it is congruent to (m− t) (mod p),
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(5) for any two TITSs with respective ordered pairs {u1, v1} and {u2, v2}
(u1 ≤ u2), u2 − v2 ≡ u1 + v1 + 2t (mod k) holds.

Let P
(m,t,l)
4(p,k)

(ν) =
⋃∞

π=0 P
(m,t,l)
4(p,k)

(π, ν) and Q
(m,t,l)
4(p,k)

(ν) =
⋃∞

π=0 Q
(m,t,l)
4(p,k)

(π, ν),

then
∑∞

ν=0 P
(m,t,l)
4(p,k)

(ν)qν =
∑∞

ν=0Q
(m,t,l)
4(p,k)

(ν)qν = g4(q), where P
(m,t,l)
4(p,k)

(ν) =

|P(m,t,l)
4(p,k)

(ν)| and Q
(m,t,l)
4(p,k)

(ν) = |Q(m,t,l)
4(p,k)

(ν)|.

Example. P
(5,3,1)
4(2,6)

(20) = 8, the relevant partitions are: 2020, 2014, 208, 202,

188 + 22, 182 + 22, 174+1 + 32+1, 162 + 44.

Notation. In Theorems 3.1–3.4, the notation |S| denotes the cardinality of
the set S.

3.1. Proof of Theorem 3.1. We will show that the infinite summation
series g1(q) generates the split lattice paths enumerated by Q

(m,l)
1(p,k)

(π, ν)

constructively. For this, we define a set of triplets (ς, ξ, σ) denoted by

R
(m,l)
1(p,k)

(π, ν) where ς = (ς1, ς2, . . . , ςπ), ξ = (ξ1, ξ2, . . . , ξπ), and

σ = (σ1, σ2, . . . , σπ) are π tuples of integers and satisfy:

(i) ςi ∈ Z≥0 = {0, 1, 2, 3, . . . }, for 1 ≤ i ≤ π,
(ii) ξi ∈ Z≥0 = {0, 1, 2, 3, . . . }, for 1 ≤ i ≤ π,
(iii) σi = 0 or 1, for 1 ≤ i ≤ π,
(iv) if the weight of the triplet (ς, ξ, σ) is defined by

w(ς, ξ, σ) = mπ2 +
π∑

i=1

iςik +
π∑

i=1

(2i− 1)ξip+
π∑

i=1

(2i− 1)σil,

then (ς, ξ, σ) should satisfy w(ς, ξ, σ) = ν.

We can easily establish that the generating function for R
(m,l)
1(p,k)

(π, ν) is

∞∑
ν=0

R
(m,l)
1(p,k)

(π, ν)qν =

∞∑
π=0

qmπ2
(−ql; q2l)π

(qp; q2p)π(qk; qk)π
,

where R
(m,l)
1(p,k)

(π, ν) = |R(m,l)
1(p,k)

(π, ν)|. In the second and third steps, we will

prove that there is a bijection between the set of split lattice paths enumer-

ated by Q
(m,l)
1(p,k)

(π, ν) and set of triplets enumerated by R
(m,l)
1(p,k)

(π, ν).

Proof. In the first step, we shall prove that

(3.1)
∞∑
ν=0

Q
(m,l)
1(p,k)

(ν)qν =
∞∑
π=0

qmπ2
(−ql; q2l)π

(qp; q2p)π(qk; qk)π
.

