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A BIJECTION BETWEEN THE SETS OF
(a,b, bz)—GENERALIZED MOTZKIN PATHS AVOIDING
uvv-PATTERNS AND uvu-PATTERNS

YIDONG SUN, CHENG SUN, AND XIULI HAO

ABSTRACT. A generalized Motzkin path, called G-Motzkin path for
short, of length n is a lattice path from (0,0) to (n,0) in the first quad-
rant of the XY-plane that consists of up steps u = (1, 1), horizontal
steps h = (1,0), vertical steps v = (0, —1) and down steps d = (1, —1).
An (a,b,c)-G-Motzkin path is a weighted G-Motzkin path such that
the u-steps, h-steps, v-steps and d-steps are weighted respectively by
1,a,b and c. Let 7 be a word on {u,h,v,d}, denote by G;,(a,b,c) the
set of 7-avoiding (a, b, ¢)-G-Motzkin paths of length n for a pattern 7.
In this paper, we consider the uvv-avoiding (a, b, c)-G-Motzkin paths
and provide a direct bijection o between G2V (a, b, b?) and Ga¥"(a, b, b?).
Finally, the set of fixed points of ¢ is also described and counted.

1. INTRODUCTION

Lattice paths, as an important class of research in Combinatorics, have
produced many interesting results in recent years, with common lattice paths
such as Dyck [8, 16, 14], Motzkin [4, 1, 13, 18], Schroder [7] and Delannoy
[2, 3, 19] lattice paths. A generalized Motzkin path, called G-Motzkin path for
short, of length n is a lattice path from (0,0) to (n,0) in the first quadrant
of the XY-plane that consists of up steps u = (1, 1), horizontal steps h =
(1,0), vertical steps v = (0,—1) and down steps d = (1, —1). Other related
lattice paths with various steps, including vertical steps permitted, have
been considered by [9, 10, 11, 20, 21, 24]. See Figure 1 for a G-Motzkin path
of length 23.

An (a, b, ¢)-G-Motzkin path is a weighted G-Motzkin path P such that the
u-steps, h-steps, v-steps and d-steps of P are weighted respectively by 1,a,b
and c. The weight of P, denoted by w(P), is the product of the weights of
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FIGURE 1. A G-Motzkin path of length 23.

each step of P. For example, w(uhuduuvvdhuudv) = a?b3c®. The weight of
a subset A of the set of weighted G-Motzkin paths, denoted by w(.A), is the
sum of the weights of all paths in .A. Denote by G,,(a, b, ¢) the weight of the
set Gn(a,b,c) of all (a,b, c)-G-Motzkin paths of length n. Let 7 be a word
on {u,h,v,d}, a G-Motzkin path P is called T-avoiding, if the pattern 7 is
not a subpath of P. Denote by G7 (a,b,c) the weight of the set G (a,b, c)
of all T-avoiding (a, b, ¢)-G-Motzkin paths of length n, that is the weight of
the subset of all (a, b, c)-G-Motzkin paths of length n avoiding the pattern
7. Figure 1 is an example of a G-Motzkin path of length 23 avoiding the
pattern uvv, but not avoiding the pattern uvu.

Recently, Sun et al. [20, 21] have derived the generating functions of
Gn(a,b,c) and GiV%(a, b, c) as follows

G(a,b,c;x) = ZGn(a, b,c)x™
n=0

Cl—az— /(1 —ax)?—4dz(b+cz) 1 z(b+ cx)
(1.1) N 2x(b + cx) 1l—ax ((1—&33)2)’
G"'(a,b,c;x) = Z Gy (a, b, c)x"
n=0
19 (1 —az)(1+bx) — /(1 — az)?(1 + ba)? — 4z(1 + bx) (b + cz)
(12) B 2z(b + cx)
1 z(b+ cx)
C1- awc<(1 —ax)?(1+ b:):))’
where
(1.3) Clr) =) Cpa" = 1zvizde w
n=0

is the generating function for the well-known Catalan number C,, = %—‘rl (2:),
counting the number of Dyck paths of length 2n [17, 16].

