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THE FLAG f- AND h- VECTORS OF GENERALIZED
SQUARE POSETS

JIAQIAN LIN AND LILI MU*

ABSTRACT. Tiling a quadrant of the plane with squares gives rise to
the Square poset. Adjustments in the tiling tactic generate a series of
posets that we refer to as the generalized Square posets. We study the
flag f- and h-vectors of this class of generalized Square posets.

1. INTRODUCTION

The theory of posets plays an important unifying role in enumerative
combinatorics. As the classical case, the Square poset can show its such
feature in different contexts. For instance, enumerations on the Square
poset have close relations to partition numbers, Catalan numbers, binomial
coefficients, etc.

Meanwhile the Square poset possesses many interesting properties that
have attracted much attention. One particular instance worth noting is that
the number of n-element order ideals in the Square poset is the number of
partitions of n. Propp [5] extended this property to a class of generalized
Square posets (Hexagonal, Rhomb, Tilt, etc.; we will introduce them later in
this section). Therein many meaningful identities were achieved, or reproved
combinatorially. In this paper, we aim to study the flag f- and h-vectors of
the aforementioned class of generalized Square posets.

Whilst we are introducing the definitions of flag f- and h-vectors, the
reader is assumed to be familiar with all the basic concepts of modern
enumerative combinatorics (as can be found in e.g. in [10, Ch3]). Let
P be a finite poset of rank n, with rank function p : P — [0,n]. Here
[0,n] is the set {0,1,2,...,n}. If S C [0,n] then define the subposet
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Ps = {t € P: p(t) € S}, called the S-rank-selected subposet of P. Now
define fp(S) (or simply f(S)) to be the number of maximal chains of Ps.
For instance, f(i) (short for f({i})) is exactly the number of elements of P
of rank ¢. The function f . 20n 5 7 is called the flag f-vector of P. Also

define hp(S) = h(S) by
n(S) =Y (~)*Df(T).

TCS

The function & is called the flag h-vector of P. The flag f- and h-vectors
are natural extension of f- and h-vectors which are classic face enumerating
vectors in complex. They occur naturally in diverse areas of mathematics
and have been widely studied. For example, hp(S) > 0 when P is a Cohen-
Macaulay poset. The behavior of the flag h-vector has a close relationship
with the combinatorial properties of the poset. Many classical results have
been shown in the thesis of Richard Stanley [7]. For instance, one of the
so many interesting results is when the poset P is a distributive lattice,
its flag h-vector has a combinatorial interpretation. [1, 3,4, 6, 8] are also
a few recommended references of the many in the literature. These two
functions of the Square poset can produce a number of beautiful identities
and counting results, and can be computed explicitly. In light of this, we
set out to study these two functions of some generalised Square posets.

Recall that the Square poset is determined by the set N x N (here N =
{0,1,2,...}) and the relation (a’,b") < (a,b) if and only if ' < a and b’ < b.
This poset can be obtained by tiling a quadrant of the plane with squares,
shown as Figure 1 (see [5], [9], [10, Chap3] for more information); here
Figure 1 requires us (so do its variants in the following) to imagine and keep
in mind its infinite picture as it is. Based on Figure 1, by adjusting the
tiling tactic accordingly, we obtain a series of posets that we refer to as the
generalized Square posets: the Hexagonal poset, Rhomb poset, Tilt poset,
Tilt @ poset, and the Punc poset (see Figure 2,3,6,7,8 respectively).

FIGURE 1. The Square poset

Let S = {iy,i2,...,i:} be a set of integers with i1 > 0. We emphasize
this notation holds throughout the whole paper. It is known that the flag
f- and h-vectors of the Square poset are given as follows.

f(S) = (i1+ 1)z —iy+1)-(ig —ig_1 + 1),
h(S) = dilip—ip —1)---(ig — i1 — 1).
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As a simple application, it is straightforward to see that the number of
saturated chains from (0,0) (the bottom element) to level n is 2.
Now, by replacing the squares in Figure 1 with hexagons and adding

a new minimal element, we obtain the poset Hezxagonal as Figure 2. In
mathematical words, its elements are {(a,b)|a,b € N,a > b} and we say
(@', V) < (a,b) if

e a/ <aandd <bwhen a + b is odd,

o a <aand?d <bwhen d + ¥ is even.

FIGURE 2. The Hexagonal poset

Let S = {i1,...,4} and n; = |4;/2]. Then the flag f- and h-vectors of
the poset Hexagonal have been given as follows [2].

f(S) = (m+1ne—n1+1)(n3 —ng+1)---(ng —nmy—1 + 1),
iL(S) = nl(ng—nl—1)(n3—n2—1)---(nt—nt_1—1).