In qmπ2
(−ql;q2l)π

(qp;q2p)π(qk;qk)π
, the factor qmπ2

generates a split lattice path with π TITSs

such that ith TITS has ordered pair {(2i− 1)m,m}. For π = 3 and m = 1,
the path begins as:
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Figure 3. Split lattice path for π = 3 and m = 1

In Figure 3, we consider two successive TITSs, say, ith and (i + 1)th
with corresponding ordered pairs {(2i− 1)m,m} and {(2i+ 1)m,m}, re-
spectively. The factor 1/(qk; qk)π generates π nonnegative multiples of k
say ς1 ≥ ς2 ≥ · · · ≥ ςπ ≥ 0, which is encoded by increasing the altitude
of ith TITS by ςπ−i+1, 1 ≤ i ≤ π. Thus the ordered pair associated with
ith TITS becomes {(2i− 1)m+ ςπ−i+1,m}. Consider the ith and (i + 1)st
TITSs as shown in Figure 4.

i
th

(i+1)
th

Figure 4. ith and (i+ 1)th TITSs

The factor 1/(qp; q2p)π generates π nonnegative multiples of (2i− 1) p say
ξ1×p ≥ ξ2×3p ≥ · · · ≥ ξπ×(2π−1)p ≥ 0, which is encoded by increasing the
altitude of the ith TITS by 2p(ξπ+ξπ−1+ · · ·+ξπ−i+2)+ξπ−i+1p and length
of ray by ξπ−i+1p. Thus, the ordered pair associated with ith TITS becomes
{(2i− 1)m+ ςπ−i+1 +2p(ξπ + ξπ−1 + · · ·+ ξπ−i+2) + ξπ−i+1p,m+ ξπ−i+1p}.
Now Figure 4 changes to Figure 5.

i
th

(i+1)
th

Figure 5. ith and (i+ 1)th TITSs

The factor (−ql; q2l)π generates distinct nonnegative multiples of (2i− 1) l
say σ1×l ≥ σ2×3l ≥ · · · ≥ σπ×(2π−1)l ≥ 0, which is encoded by increasing
the altitude of the ith TITS by 2l(σπ + σπ−1 + · · ·+ σπ−i+2) + σπ−i+1l and
by putting a segment of length σπ−i+1l adjacent to the ray. Figure 5 now
changes to Figure 6.
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i
th

(i+1)
th

Figure 6. ith and (i+ 1)th TITSs

Every split lattice path enumerated by Q
(m,l)
1(p,k)

(π, ν) is uniquely generated

in this manner.

3.2. Bijections between certain restricted classes of split (n + t)-
color partitions and split lattice paths. We see that there exists a

well-defined map between the triplets (ς, ξ, σ) =
(
(ςi)

π
i=1, (ξi)

π
i=1, (σi)

π
i=1

)
of

the set R
(m,l)
1(p,k)

(π, ν) and the π TITSs represented by the ordered pairs

{ui, vi}πi=1 = {ui, ri + si}πi=1 of the set Q
(m,l)
1(p,k)

(π, ν), say,

φ1 : Q
(m,l)
1(p,k)

(π, ν) → R
(m,l)
1(p,k)

(π, ν)

defined by

φ1

(
(ςi)

π
i=1, (ξi)

π
i=1, (σi)

π
i=1

)
= {uπ−i+1, rπ−i+1 + sπ−i+1}πi=1 ,

such that ∀ 1 ≤ i ≤ π

(3.2) φ1 :

{
ξip = rπ−i+1 −m

σil = sπ−i+1

and uπ−i+1 = (2(π − i+ 1)− 1)m+ ςi + 2p(ξπ + ξπ−1 + · · ·+ ξi+1) + ξip +
2l(σπ + σπ−1 + · · ·+ σi+1) + σil.

In the second step we now show that φ1(ς, ξ, σ) is actually an element of

Q
(m,l)
1(p,k)

(π, ν). Let us denote the ith and (i + 1)th TITSs by {ui, vi} and

{ui+1, vi+1} respectively. Then

ui = (2i− 1)m+ ςπ−i+1 + 2p(ξπ + ξπ−1 + · · ·+ ξπ−i+2) + ξπ−i+1p+

+ 2l(σπ + σπ−1 + · · ·+ σπ−i+2) + σπ−i+1l

vi = m+ ξπ−i+1p+ σπ−i+1l

ui+1 = (2i+ 1)m+ ςπ−i+1 + 2p(ξπ + ξπ−1 + · · ·+ ξπ−i+1) + ξπ−ip+

2l(σπ + σπ−1 + · · ·+ σπ−i+1) + σπ−il

vi+1 = m+ ξπ−ip+ σπ−il.

