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A BIJECTION BETWEEN THE SETS OF

(a, b, b2)-GENERALIZED MOTZKIN PATHS AVOIDING

uvv-PATTERNS AND uvu-PATTERNS

YIDONG SUN, CHENG SUN, AND XIULI HAO

Abstract. A generalized Motzkin path, called G-Motzkin path for
short, of length n is a lattice path from (0, 0) to (n, 0) in the first quad-
rant of the XY-plane that consists of up steps u = (1, 1), horizontal
steps h = (1, 0), vertical steps v = (0,−1) and down steps d = (1,−1).
An (a, b, c)-G-Motzkin path is a weighted G-Motzkin path such that
the u-steps, h-steps, v-steps and d-steps are weighted respectively by
1, a, b and c. Let τ be a word on {u,h, v,d}, denote by Gτ

n(a, b, c) the
set of τ -avoiding (a, b, c)-G-Motzkin paths of length n for a pattern τ .
In this paper, we consider the uvv-avoiding (a, b, c)-G-Motzkin paths
and provide a direct bijection σ between Guvv

n (a, b, b2) and Guvu
n (a, b, b2).

Finally, the set of fixed points of σ is also described and counted.

1. Introduction

Lattice paths, as an important class of research in Combinatorics, have
produced many interesting results in recent years, with common lattice paths
such as Dyck [8, 16, 14], Motzkin [4, 1, 13, 18], Schröder [7] and Delannoy
[2, 3, 19] lattice paths. A generalized Motzkin path, called G-Motzkin path for
short, of length n is a lattice path from (0, 0) to (n, 0) in the first quadrant
of the XY-plane that consists of up steps u = (1, 1), horizontal steps h =
(1, 0), vertical steps v = (0,−1) and down steps d = (1,−1). Other related
lattice paths with various steps, including vertical steps permitted, have
been considered by [9, 10, 11, 20, 21, 24]. See Figure 1 for a G-Motzkin path
of length 23.

An (a, b, c)-G-Motzkin path is a weighted G-Motzkin path P such that the
u-steps, h-steps, v-steps and d-steps of P are weighted respectively by 1, a, b
and c. The weight of P, denoted by w(P), is the product of the weights of
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Figure 1. A G-Motzkin path of length 23.

each step of P. For example, w(uhuduuvvdhuudv) = a2b3c3. The weight of
a subset A of the set of weighted G-Motzkin paths, denoted by w(A), is the
sum of the weights of all paths in A. Denote by Gn(a, b, c) the weight of the
set Gn(a, b, c) of all (a, b, c)-G-Motzkin paths of length n. Let τ be a word
on {u, h, v,d}, a G-Motzkin path P is called τ -avoiding, if the pattern τ is
not a subpath of P. Denote by Gτ

n(a, b, c) the weight of the set Gτ
n(a, b, c)

of all τ -avoiding (a, b, c)-G-Motzkin paths of length n, that is the weight of
the subset of all (a, b, c)-G-Motzkin paths of length n avoiding the pattern
τ . Figure 1 is an example of a G-Motzkin path of length 23 avoiding the
pattern uvv, but not avoiding the pattern uvu.

Recently, Sun et al. [20, 21] have derived the generating functions of
Gn(a, b, c) and Guvu

n (a, b, c) as follows

G(a, b, c;x) =

∞∑
n=0

Gn(a, b, c)x
n

=
1− ax−

√
(1− ax)2 − 4x(b+ cx)

2x(b+ cx)
=

1

1− ax
C
(x(b+ cx)

(1− ax)2

)
,(1.1)

Guvu(a, b, c;x) =
∞∑
n=0

Guvu
n (a, b, c)xn

=
(1− ax)(1 + bx)−

√
(1− ax)2(1 + bx)2 − 4x(1 + bx)(b+ cx)

2x(b+ cx)
(1.2)

=
1

1− ax
C
( x(b+ cx)

(1− ax)2(1 + bx)