By the formula for the flag f-vector, it is easy to see that the number of
saturated chains from (0,0) (the bottom element) to level n is 2131

The following part of this paper is organized as follows. Section 2 inves-
tigates the Rhomb poset. The Tilt poset, Tilt (1) poset, and the Punc poset
are studied in Section 3 as a package of the sub-posets of Square.

2. THE RHOMB POSET

The Rhomb poset is pictorially defined by Figure 3, i.e., decompose each
hexagon in Hexagonal poset into three rhombi. Mathematically, we can
define that the elements of the Rhomb poset are the triples (a,b,c) € N x
N x N which satisfy

ec=a+b+1ifa+ b+ cisodd,

ec=a+t+borc=a+b+2,if a+ b+ ciseven.
We declare that (a’,b', ) < (a,b,¢) if a’ < a, b < band ¢ < c¢. The Rhomb
poset has the unique minimun (0,0,0), and obviously it is ranked by the

sum of entries of the triple. See Figure 4 for illustration of the elements of
rank 0 to 4.
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FiGURE 3. The Rhomb poset and its Hasse diagram

(2,0,2)(1,0,3)(1,1,2)(0,1,3) (0,2,2)

(1,9,2) (0,1,2)
R ST
@)

FIGURE 4. Rank 0 to 4 of the Rhomb poset

Theorem 2.1. Let S = {iy,i2,...,0} and Sy, = {i1,i2,...,0t—m} be the
sets of rank numbers of the Rhomb poset. Define

= { & ol

1 even

where k =1,...,t. Then
. i - Fi) (i — i +2) 4+ o(i;) — 1
Flip) = L gy iy = L0 20 2) xoll)

and

7(S) = J(S1) (s —dg—1 + 22)0(1;(0(%1) - 1)f(52).

Proof. Note that f (i7) is the number of elements of rank i;. By definition of
the Rhomb poset, the element (a, b, ¢) in rank i; satisfies that a +b+c = i,
and ¢ = a+ b+ 1if 4; is odd. That is a4+ b = (i; — 1)/2. Then there are
(i; —1)/2+1 ways to choose a € N and b € N, i.e., f(i;) = (i; +1)/2 if 4; is
odd. Similarly, f(i;) =i;/2+1+ (i; —2)/2+1=1i;+1if i, is even. That is
f(z]) = ;g:;l) Recall that f(ij, ix) is the number of chains between rank i;
and iy. If i; is odd, then there are (i —i; +2)/20(i’€) elements of rank 7, and
all of them are comparable with exactly one element of rank 7;. Hence the
number of chains between rank i; and iy is f(i;)(ix — i; +2)/2°08). 1f i; is
even, then there are (i;+2)/2 elements of rank i; generating (i —i;-+1)/2°0%)
chains, and there are i;/2 elements of rank i; generating (i — i, + 3)/2°0*)
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chains. Hence the number of chains between rank i; and iy, is

i+ 20—+ 1 dji—ij+3 Fli) i —i;+2) =1
2 90(ir) 2 9o(ix) 90(ix) )

Combine these two cases in view of the parity of i;, we get that

Flisin) = fi5) (i — Z];(lf)) to(y) —1

Now the formula of f(S) is true for t = 1 and t = 2. We then turn to
prove the case t > 2, also having to consider the parity of ¢;_1. If 441 is
odd, then there are (iy — ;1 + 2)/20(“) elements of rank #;, and all of them
are comparable with exactly one element of rank i;_;. So the number of
chains between rank ¢; and 4; is

]E(Sl)(it — 1+ 2)
90(it) ’

If 741 is even, then the number of the chains from each element of rank 7; 1
to i; produces an interlacing sequence of (iy —i;—1+1)/ 20(it) and (ig — i1+
3)/2°0%) | starting with the former element. Therefore the number of the
chains from each element of rank i;_o to rank #; via rank 4;_1 is the sum of
an interlacing sequence of (i;—i;_1 +1)/2°0) and (i; —i;_1 +3)/2°0). These
sequences vary in length but are all arrayed in the same manner that starts
and terminates with the former of the two elements. Hence the number of
chains from each element of rank i;_o to rank ; is

Cb(it — 7;t—1 + 2) . 1
20(it) 20(’it) ’

where a is exactly the length of the corresponding interlacing sequence.
Taking (iy — i¢_1 + 2)/2°0%) as the number of chains generated by each
element of rank 7;_1 to rank i;, we get