Clearly, vi ≤ ui and the parity of ui and vi both depends upon m+ξπ−i+1p+
σπ−i+1l. If m+ ξπ−i+1p+ σπ−i+1l is even then both ui and vi are even and
vice-versa. This confirms that for any TITS with ordered pair {u, v} , v does
not exceed u and u ≡ v (mod 2). If ui denotes the first TITS in the split
lattice path then it will correspond to the smallest part or the singleton part
in the corresponding split n-color partition and u − i = ςπ ≡ 0 (mod k).
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Since ri = m+ξπ−i+1p, therefore the green part of the split n-color partition
is congruent to m (mod p). Also, we know that from condition (iii) on the

triplets of the set R
(m,l)
1(p,k)

(π, ν), σi = 0 or 1 for all 1 ≤ i ≤ π. Thus the

length of the segment denoted by si = σπ−i+1l is either 0 or l in the split

lattice path enumerated by Q
(m,l)
1(p,k)

(π, ν). Now, we consider ui+1 − vi+1 =

ui + vi + ςπ−i − ςπ−i+1 which implies that weighted difference between any
two consecutive parts is congruent to 0 (mod k).

In the third step, we show that φ1 is injective as well as surjective.

(1) φ1 is injective:

Suppose
(
(ςi)

π
i=1, (ξi)

π
i=1, (σi)

π
i=1

)
and

(
(αi)

π
i=1, (βi)

π
i=1, (γi)

π
i=1

)
are any two triplets in the set R

(m,l)
1(p,k)

(π, ν) such that for all 1 ≤ i ≤ π:

φ1

(
(ςi)

π
i=1, (ξi)

π
i=1, (σi)

π
i=1

)
= φ1

(
(αi)

π
i=1, (βi)

π
i=1, (γi)

π
i=1

)
implies

(3.3) {uπ−i+1, rπ−i+1 + sπ−i+1} = {u′π−i+1, r
′
π−i+1 + s′π−i+1}

We know from Definition 2.3 that two TITSs are equal if their
weights as well as the lengths of their rays and segments are equal.
Thus from (3.3), we have

rπ−i+1 = r′π−i+1 and sπ−i+1 = s′π−i+1
⇒ m+ξip = m+βip and σil = γil using (3.2)
⇒ ξi = βi and σi = γi for 1 ≤ i ≤ π

⇒ ςi = αi for 1 ≤ i ≤ π

⇒
(
(ςi)

π
i=1, (ξi)

π
i=1, (σi)

π
i=1

)
=

(
(αi)

π
i=1, (βi)

π
i=1, (γi)

π
i=1

)
,

hence φ1 is injective.
(2) φ1 is surjective:

Consider a TITS with ordered pair {ui, vi} for 1 ≤ i ≤ π of the

split lattice path enumerated by Q
(m,l)
1(p,k)

(π, ν), where vi = ri + si
for 1 ≤ i ≤ π. Now by the conditions of Theorem 3.1 on the split

lattice paths in the set Q
(m,l)
1(p,k)

(π, ν), we know that every ri ≥ m and

si = 0 or l for 1 ≤ i ≤ π. So, by definition of the map φ1 we have
ξip = rπ−i+1 −m ≥ 0 and σil = sπ−i+1 = 0 or l for 1 ≤ i ≤ π. Thus(
(ςi)

π
i=1, (ξi)

π
i=1, (σi)

π
i=1

)
is a triplet in the set R

(m,l)
1(p,k)

(π, ν). Hence

φ1 is surjective and the inverse mapping is:

(φ1)
−1 :