A Dyck path of length 2n is a G-Motzkin path of length 2n with no h-
steps or v-steps. A Motzkin path of length n is a G-Motzkin path of length
n with no v-steps. An (a,b)-Dyck path is a weighted Dyck path with u-steps
weighted by 1, d-steps in ud-peaks weighted by a and other d-steps weighted
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by b. An (a,b)-Motzkin path of length n is an (a,0, b)-G-Motzkin path of
length n. A Schroder path of length 2n is a path from (0,0) to (2n,0) in the
first quadrant of the XY-plane that consists of up steps u = (1, 1), horizontal
steps H = (2,0) and down steps d = (1,—1). An (a,b)-Schrdder path is
a weighted Schroder path such that the u-steps, H-steps and d-steps are
weighted respectively by 1,a and b. 0 Let C,(a,b), My (a,b) and S,(a,b) be
respectively the sets of (a,b)-Dyck paths of length 2n, (a,b)-Motzkin paths
of length n and (a, b)-Schréder paths of length 2n. Let Cy,(a, b), My (a,b) and
Sn(a, b) be their weights with Cy(a, b) = My(a,b) = So(a,b) = 1 respectively.
It is not difficult to deduce that [6]

£ (e

k=1
My(a,b) = > (%)C a™ 2Ry,
k=0
k
Su(ah) =3 <”2+k )cka"'fb'f,
k=0

and their generating functions are

C(a, b x) ZC (a,b)z —(a—b)z—+/(1—(a—b)x)?— dbx

2bx ’
—ax — /(1 — az)? — 4ba?
(a,b;x) ZM (a,b)x T ,
_ l—az— V(1 —az)? — 4bx
b; b)x .
S(a,b; ) Z Sn(a, T
There are close relatlon formulas between C),(a,b), My (a,b) and S,(a,b).

More precisely, Chen and Pan [6] derived the following equivalent relations
Su(a,8) = Cula +b,b) = (a + b)M_1(a +2b, (a + b)b)

for n > 1 and provided some combinatorial proofs. Sun et al. [20] obtained
that

G™'%(a,b,b?) = S,(a,b)

for n > 0 and presented bijections between the sets G2 (a, b, b*) and S, (a, b)
as well as the set C,(a + b,b). For example, we give a one-to-one weight-
preserving correspondence between G3V%(a, b, b?), Sa(a,b) and G3*V(a, b, b?)
in Table 1.
In the literature, there are many papers dealing with (a, b)-Motzkin paths
r (a,b)-Motzkin numbers. For example, Chen and Wang [5] explored
the connection between noncrossing linked partitions and (3, 2)-Motzkin
paths, established a one-to-one correspondence between the set of noncross-
ing linked partitions of {1,...,n + 1} and the set of large (3,2)-Motzkin
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g2uvu(a’ b7 b2) 52 (CL, b) g2uvv(a’ ba b2)

A . N

= g

Q
¢
s e
S8 S} N
2 |= <
)
Q

=

@ *—eo—o

TABLE 1. The relation of G¥V%(a, b, b?), Sa(a,b) and G¥¥¥(a, b, b?).

paths of length n, which leads to a simple explanation of the well-known
relation between the large and the little Schroder numbers. Yan [23] found
a bijective proof between the set of restricted (3,2)-Motzkin paths of length
n and the set of the Schréder paths of length 2n. Recently, Sun [22] has
given some identities related to the (a,b)-Motzkin numbers.

In the present paper we concentrate on the uvv-avoiding G-Motzkin paths,
that is, the G-Motzkin paths with no uvv patterns. Precisely, the next
section considers the enumerations of the set of uvv-avoiding (a,b,c)-G-
Motzkin paths and the set of uvv-avoiding (a, b, c)-G-Motzkin paths with
no h-steps on the r-axis, and find that GY(a, b, b*) = G2%(a,b,b?). The
third section provides a direct bijection o between the set GiVV(a, b, b?) of
uvv-avoiding (a, b, b?)-G-Motzkin paths and the set G'V%(a,b,b?) of uvu-
avoiding (a, b, b*)-G-Motzkin paths. Finally, the set of fixed points of o is
also described and counted.

2. uvv-AVOIDING (a, b, c)-G-MOTZKIN PATHS

In this section, we first consider the uvv-avoiding (a, b, ¢)-G-Motzkin paths
which involve some classical structures as special cases, and count the set of
uvv-avoiding (a, b, ¢)-G-Motzkin paths with no h-steps on the z-axis.