)
,

where

C(x) =
∞∑
n=0

Cnx
n =

1−
√
1− 4x

2x
(1.3)

is the generating function for the well-known Catalan number Cn = 1
n+1

(
2n
n

)
,

counting the number of Dyck paths of length 2n [17, 16].
A Dyck path of length 2n is a G-Motzkin path of length 2n with no h-

steps or v-steps. A Motzkin path of length n is a G-Motzkin path of length
n with no v-steps. An (a, b)-Dyck path is a weighted Dyck path with u-steps
weighted by 1, d-steps in ud-peaks weighted by a and other d-steps weighted
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by b. An (a, b)-Motzkin path of length n is an (a, 0, b)-G-Motzkin path of
length n. A Schröder path of length 2n is a path from (0, 0) to (2n, 0) in the
first quadrant of the XY-plane that consists of up steps u = (1, 1), horizontal
steps H = (2, 0) and down steps d = (1,−1). An (a, b)-Schröder path is
a weighted Schröder path such that the u-steps, H-steps and d-steps are
weighted respectively by 1, a and b. 0 Let Cn(a, b),Mn(a, b) and Sn(a, b) be
respectively the sets of (a, b)-Dyck paths of length 2n, (a, b)-Motzkin paths
of length n and (a, b)-Schröder paths of length 2n. Let Cn(a, b),Mn(a, b) and
Sn(a, b) be their weights with C0(a, b) = M0(a, b) = S0(a, b) = 1 respectively.
It is not difficult to deduce that [6]

Cn(a, b) =

n∑
k=1

1

n

(
n

k − 1

)(
n

k

)
akbn−k,

Mn(a, b) =

n∑
k=0

(
n

2k

)
Cka

n−2kbk,

Sn(a, b) =

n∑
k=0

(
n+ k

2k

)
Cka

n−kbk,

and their generating functions are

C(a, b;x) =
∞∑
n=0

Cn(a, b)x
n =

1− (a− b)x−
√
(1− (a− b)x)2 − 4bx

2bx
,

M(a, b;x) =
∞∑
n=0

Mn(a, b)x
n =

1− ax−
√

(1− ax)2 − 4bx2

2bx2
,

S(a, b;x) =

∞∑
n=0

Sn(a, b)x
n =

1− ax−
√
(1− ax)2 − 4bx

2bx
.

There are close relation formulas between Cn(a, b),Mn(a, b) and Sn(a, b).
More precisely, Chen and Pan [6] derived the following equivalent relations

Sn(a, b) = Cn(a+ b, b) = (a+ b)Mn−1(a+ 2b, (a+ b)b)

for n ≥ 1 and provided some combinatorial proofs. Sun et al. [20] obtained
that

Guvu
n (a, b, b2) = Sn(a, b)

for n ≥ 0 and presented bijections between the sets Guvu
n (a, b, b2) and Sn(a, b)

as well as the set Cn(a + b, b). For example, we give a one-to-one weight-
preserving correspondence between Guvu

2 (a, b, b2), S2(a, b) and Guvv
2 (a, b, b2)

in Table 1.
In the literature, there are many papers dealing with (a, b)-Motzkin paths

or (a, b)-Motzkin numbers. For example, Chen and Wang [5] explored
the connection between noncrossing linked partitions and (3, 2)-Motzkin
paths, established a one-to-one correspondence between the set of noncross-
ing linked partitions of {1, . . . , n + 1} and the set of large (3, 2)-Motzkin
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Guvu
2 (a, b, b2) S2(a, b) Guvv

2 (a, b, b2)

b

b ⇔ b b ⇔ b b

b2 ⇔

b

b ⇔ b2

a b ⇔ a b ⇔ a b

a

b ⇔

a

b ⇔

a

b

b
a ⇔ b a ⇔

b
a

a a ⇔ a a ⇔ a a

Table 1. The relation of Guvu
2 (a, b, b2), S2(a, b) and Guvv

2 (a, b, b2).

paths of length n, which leads to a simple explanation of the well-known
relation between the large and the little Schröder numbers. Yan [23] found
a bijective proof between the set of restricted (3, 2)-Motzkin paths of length
n and the set of the Schröder paths of length 2n. Recently, Sun [22] has
given some identities related to the (a, b)-Motzkin numbers.

In the present paper we concentrate on the uvv-avoiding G-Motzkin paths,
that is, the G-Motzkin paths with no uvv patterns. Precisely, the next
section considers the enumerations of the set of uvv-avoiding (a, b, c)-G-
Motzkin paths and the set of uvv-avoiding (a, b, c)-G-Motzkin paths with
no h-steps on the x-axis, and find that Guvv

n (a, b, b2) = Guvu
n (a, b, b2). The

third section provides a direct bijection σ between the set Guvv
n (a, b, b2) of

uvv-avoiding (a, b, b2)-G-Motzkin paths and the set Guvu
n (a, b, b2) of uvu-

avoiding (a, b, b2)-G-Motzkin paths. Finally, the set of fixed points of σ is
also described and counted.