{
ri = ξπ−i+1p+m,

si = σπ−i+1l, 1 ≤ i ≤ π

and ui = (2i−1)m+ςπ−i+1+2p(ξπ+ξπ−1+ · · ·+ξπ−i+2)+ξπ−i+1p+
2l(σπ + σπ−1 + · · ·+ σπ−i+2) + σπ−i+1l.
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This completes the bijection. □

3.3. Outline of the proofs of theorems 3.2–3.4.

Proof of Theorem 3.2. The proof is treated in the same manner as The-
orem 3.1. Here, the only difference is that there are two extra factors
namely qtπ and (1 − q(2π+1)p)−1. The factor qtπ puts t southeast steps:
(0, t), (1, t− 1), . . . , (t− 1, 1), (t, 0) thus there are now π + 1 TITSs and the
path begins with an SS of height t or a TITS with ordered pair {u, u+ t}.
Therefore, we define the set of triplets (ς, ξ, σ) denoted by R

(m,t,l)
2(p,k)

(π, ν) where

ς = (ς1, ς2, . . . , ςπ) and σ = (σ1, σ2, . . . , σπ) are π-tuples of integers and
ξ = (ξ1, ξ2, . . . , ξπ+1) are (π + 1)-tuples of integers and satisfy:

(i) ςi ∈ Z≥0 = {0, 1, 2, 3, . . . }, for 1 ≤ i ≤ π,
(ii) ξi ∈ Z≥0 = {0, 1, 2, 3, . . . }, for 1 ≤ i ≤ π + 1,
(iii) σi = 0 or 1, for 1 ≤ i ≤ π,
(iv) if the weight of the triplet (ς, ξ, σ) is defined by

w(ς, ξ, σ) = mπ2 + tπ +

π∑
i=1

iςik +

π+1∑
i=1

(2i− 1)pξi +

π∑
i=1

(2i− 1)lσi,

then (ς, ξ, σ) should satisfy w(ς, ξ, σ) = ν.

Clearly, the generating function for R
(m,t,l)
2(p,k)

(π, ν) will be

∞∑
ν=0

R
(m,t,l)
2(p,k)

(π, ν)qν =
∞∑
π=0

qmπ2+tπ(−ql; q2l)π
(qp; q2p)π+1(qk; qk)π

.

We will consider two cases to establish bijection between the triplets of the

set R
(m,t,l)
2(p,k)

(π, ν) and the set of split lattice paths Q
(m,t,l)
2(p,k)

(π, ν).

Case I When ξπ+1 = 0, then the factor qtπ

(1−q(2π+1)p)
makes an SS of height

t at the beginning of the path which clearly corresponds to the
part 0t in the split (n+ t)-color partition.

Case II When ξπ+1 ̸= 0, then the factor qtπ

(1−q(2π+1)p)
makes the split lattice

path to begin with a TITS with ordered pair
{ξπ+1, t+ ξπ+1} which corresponds to the part uu+t in the split
(n+ t)-color partition.

In both cases, we define the map

φ2 : R
(m,t,l)
2(p,k)

(π, ν) → Q
(m,t,l)
2(p,k)

(π, ν) by :

(3.4) φ2 :

{
ξip = rπ−i+2 −m

σil = sπ−i+2.
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Proof of Theorem 3.3. The proof is treated in the same manner as the
proof of Theorem 3.1 except for the fact that here the extra factor qtπ ensures
that the first TITS in the split lattice path corresponds to the smallest part
in the split n-color partition of the form u−i ≡ t (mod k). This restricts the
part size and changes the parity of the parts and the subscripts depending
upon the value of t.

Proof of Theorem 3.4. The proof is treated in the same manner as the
proof of Theorem 3.1 except for the fact that the extra factor q−tπ decreases
the length of altitudes and upper bases of all the TITSs by t due to which
the weighted difference between any two consecutive split n-color parts is
congruent to 2t (mod k).

4. Particular cases leading to Rogers–Ramanujan Type
Identities

For some particular values of m, t, l, p, and k, identities (1.1)–(1.4) lead
us to the following Rogers–Ramanujan type identities found in [8].