Let G"™V(a,b,c;z) =Y 7  GiVV(a,b,c)z" be the generating function for
the uvv-avoiding (a, b, ¢)-G-Motzkin paths. According to the method of the
first return decomposition [8], any uvv-avoiding (a, b, ¢)-G-Motzkin path P
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can be decomposed as one of the following four forms:

P=¢, P=h,Q1, P=1uQ2d.Q1 or P =uQ3v;Qq,

where x; denotes the x-steps with weight ¢ for x € {h,v,d}, Q; and Q2 are
(possibly empty) uvv-avoiding (a, b, ¢)-G-Motzkin paths, and Qg is any uvv-
avoiding (a, b, ¢)-G-Motzkin paths with no uv-step at the end of Q3. Then
we get the relation

G"(a,b,c;x) = 14 axG"™(a,b, c; ) + cz>G"(a, b, ¢; x)*
+ bx(GuVV(a, b,c;x) — bxG"(a, b, ¢; x))Guw(a, b, c; )

(2.1) =14 azG"(a,b,c;z) + (b + (c — bV)x)xG™ (a, b, ¢; ).

Solving this, we have

1—az — /(1 —ax)? —4z(b+ (c — b?)z)
2z(b+ (¢ — b)x)
x c—b)x
(2.2) - ! C<w+( b)))

1—ax (1—azx)?

G"V(a,b,c;z) =

Whena =b=c=1, G"(1,1,1;2) = Imrmy (21;@2_490, which is just the
generating function of the large Schréder numbers [15].

y (1.3), taking the coefficient of z in G"“V(a,b,c;x), we derive the
following result

Proposition 2.1. For any integer n > 0, we have
Guvv CL b, C ZZ < ) <7’L + )Ckan—k—]bk—J (C _ b2)j-
k=0 j=0

Setting T' = G(a, b, ¢; ), (2.1) produces

 1+aT + (c—bv¥)T?
(2.3) T=2x — ,

using the Lagrange inversion formula [12], taking the coefficient of 2" in
T in three different ways, we derive the following result
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Proposition 2.2. For any integer n > 0, we have

[5} n—2k
G«;JLVV(G7 b, C) _ — (n—i— 1) <n+31 k)

k=0 5=0

20 =2k =7\ jin-ok—j 2k
(n—Zk—j)ab (c—b7)

3

Ngs

n,

_ 12”: 2 (n+1><n—|—;—k>

2n—k =27\ pon_k_9i 9
: pr—k=2j (o _ p2)i
(n—k—zj)“ (e=b%)

s ()0

j
2n—k =7\ k—jin—k—j 2\j
(n—k—j)a b (c—b*).

O
Q

Exactly, by (1.1), (1.2) and (2.2), it can be deduced that
G"™(a,b,b* + c;x) = G(a,b,c;z), G™¥(a,b,b* x) = GV%a,b,b*; z).

That is G2V (a,b,b? + ¢) = Gyu(a,b,c) and G2V (a,b,b?) = G2%(a, b, b?).
The first identity has a direct combinatorial interpretation if one notices that
each dy2 .-step of P € GVV(a, b, b2 + ¢) can be regarded equivalently as the
corresponding d.-step and uv,vy-step of P’ € G,,(a,b, ¢) . The combinatorial
interpretation of the second identity will be given in the next section.

When (a, b, ¢) is specialized, G**V(a, b, ¢; x) and G*V(a, b, ¢) can reduce to
some well-known generating functions and classical combinatorial sequences
involving the Catalan numbers C,,, Motzkin numbers M,,, the large Schroder
numbers Sy, (a + b, b)-Catalan number Cy,(a + b, b), (a,b)-Motzkin number
My(a,b) and (a,b)-Schroder number S, (a,b) respectively. See Table 2 for
example.

Denote by G2V (a, b, ¢) the weight of the set G2V (a, b, ¢) of all uvv-avoiding
(a, b, c)-G-Motzkin paths of length n such that the paths have no h-steps on
the z-axis. Set G"Y(a,b,c) = U0 92" (a, b, c).

Let G™V(a,b,c;z) = Y o0 i G2V (a,b,c)z™ be the generating function for
the uvv-avoiding (a, b, ¢)-G-Motzkin paths in G"(a, b, c). According to the
method of the first return decomposition, any paths P € G"V(a, b, c) can be
decomposed as one of the following three forms:

P =¢, P=uQ2d.Q1 or P =uQ3v;,Qy,
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(a,b,c) G"(a,b,c;x) GVV(a,b,c) | Senquences
(0,1,1) C(z) = 1=yl C, [15, A000108]
(1,0,1) | M(z) = lma=v1-20-3:2 M, [15, A001006]
(1,1,1) | S(x) = lme=v1-Gu+a? Sh [15, A006318]
(1,0,2) loa—y1-2s-To% an [15, A025235]
(—3,4,16) Lt3o—y1—102+907 an [15, A059231]
(a,0,b) 1_%_\/(215,;3@2_4%2 My (a,b)
9 l—az—+/(1—az)2—4bz Cn(a + b, b)
(a,b,0%) 20z or Sp(a,b)