2. uvv-avoiding (a, b, c)-G-Motzkin paths

In this section, we first consider the uvv-avoiding (a, b, c)-G-Motzkin paths
which involve some classical structures as special cases, and count the set of
uvv-avoiding (a, b, c)-G-Motzkin paths with no h-steps on the x-axis.

Let Guvv(a, b, c;x) =
∑∞

n=0G
uvv
n (a, b, c)xn be the generating function for

the uvv-avoiding (a, b, c)-G-Motzkin paths. According to the method of the
first return decomposition [8], any uvv-avoiding (a, b, c)-G-Motzkin path P
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can be decomposed as one of the following four forms:

P = ε, P = haQ1, P = uQ2dcQ1 or P = uQ3vbQ1,

where xt denotes the x-steps with weight t for x ∈ {h, v,d}, Q1 and Q2 are
(possibly empty) uvv-avoiding (a, b, c)-G-Motzkin paths, and Q3 is any uvv-
avoiding (a, b, c)-G-Motzkin paths with no uv-step at the end of Q3. Then
we get the relation

Guvv(a, b, c;x) = 1 + axGuvv(a, b, c;x) + cx2Guvv(a, b, c;x)2

+ bx
(
Guvv(a, b, c;x)− bxGuvv(a, b, c;x)

)
Guvv(a, b, c;x)

= 1 + axGuvv(a, b, c;x) + (b+ (c− b2)x)xGuvv(a, b, c;x)2.(2.1)

Solving this, we have

Guvv(a, b, c;x) =
1− ax−

√
(1− ax)2 − 4x(b+ (c− b2)x)

2x(b+ (c− b2)x)

=
1

1− ax
C
(x(b+ (c− b2)x)

(1− ax)2

)
.(2.2)

When a = b = c = 1, Guvv(1, 1, 1;x) =
1−x−

√
(1−x)2−4x

2x , which is just the
generating function of the large Schröder numbers [15].

By (1.3), taking the coefficient of xn in Guvv(a, b, c;x), we derive the
following result

Proposition 2.1. For any integer n ≥ 0, we have

Guvv
n (a, b, c) =

n∑
k=0

k∑
j=0

(
k

j

)(
n+ k − j

2k

)
Cka

n−k−jbk−j(c− b2)j .

Setting T = xG(a, b, c;x), (2.1) produces

T = x
1 + aT + (c− b2)T 2

1− bT
,(2.3)

using the Lagrange inversion formula [12], taking the coefficient of xn+1 in
T in three different ways, we derive the following result
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Proposition 2.2. For any integer n ≥ 0, we have

Guvv
n (a, b, c) =

1

n+ 1

[n
2
]∑

k=0

n−2k∑
j=0

(
n+ 1

k

)(
n+ 1− k

j

)

·
(
2n− 2k − j

n− 2k − j

)
ajbn−2k−j(c− b2)k

=
1

n+ 1

n∑
k=0

[n−k
2

]∑
j=0

(
n+ 1

k

)(
n+ 1− k

j

)

·
(
2n− k − 2j

n− k − 2j

)
akbn−k−2j(c− b2)j

=
1

n+ 1

n∑
k=0

n−k∑
j=0

(
n+ 1

k

)(
k

j

)

·
(
2n− k − j

n− k − j

)
ak−jbn−k−j(c− b2)j .

Exactly, by (1.1), (1.2) and (2.2), it can be deduced that

Guvv(a, b, b2 + c;x) = G(a, b, c;x), Guvv(a, b, b2;x) = Guvu(a, b, b2;x).

That is Guvv
n (a, b, b2 + c) = Gn(a, b, c) and Guvv

n (a, b, b2) = Guvu
n (a, b, b2).

The first identity has a direct combinatorial interpretation if one notices that
each db2+c-step of P ∈ Guvv

n (a, b, b2 + c) can be regarded equivalently as the
corresponding dc-step and uvbvb-step of P′ ∈ Gn(a, b, c) . The combinatorial
interpretation of the second identity will be given in the next section.