∞∑
π=0

qπ
2
(−q; q2)π

(q; q2)π(q4; q4)π

=
∞∏
n=1

(1 + q2n−1)(1 + q10n−2)(1 + q10n−5)(1 + q10n−8)

(1− q2n)(1− q10n)−1(1− q10n−3)−1(1− q10n−7)−1
,

(4.1)

∞∑
π=0

qπ
2+2π(−q; q2)π

(q2; q4)π(q4; q4)π

=
∞∏
n=1

(1 + q2n−1)(1− q28n−16)(1− q28n−12)

(1− q2n)(1− q14n)−1(1− q14n−1)−1(1− q14n−13)−1
,

(4.2)

∞∑
π=0

q3π
2−2π(−q; q2)π

(q2; q4)π(q4; q4)π

=
∞∏
n=1

(1 + q2n−1)(1− q10n)(1− q10n−3)(1− q10n−7)

(1− q2n)(1− q20n−16)−1(1− q20n−4)−1
,

(4.3)

∞∑
π=0

qπ
2
(−q3; q6)π

(q2; q4)π(q4; q4)π

=

∞∏
n=1

(1 + q2n−1)(1− q12n)(1− q12n−2)(1− q12n−10)

(1− q2n)(1− q24n−16)−1(1− q24n−8)−1
,

(4.4)
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∞∑
π=0

qπ
2+2π(−q; q2)π

(q; q2)π+1(q4; q4)π

=
∞∏
n=1

(1 + q2n−1)(1− q20n)(1− q20n−5)(1− q20n−15)

(1− q2n)
.

(4.5)

Now, Theorems 3.1–3.4 enable us to provide the following combinatorial
interpretation of the identities (4.1)–(4.5) in terms of split (n + t)-color
partitions, split lattice paths, and ordinary partitions, respectively:

Theorem 4.1. Let X1(ν) =
∑ν

l=0 S1(ν − l)T1(ν), where S1(ν) denotes the
number of partitions of ν into parts congruent to ±2,±4,±8 (mod 20) and
T1(ν) denotes the number of partitions of ν into distinct parts congruent to
±1,±2, 5 (mod 10) where the parts congruent to 5 (mod 10) are counted

twice. Then P
(1,1)
1(1,4)

(ν) = Q
(1,1)
1(1,4)

(ν) = X1(ν), ∀ ν ≥ 0, where P
(1,1)
1(1,4)

(ν) and

Q
(1,1)
1(1,4)

(ν) are defined as in Theorem 3.1.

Example. P
(1,1)
1(1,4)

(6) = 6, since the relevant partitions are: 66, 65+1, 62,

61+1, 53+11, 52+1+11. Also, X1(6) =
∑6

a=0 S1(6−a)T1(6) = S1(6)T1(0)+
S(5)T1(1)+· · ·+S1(0)T1(6) = 2(1)+0(1)+2(1)+0(2)+1(0)+0(2)+1(2) = 6.

Table 1 represents the relevant partitions enumerated by P
(1,1)
1(1,4)

and the

corresponding split lattice paths enumerated by Q
(1,1)
1(1,4)

for ν = 6.

split split
n−color split lattice paths n−color split lattice paths
partitions partitions

66

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

61+1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

65+1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

53 + 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0

1

2

3

4

5

6
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62

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

52+1 + 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0

1

2

3

4

5

6

Table 1. Split n-color partitions enumerated by P
(1,1)
1(1,4)

and

split lattice paths enumerated by Q
(1,1)
1(1,4)

for ν = 6

Theorem 4.2. Let X2(ν) =
∑ν

l=0 S2(ν − l)T2(ν), where S2(ν) denotes the
number of partitions of ν into parts congruent to 0,±4,±6,±8,±10,
14 (mod 28) and T2(ν) denotes the number of partitions of ν into distinct

parts congruent to ±3,±5, 7 (mod 14). Then P
(1,2,1)
3(2,4)

(ν) = Q
(1,2,1)
3(2,4)

(ν) =

X2(ν) for all ν ≥ 0, where P
(1,2,1)
3(2,4)

(ν) and Q
(1,2,1)
3(2,4)

(ν) are defined as in Theo-

rem 3.3.