TABLE 2. The specializations of G"Y(a, b, ¢; z) and G2V (a, b, ¢).

where Q1 € G"¥(a,b,c), Qa € G™¥(a,b,c) and Q3 € G*(a,b,c) has no
uv-step at the end of Q3. Then we get the relation

G"™(a,b,c;x) = 14 cx>’G™(a, b, c;£)G" (a, b, c; )
+ bx(GuVV(a, b,c;x) — bxG"™Y(a, b, c; x))éuw(a, b,c;x),

which, by (2.1) and (2.3), leads to

T
1—(b+ (c—b%)x)zG ™ (a,b,c; )
GV (a, b, c; )
1+ azG"Y(a, b, c; x)
T
1+alT’

G (a,b,c;x) =

By the Lagrange inversion formula, taking the coefficient of 2"t in
xG"V(a,b,c;z) in three different ways, we derive the following result
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Proposition 2.3. For any integer n > 0, we have

n+1 . [%]n—2k
- 141 n+1\/n+1—-k
Guvv b _ —1)¢
g = > 0 Sy (TN ()
i=0 k=0 j=0
20— =2k =7\ i1jiniok—j 21k
n—i—2k—j>a b (e=b7)
n+1 . n[nT_k}
i=0 n+1kz:0j:0 & J
=1 =k = 2]\ iykpn-i-k-2j 2\j
<n—i—k—2j>a b (c=b)
”i(_l)iiﬂ g ’§“<n+1><k>
P n—i—lk:Oj: k J
2n—i—k—=7J\ ivk—jin—i—k—j 2j
: itk—jpn—ik=i(c _ j2)J.
(n—i—k—j)a (=t

3. A BIJECTION BETWEEN THE SETS GYV(a,b,b?) AND GYV%(a,b,b?)

In this section, we give a direct bijection between the set GYV¥(a, b, b?)
of uvv-avoiding (a, b, b?)-G-Motzkin paths and the set G2V%(a, b, b?) of uvu-
avoiding (a, b, b*)-G-Motzkin paths.

Theorem 3.1. There exists a bijection o between G2VV(a, b, b2) and
GUV4(a,b,b?) for any integer n > 0.

Proof. Given any Q € G™V(a,b,b?) for n > 0, when n = 0,1 and 2, we
define

o(e) =¢, o(hy) = hg, o(uvy) = uvy.

For n > 2, Q is uvv-avoiding, there are six cases to be considered to define
o(Q) recursively.
CASE 1: Q = h,Q’ with Q' € G'VY (a,b,b?). We define

U(Q) = haU(Q,)'
CASE 2: Q = uvph, Q' with Q' € G"Y%(a, b, b?). We define
(Q) = uvpho(Q').

CasE 3: Q = uv,Q"Q’ such that Q" € GVV(a,b,b?) is primitive and Q' €
guvy._4(a,b, b?) for certain 1 < k < n — 1. We define

7(Q) = o (Q")vyo (Q).

In this case, one can notice that there exist uvu’s in Q, but not in o(Q).
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CasE 4: Q = v'udyeviQ' with Q' € G2 _.(a,b,b?) for 0 <i <n —2. We
define

@ Wuvyd,o(Q), ifi=2j-1>1,
g = . .
Wt e (Q), ifi=2j>0.

CASE 5: Q = u'uQ"dy2viQ' such that Q” € GiV¥(a,b,b*) is nonempty and
Q e g™y _.(a,b, b?) for certain 1 <k <n—iand 0 <i<n—2. We define

wWo(Q uvy)d,o(Q), ifi=2j-1>1,
a(Q) =

wWHe(Q uvy)vyd),o(Q'), ifi=2j>0.
CasE 6: Q = u’'Q"viQ' such that Q" € G'V¥(a,b,b?) is not primitive and
Q' € G _i(a,b, b?) for certain 1 <k <n—iand 1 <i<n— 1, where Q"
does not end with uvy since Q is uvv-avoiding. We define

(Q) = { uja(QH)vbdi;la(Q’), ifi=2j—1>1,

Wo(Q)do(Q), ifi=2j>2

From the definition of o, one can deduce by induction that o(Q) is uvu-
avoiding and the following assertations hold:

e In Case 3, 0(Q”) must be primitive and not be uuvyv;, since Q" is
primitive;

e In Case 5, 0(Q"uvp) has the form Pjuuvyvy or Pouvy since Q” is
nonempty, where both P; € G"Y(a,b,b%) and Py € G¥%(a,b,b?)
must not end with uvy, for certain r > 1;

e In Case 6, 0(Q") is not primitive and does not end with uvy or
uuvyvy since Q” is not primitive and does not end with uvy,.