When (a, b, c) is specialized, Guvv(a, b, c;x) and Guvv
n (a, b, c) can reduce to

some well-known generating functions and classical combinatorial sequences
involving the Catalan numbers Cn, Motzkin numbersMn, the large Schröder
numbers Sn, (a+ b, b)-Catalan number Cn(a+ b, b), (a, b)-Motzkin number
Mn(a, b) and (a, b)-Schröder number Sn(a, b) respectively. See Table 2 for
example.

Denote by Ḡuvv
n (a, b, c) the weight of the set Ḡuvv

n (a, b, c) of all uvv-avoiding
(a, b, c)-G-Motzkin paths of length n such that the paths have no h-steps on
the x-axis. Set Ḡuvv(a, b, c) =

⋃
n≥0 Ḡuvv

n (a, b, c).

Let Ḡuvv(a, b, c;x) =
∑∞

n=0 Ḡ
uvv
n (a, b, c)xn be the generating function for

the uvv-avoiding (a, b, c)-G-Motzkin paths in Ḡuvv(a, b, c). According to the
method of the first return decomposition, any paths P ∈ Ḡuvv(a, b, c) can be
decomposed as one of the following three forms:

P = ε, P = uQ2dcQ1 or P = uQ3vbQ1,
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(a, b, c) Guvv(a, b, c;x) Guvv
n (a, b, c) Senquences

(0, 1, 1) C(x) = 1−
√
1−4x
2x Cn [15, A000108]

(1, 0, 1) M(x) = 1−x−
√
1−2x−3x2

2x2 Mn [15, A001006]

(1, 1, 1) S(x) = 1−x−
√
1−6x+x2

2x Sn [15, A006318]

(1, 0, 2) 1−x−
√
1−2x−7x2

4x an [15, A025235]

(−3, 4, 16) 1+3x−
√
1−10x+9x2

8x an [15, A059231]

(a, 0, b)
1−ax−

√
(1−ax)2−4bx2

2bx2 Mn(a, b)

(a, b, b2)
1−ax−

√
(1−ax)2−4bx

2bx

Cn(a+ b, b)
or Sn(a, b)

Table 2. The specializations of Guvv(a, b, c;x) and Guvv
n (a, b, c).

where Q1 ∈ Ḡuvv(a, b, c), Q2 ∈ Guvv(a, b, c) and Q3 ∈ Guvv(a, b, c) has no
uv-step at the end of Q3. Then we get the relation

Ḡuvv(a, b, c;x) = 1 + cx2Guvv(a, b, c;x)Ḡuvv(a, b, c;x)

+ bx
(
Guvv(a, b, c;x)− bxGuvv(a, b, c;x)

)
Ḡuvv(a, b, c;x),

which, by (2.1) and (2.3), leads to

xḠuvv(a, b, c;x) =
x

1− (b+ (c− b2)x)xGuvv(a, b, c;x)

=
xGuvv(a, b, c;x)

1 + axGuvv(a, b, c;x)

=
T

1 + aT
.

By the Lagrange inversion formula, taking the coefficient of xn+1 in
xḠuvv(a, b, c;x) in three different ways, we derive the following result
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Proposition 2.3. For any integer n ≥ 0, we have

Ḡuvv
n (a, b, c) =

n+1∑
i=0

(−1)i
i+ 1

n+ 1

[n
2
]∑

k=0

n−2k∑
j=0

(
n+ 1

k

)(
n+ 1− k

j

)

·
(
2n− i− 2k − j

n− i− 2k − j

)
ai+jbn−i−2k−j(c− b2)k

=
n+1∑
i=0

(−1)i
i+ 1

n+ 1

n∑
k=0

[n−k
2

]∑
j=0

(
n+ 1

k

)(
n+ 1− k

j

)

·
(
2n− i− k − 2j

n− i− k − 2j

)
ai+kbn−i−k−2j(c− b2)j

=

n+1∑
i=0

(−1)i
i+ 1

n+ 1

n∑
k=0

n−k∑
j=0

(
n+ 1

k

)(
k

j

)

·
(
2n− i− k − j

n− i− k − j

)
ai+k−jbn−i−k−j(c− b2)j .

3. A bijection between the sets Guvv
n (a, b, b2) and Guvu

n (a, b, b2)

In this section, we give a direct bijection between the set Guvv
n (a, b, b2)

of uvv-avoiding (a, b, b2)-G-Motzkin paths and the set Guvu
n (a, b, b2) of uvu-

avoiding (a, b, b2)-G-Motzkin paths.