Example. P
(1,2,1)
3(2,4)

(6) = 1, since the relevant partition is: 63+1. Also,

X2(6) =
∑6

a=0 S2(6− a)T2(a) = S2(6)T2(0)+S2(5)T2(1)+ · · ·+S2(0)T2(6) =
1(1) + 0(0) + 1(0) + 0(1) + 0(0) + 0(1) + 1(0) = 1.

Theorem 4.3. Let X3(ν) =
∑ν

l=0 S3(ν − l)T3(ν), where S3(ν) denotes the
number of partitions of ν into parts congruent to ±2,±8 (mod 20) and
T3(ν) denotes the number of partitions of ν into distinct parts congruent to

±1, 5 (mod 10). Then P
(3,2,1)
4(2,4)

(ν) = Q
(3,2,1)
4(2,4)

(ν) = X3(ν) for all ν ≥ 0, where

P
(3,2,1)
4(2,4)

(ν) and Q
(3,2,1)
4(2,4)

(ν) are defined as in Theorem 3.4.

Example. P
(3,2,1)
3(2,4)

(6) = 2, since the relevant partitions are: 65+1, 61+1.

Also, X3(6) =
∑6

a=0 S3(6− a)T3(a) = S3(6)T3(0) + S3(5)T3(1) + · · ·
+ S3(0)T3(6) = 1(1) + 0(1) + 1(0) + 0(0) + 1(0) + 0(1) + 1(1) = 2.

Theorem 4.4. Let X4(ν) denote the number of partitions of ν such that odd
parts are distinct and even parts are congruent to ±4,±6 (mod 24). Then

P
(1,3)
1(2,4)

(ν) = Q
(1,3)
1(2,4)

(ν) = X4(ν) for all ν ≥ 0, where P
(1,3)
1(2,4)

(ν) and Q
(1,3)
1(2,4)

(ν)

are defined as in Theorem 3.1.

Example. P
(1,3)
1(2,4)

(6) = 2, since the relevant partitions are: 63+3, 53 + 11.

Also, X4(6) = 2, the relevant ordinary partitions are: 6, 5 + 1.

Theorem 4.5. Let X5(ν) denote the number of partitions of ν into parts
congruent to ±1,±3,±4,±7,±8,±9 (mod 20).
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Then P
(1,2,1)
2(1,4)

(ν) = Q
(1,2,1)
2(1,4)

(ν) = X5(ν) for all ν ≥ 0, where P
(1,2,1)
2(1,4)

(ν) and

Q
(1,2,1)
2(1,4)

(ν) are defined as in Theorem 3.2.

Example. P
(1,2,1)
2(1,4)

(6) = 4, since the relevant partitions are: 68, 64 + 02,

63+1 + 02, 51 + 13. Also, X5(6) = 4, the relevant ordinary partitions are:
3 + 3, 3 + 13, 4 + 12, 16.

5. Conclusion

In this paper, the graphical aspect of four generalized basic series (1.1)–
(1.4) have been discussed in terms of split lattice paths. Further, bijections
have been established between two different infinite classes of combinatorial
identities. The generalized combinatorial identities enable us to provide a
new insight to explore Rogers–Ramanujan type identities graphically. Since
in Theorems 3.1–3.4, we have considered ‘k’ as a nonnegative even integer
for all combinatorial interpretations, now the questions may arise:

(1) If ‘k’ is taken to be an odd integer, can we have such types of com-
binatorial interpretations?

(2) If so, will these interpretations lead us to the combinatorial inter-
pretations of some Rogers–Ramanujan type identities?
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