Conversely, the inverse procedure can be handled as follows. Given any
P € G™4%(a,b,b?) for n > 0, when n = 0,1, we define

o l(e) =¢, 07 (hy) = ha, o7 (uvy) = uvy.
For n > 2, there are five cases to be considered to define o~!(P) recur-

sively.
CASE I: P = h,P’ with P’ € G'VY4(a, b, b?). We define

n—1

CASE II: P = uvph,P’ with P’ € G%%(a, b, b*). We define

o Y(P) = uvyh,oH(P').
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Cask I11: P = uP"v,P’ such that P” € GiV%(a, b, b?) and P’ € G™Y _, (a,b,b?)
for certain 1 < k <n — 1. We define
uvpo L (P")o 1 (P'), if P”(# u?v}) is primitive,

uo (P )vyo~H(P'), if P"(# ¢) is not primitive
and does not end with

1 B
o (P)= u?v? or uvy,

uo Y (Pruvy)dpzo~H(PY), if P’ = Pruuvyvy,
uo1(Py)dpeo 1 (P), if P” = Pauvy,
where both P; € G"4(a, b, b?) and Py € G¥%(a, b, b?) must not end with uv,

for certain r > 1, since P is uvu-avoiding.

CAsgIV:P = ujP”diQP’ such that P € GiVU(a, b, b*) and P’ € G r(asb, b?)

for certain 0 < k < n — 25 and the maximum j > 1. We define

r : i— .
uQJ_ldbzvgj 2 o Y(P), if P =¢,

-1 , if P = Pruuvyvy,

u2j0_1(P1uvb)db2vg o (P
U—I(P) _ u2ja—1(P2)db2V2 o 1( /)’ if P’ = Pguvb,
2]0.—1(13//) 2j —1( /)7 if P”(;ﬁ 6) is not primi-
tive and does not end
with u? Vb or uvp,

\

where both Py € G"V4(a, b, b?) and Py € G¥"(a, b, b?) must not end with uv,

for certain r > 1, smce P is uvu-avoiding.

CASEV:P = ujuP”VbdigP’ such that P” € GV'(a, b,b*) and P’ € w9 1-k(as, b?)
for certain 0 < k <n —2j — 1 and the maximum j > 1. We define

121 .
wdpevi? o (P), P =¢

u¥ o= (Pruvy)djevy o "L (P), it PY = Pruuvyvs,
o M (P) = u¥ o= (Po)dyvy o L (PY), if P = Pouvs,
o Py oL (), if PY(# €) s not primi-

tive and does not end
with u? Vb or uvyp,

where both Py € G"V4(a, b, b?) and Py € G¥%(a, b, b?) must not end with uv,
for certain r > 1, since P is uvu-avoiding.

It is not difﬁcult to verify that 0~ 'o = oo~ = 1, both ¢ and o~ ! are
two weight-keeping mappings and o~ !(P) is uvv-avoiding by induction on
the length of P. Hence, o is a desired bijection between GV (a, b, b?) and
GU4(a,b,b?). This completes the proof of Theorem 3.1. O

In order to give a more intuitive view on the bijection o, a pictorial
description of ¢ is presented for

Q= ugdbzvbu dyevyu® Vbdbzvbh u?hadyzvpu® Vbuvbhavb € G533V (a, b, b?),
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and
0(Q) = ?dLu?vydpeutvydihyuh uvydgeudvih,dye € G55 (a, b, b%).

See Figure 2 for detailed illustrations.

[ e I I A e A T T e I T i e S T S

- Q=v’dpviuitdEvinvidyviheu’hedyevy e vinvgha vy

FIGURE 2. An example of the bijection ¢ described in the
proof of Theorem 3.1.

4. COUNTING THE SET OF FIXED POINTS OF THE BIJECTION o

In this section, we will count the set of fixed points of the bijection o
presented in Section 3.

Let Fr = {Q € G1¥¥(a,b,0%)|0(Q) = Q} and F = ,,5¢ Fn, set F, = | Fl.
It is easy to verify the few initial values for Fj,, see Table 4.1. It should be
noted that the sequence F), currently does not match any of the sequences
in OEIS [15].