Theorem 3.1. There exists a bijection σ between Guvv
n (a, b, b2) and

Guvu
n (a, b, b2) for any integer n ≥ 0.

Proof. Given any Q ∈ Guvv
n (a, b, b2) for n ≥ 0, when n = 0, 1 and 2, we

define

σ(ε) = ε, σ(ha) = ha, σ(uvb) = uvb.

For n ≥ 2, Q is uvv-avoiding, there are six cases to be considered to define
σ(Q) recursively.
Case 1: Q = haQ

′ with Q′ ∈ Guvv
n−1(a, b, b

2). We define

σ(Q) = haσ(Q
′).

Case 2: Q = uvbhaQ
′ with Q′ ∈ Guvv

n−2(a, b, b
2). We define

σ(Q) = uvbhaσ(Q
′).

Case 3: Q = uvbQ
′′Q′ such that Q′′ ∈ Guvv

k (a, b, b2) is primitive and Q′ ∈
Guvv
n−k−1(a, b, b

2) for certain 1 ≤ k ≤ n− 1. We define

σ(Q) = uσ(Q′′)vbσ(Q
′).

In this case, one can notice that there exist uvu’s in Q, but not in σ(Q).
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Case 4: Q = uiudb2v
i
bQ

′ with Q′ ∈ Guvv
n−2−i(a, b, b

2) for 0 ≤ i ≤ n − 2. We
define

σ(Q) =

{
ujuvbd

j
b2
σ(Q′), if i = 2j − 1 ≥ 1,

uj+1dj+1
b2

σ(Q′), if i = 2j ≥ 0.

Case 5: Q = uiuQ′′db2v
i
bQ

′ such that Q′′ ∈ Guvv
k (a, b, b2) is nonempty and

Q′ ∈ Guvv
n−k−i(a, b, b

2) for certain 1 ≤ k ≤ n− i and 0 ≤ i ≤ n− 2. We define

σ(Q) =

{
ujσ(Q′′uvb)d

j
b2
σ(Q′), if i = 2j − 1 ≥ 1,

uj+1σ(Q′′uvb)vbd
j
b2
σ(Q′), if i = 2j ≥ 0.

Case 6: Q = uiQ′′vibQ
′ such that Q′′ ∈ Guvv

k (a, b, b2) is not primitive and
Q′ ∈ Guvv

n−k−i(a, b, b
2) for certain 1 ≤ k ≤ n− i and 1 ≤ i ≤ n− 1, where Q′′

does not end with uvb since Q is uvv-avoiding. We define

σ(Q) =

{
ujσ(Q′′)vbd

j−1
b2

σ(Q′), if i = 2j − 1 ≥ 1,

ujσ(Q′′)dj
b2
σ(Q′), if i = 2j ≥ 2.

From the definition of σ, one can deduce by induction that σ(Q) is uvu-
avoiding and the following assertations hold:

• In Case 3, σ(Q′′) must be primitive and not be uuvbvb since Q′′ is
primitive;

• In Case 5, σ(Q′′uvb) has the form P1uuvbvb or P2uvb since Q′′ is
nonempty, where both P1 ∈ Guvu

r−1(a, b, b
2) and P2 ∈ Guvu

r (a, b, b2)
must not end with uvb for certain r ≥ 1;

• In Case 6, σ(Q′′) is not primitive and does not end with uvb or
uuvbvb since Q′′ is not primitive and does not end with uvb.

Conversely, the inverse procedure can be handled as follows. Given any
P ∈ Guvu

n (a, b, b2) for n ≥ 0, when n = 0, 1, we define

σ−1(ε) = ε, σ−1(ha) = ha, σ−1(uvb) = uvb.

For n ≥ 2, there are five cases to be considered to define σ−1(P) recur-
sively.
Case I: P = haP

′ with P′ ∈ Guvu
n−1(a, b, b

2). We define

σ−1(P) = haσ
−1(P′).

Case II: P = uvbhaP
′ with P′ ∈ Guvu

n−2(a, b, b
2). We define

σ−1(P) = uvbhaσ
−1(P′).
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Case III: P = uP′′vbP
′ such that P′′ ∈ Guvu

k (a, b, b2) and P′ ∈ Guvu
n−1−k(a, b, b

2)
for certain 1 ≤ k ≤ n− 1. We define

σ−1(P) =



uvbσ
−1(P′′)σ−1(P′), if P′′(̸= u2v2b) is primitive,

uσ−1(P′′)vbσ
−1(P′), if P′′(̸= ε) is not primitive

and does not end with
u2v2b or uvb,

uσ−1(P1uvb)db2σ
−1(P′), if P′′ = P1uuvbvb,

uσ−1(P2)db2σ
−1(P′), if P′′ = P2uvb,

where both P1 ∈ Guvu
r−1(a, b, b

2) and P2 ∈ Guvu
r (a, b, b2) must not end with uvb

for certain r ≥ 1, since P is uvu-avoiding.

Case IV: P = ujP′′dj
b2
P′ such that P′′ ∈ Guvu

k (a, b, b2) and P′ ∈ Guvu
n−2j−k(a, b, b

2)
for certain 0 ≤ k ≤ n− 2j and the maximum j ≥ 1. We define

σ−1(P) =



u2j−1db2v
2j−2
b σ−1(P′), if P′′ = ε,

u2jσ−1(P1uvb)db2v
2j−1
b σ−1(P′), if P′′ = P1uuvbvb,

u2jσ−1(P2)db2v
2j−1
b σ−1(P′), if P′′ = P2uvb,

u2jσ−1(P′′)v2jb σ−1(P′), if P′′(̸= ε) is not primi-
tive and does not end
with u2v2b or uvb,

where both P1 ∈ Guvu
r−1(a, b, b

2) and P2 ∈ Guvu
r (a, b, b2) must not end with uvb

for certain r ≥ 1, since P is uvu-avoiding.

Case V: P = ujuP′′vbd
j
b2
P′ such that P′′ ∈ Guvu

k (a, b, b2) and P′ ∈ Guvu
n−2j−1−k(a, b, b

2)
for certain 0 ≤ k ≤ n− 2j − 1 and the maximum j ≥ 1. We define

σ−1(P) =



u2jdb2v
2j−1
b σ−1(P′), if P′′ = ε,

u2j+1σ−1(P1uvb)db2v
2j
b σ−1(P′), if P′′ = P1uuvbvb,

u2j+1σ−1(P2)db2v
2j
b σ−1(P′), if P′′ = P2uvb,

u2j+1σ−1(P′′)v2j+1
b σ−1(P′), if P′′(̸= ε) is not primi-

tive and does not end
with u2v2b or uvb,

where both P1 ∈ Guvu
r−1(a, b, b

2) and P2 ∈ Guvu
r (a, b, b2) must not end with uvb

for certain r ≥ 1, since P is uvu-avoiding.
It is not difficult to verify that σ−1σ = σσ−1 = 1, both σ and σ−1 are

two weight-keeping mappings and σ−1(P) is uvv-avoiding by induction on
the length of P. Hence, σ is a desired bijection between Guvv

n (a, b, b2) and
Guvu
n (a, b, b2). This completes the proof of Theorem 3.1. □

In order to give a more intuitive view on the bijection σ, a pictorial
description of σ is presented for

Q = u3db2v
2
bu

2db2vbu
5vbdb2v

3
bhau

2hadb2vbu
3vbuvbhav

2
b ∈ Guvv

23 (a, b, b2),
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and

σ(Q) = u2d2b2u
2vbdb2u

4vbd
2
b2hauhauvbdb2u

3v2bhadb2 ∈ Guvu
23 (a, b, b2).

See Figure 2 for detailed illustrations.
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Figure 2. An example of the bijection σ described in the
proof of Theorem 3.1.

4. Counting the set of fixed points of the bijection σ

In this section, we will count the set of fixed points of the bijection σ
presented in Section 3.

Let Fn = {Q ∈ Guvv
n (a, b, b2)|σ(Q) = Q} and F =

⋃
n≥0Fn, set Fn = |Fn|.

It is easy to verify the few initial values for Fn, see Table 4.1. It should be
noted that the sequence Fn currently does not match any of the sequences
in OEIS [15].

n 0 1 2 3 4 5 6 7 8 9 10
Fn 1 2 5 13 39 125 421 1478 5329 19658 73783

Table 4.1. The first values of Fn.
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According to the definition of σ, any Q ∈ Fn must belong to the set,