12 3 4 5 6 7 8 9 10
2 5 13 39 125 421 1478 5329 19658 73783

3

0
1

Table 4.1. The first values of Fj,.
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According to the definition of o, any Q € F,, must belong to the set,
iuvv’uvu} (a,b,b?), of (a,b,b?)-G-Motzkin paths avoiding both the uvv and
uvu patterns, since Q is uvv-avoiding and ¢(Q) is uvu-avoiding. But there

exists P € gﬁ“vv’“vu}(a, b,b?) such that o(P) # P. For example, o(uudv) =
uuvd # uudv for n = 3. From the proof of Theorem 3.1, one can deduce
that Q ¢ F,(o) if Q is being in the following situations, 1) in the whole
Case 3; 2) in the Case 4 when i > 1; 3) in the whole Case 5; and 4) in the
Case 6 when ¢ > 2. Equivalently, one can derive that

In Case 1, Q =h,Q' € F, if and only if Q' € F,,_1;
In Case 2, Q = uvph, Q' € F, if and only if Q' € F,,_s;
In Case 4 when i = 0, Q = ud2Q’ € F, if and only if Q' € F,,_o;

e In Case 6 when i = 1, Q = uQ"v;,Q’ € F, if and only if Q" € Fj
and Q' € F,,_k_1 for certain 1 < k < n —1 such that Q" (# ¢) is not
primitive and does not end with uvy.

Let A, be the subset of Q € F,, such that Q is not primitive and does not
end with uvy, B, be the subset of Q € F,, such that Q ends with uvy, and
Cp, be the subset of Q € F,, such that Q is primitive and does not end with
uvy. Set ap, = | Ay, by, = |Bnl, ¢n = |Cpl. Firstly, F,, is the disjoint union of
A, B, and C,, ie., F,, = a,, + b, + ¢, for n > 0; Secondly, Cy = C; = 0,
Co = {uhgvy,udy2} and C, = uA,_1vy for n > 3, ie., ¢, = ap—q for n >3
with ¢g = ¢4 = 0 and ¢o = ¢3 = 2; Thirdly, B, is the disjoint union of
An_quvy and C,,_quvy forn > 1, ie., by, = an_1+cp_1 forn > 1 with bg =0
and b; = by = 1. These together generate the following Lemma.

Lemma 4.1. For any integer n > 4, we have
(4.1) F, =a,+2a,-1+ an_a
with ag = a1 = 1,a0 = 2,a3 =7 and a4 = 23.
On the other hand, the family F can be partitioned into the form:
F = e+ hoF + uvpho F + udpe F + uA' vy F,

where A’ = A—¢ and A = J,,~qAn. This leads to the following recurrence
for F,. a

Lemma 4.2. For any integer n > 1, we have

n
(4.2) oy = F,+2F, 1+ Z arFon_r
k=1

with Fy = 1, Fy = 2.
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Let F(x) =)_,50 Fna™ and A(z) = 3, g an2". By (4.1), we have

F(x) =142z + 522 4+ 1323 + Z(an + 2ap-1 + ap—2)z"
n>4
=1+2z+52° + 132° + (A(z) — 1 — z — 22° — 72?)
+ 22 (A(z) — 1 —z — 22%) + 2?(A(z) — 1 — )
(4.3) = (14 2)%A(z) —z + 23
By (4.2), we obtain
F(z) = 142z + 2(F(x) — 1) + 22°F(z) + 2(A(z) — 1)F(z)

(4.4) =1+ +22°F(x) + 2A(z)F(z).

Eliminating A(z) in (4.3) and (4.4) produces

tF(z)? —(14+2) 14z —32° — 23 F(z)+ (1 +2)® = 0.
Solving this, we have
(1+2)(1 +x — 322 — 23)
2z
(1+2)y/(A+2— 322 —23)2 — 4a(1 + 2)
2z
1+ x)? 1
(1+x) C’( z(1+ x) )
(

T 1l+z-322— 23 14+ 2 — 322 —a3)2

F(z) =

(4.5)

By (4.5), taking the coefficient of ™ in F'(z), we get the explicit formula for
the number F;, of the fixed points of the bijection o, namely,

Theorem 4.3. For any integer n > 0, we have

_ _1\n—k—i 2k+7 J n—j—i—2 G—i
Fo=)_ > Y (-1 ( j i —k—oj )3 Ok

k=0 j=0 i=0

where Cy, is the k-th Catalan number.
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