G{uvv,uvu}
n (a, b, b2), of (a, b, b2)-G-Motzkin paths avoiding both the uvv and

uvu patterns, since Q is uvv-avoiding and σ(Q) is uvu-avoiding. But there

exists P ∈ G{uvv,uvu}
n (a, b, b2) such that σ(P) ̸= P. For example, σ(uudv) =

uuvd ̸= uudv for n = 3. From the proof of Theorem 3.1, one can deduce
that Q /∈ Fn(σ) if Q is being in the following situations, 1) in the whole
Case 3; 2) in the Case 4 when i ≥ 1; 3) in the whole Case 5; and 4) in the
Case 6 when i ≥ 2. Equivalently, one can derive that

• In Case 1, Q = haQ
′ ∈ Fn if and only if Q′ ∈ Fn−1;

• In Case 2, Q = uvbhaQ
′ ∈ Fn if and only if Q′ ∈ Fn−2;

• In Case 4 when i = 0, Q = udb2Q
′ ∈ Fn if and only if Q′ ∈ Fn−2;

• In Case 6 when i = 1, Q = uQ′′vbQ
′ ∈ Fn if and only if Q′′ ∈ Fk

and Q′ ∈ Fn−k−1 for certain 1 ≤ k ≤ n− 1 such that Q′′(̸= ε) is not
primitive and does not end with uvb.

Let An be the subset of Q ∈ Fn such that Q is not primitive and does not
end with uvb, Bn be the subset of Q ∈ Fn such that Q ends with uvb, and
Cn be the subset of Q ∈ Fn such that Q is primitive and does not end with
uvb. Set an = |An|, bn = |Bn|, cn = |Cn|. Firstly, Fn is the disjoint union of
An,Bn and Cn, i.e., Fn = an + bn + cn for n ≥ 0; Secondly, C0 = C1 = ∅,
C2 = {uhavb, udb2} and Cn = uAn−1vb for n ≥ 3, i.e., cn = an−1 for n ≥ 3
with c0 = c1 = 0 and c2 = c3 = 2; Thirdly, Bn is the disjoint union of
An−1uvb and Cn−1uvb for n ≥ 1, i.e., bn = an−1+ cn−1 for n ≥ 1 with b0 = 0
and b1 = b2 = 1. These together generate the following Lemma.

Lemma 4.1. For any integer n ≥ 4, we have

Fn = an + 2an−1 + an−2(4.1)

with a0 = a1 = 1, a2 = 2, a3 = 7 and a4 = 23.

On the other hand, the family F can be partitioned into the form:

F = ε+ haF + uvbhaF + udb2F + uA′vbF ,

where A′ = A− ε and A =
⋃

n≥0An. This leads to the following recurrence
for Fn.

Lemma 4.2. For any integer n ≥ 1, we have

Fn+1 = Fn + 2Fn−1 +

n∑
k=1

akFn−k(4.2)

with F0 = 1, F1 = 2.
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Let F (x) =
∑

n≥0 Fnx
n and A(x) =

∑
n≥0 anx

n. By (4.1), we have

F (x) = 1 + 2x+ 5x2 + 13x3 +
∑
n≥4

(an + 2an−1 + an−2)x
n

= 1 + 2x+ 5x2 + 13x3 +
(
A(x)− 1− x− 2x2 − 7x3

)
+ 2x

(
A(x)− 1− x− 2x2

)
+ x2

(
A(x)− 1− x

)
= (1 + x)2A(x)− x+ x3.(4.3)

By (4.2), we obtain

F (x) = 1 + 2x+ x(F (x)− 1) + 2x2F (x) + x(A(x)− 1)F (x)

= 1 + x+ 2x2F (x) + xA(x)F (x).(4.4)

Eliminating A(x) in (4.3) and (4.4) produces

xF (x)2 − (1 + x)(1 + x− 3x2 − x3)F (x) + (1 + x)3 = 0.

Solving this, we have

F (x) =
(1 + x)(1 + x− 3x2 − x3)

2x

−
(1 + x)

√
(1 + x− 3x2 − x3)2 − 4x(1 + x)

2x

=
(1 + x)2

1 + x− 3x2 − x3
C
( x(1 + x)

(1 + x− 3x2 − x3)2

)
.(4.5)

By (4.5), taking the coefficient of xn in F (x), we get the explicit formula for
the number Fn of the fixed points of the bijection σ, namely,

Theorem 4.3. For any integer n ≥ 0, we have

Fn =
n∑

k=0

[n−k
2

]∑
j=0

j∑
i=0

(−1)n−k−i

(
2k + j

j

)(
j

i

)(
n− j − i− 2

n− k − 2j − i

)
3j−iCk,

where Ck is the k-th Catalan number.
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