F(S1) iy —ig—1 +2)
90(it)

chains from to ig. However, the number of the total chains is technically
overcounted by f(S2)/2°0%) that should be subtracted. Hence,

oSS — i1 +2)  f(S2)
f(8) = 90(it) ~ 9o(ir)

This completes the proof. O

An example shall make the proof clearer for the case when i;_1 is even,
say i.—1 = 4 as shown in Figure 5. The number of the chains from each
element of rank 4 to those of rank 5 is the sequence 1,2,1,2,1. Therefore
the number of the chains from element p; or ps in rank 2 to rank 5 is

1+424+1= w — % = 4, and the number of the chains from py in rank
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5(5—4+2)

2torank His1+2+1+2+1= 3 —%:7. Hence the sum of chains

from rank 1 to rank 5 is

fUL.2,4)(-4+2)  f({1,2})

9 - 5 = 15.
————— 14 =25
————— i3 =4
————— 1o =2
————— 1 =1

FIGURE 5. {1,2,4,5}-rank-selected subposet of the Rhomb poset

Remark: Let S = {i,i+1,...,i+t} and S, = {i,i+1,...,i+t—m}, where
17> 1. Then ~ 3
f(S) = 4f(S2).

In particular, if S = {1,2,...,n}, then f(S) = (5 x 2"~ 1 — (=2)"71)/4.
Corollary 2.3. The number of saturated chains of the Rhomb poset from
rank 0 to rank n (n > 1) is

5x2nt — (=2)n!

1 .

Now we apply the formula of flag f-vector to establish the formula of flag
h-vector.

Theorem 2.4. Let S = {iy,...,4} and Sy, = {i1,%2,...,0t—m} be the sets
of rank numbers of the Rhomb poset. Define

)1, i odd
o(ik) _{ 0, i even ’

where k =1,...,t. Then

h(S1)(ix — iz—1 — 0(iz—1) — o(it)).

h(ij) = 4 —olij) oli;) and iL(S) =

90(i;) 90(it)
Proof. By the definition of flag h-vector,
S e i+ 1 =20 —o(iy)
(2.1) h(ij) = =1+ f(i;) = 501)) =)

h(ij,ik) =1 — f(i;) — flin) + f(ij,in)
. i +1  F(i)ip —i; +2)+o(i;) —1
_h(lj)_ ;O:k-) + I ])( : J2Iik))+ (]) .
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In view of the parity of 7; and i, we get that

h(ij,ix) = h (i) i = igo_(i:)(ij) —ofix))

Now the formula of E(S) is true for t = 1,2. We then use induction on ¢ —1,
i.e.,

(2.2) WS = h(S2) (ig—1 — itQi(;_?)(itZ) - O(itﬂ))’

and consider the induction step from ¢ — 1 to ¢. By the definition of flag
h-vector,

B(S) = (<) + (<0 ST Fi) + (1Y fligsi) o+ F(S)

1<j<t J<p
t—1
= —h(S1) + (=) i) + (=172 fijyi) + -+ F(S).
j=1

If we could prove that

(2.3) (D) ) + (172 D fligi) + -+ £(S)
1<5<t-1
~ b — bp— +1—0(’it_ )
= h(Sl) 120(’it) ! )

then the the theorem follows from the fact that

5 - - it —it—1 + 1 — o(i—
h(S) = (i) + sy et L L oli)
i — 11 — o(iz—1) — o(ir)

20(it) ’

= h(5))

To prove (2.3), we first need to ready the following two necessary identities.
Lemma 2.5.

. < iy —im 41— 0(im)

(24) f(Zt) - f(imait) = _h(lm) 90(it) )

where 1 <m <t—1 and

(25) f(/i17"')iru7:t)_f(ilw"uirait—lvit)
F(Si—r) (i1 — ir + 1 — 0(ig—1)) + f(St—rs1)(0(ir) — 1)
20(it_1)20(it)
it — it_l +1-— O(it_l)
20(1}571)20(1})
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Proof. By Theorem 2.1,

it 41 flim) (it — im +2) + (i) — 1

Flie) = flimie) =

20(it) 90(it)
(1= f(im)) + 201 = fim)) + imf (im) — 0(im)
N 20(it)
o E(Zm)( — i + 2) + Uy, — ( m)
N 20(it) ’
where the last equation invokes the fact that A(i,,) = —1 + f(im). By

the equation (2.1), we have ip — 0(im) = h(im)2°0m). Note that 20(m) =
1+ o(im). Hence we have

Fli) = Flim,ie) = —h(im) (it — im + 2)( +) (i) (1 + 0(im))
_ —hlim) (i = im + 1 = (i)
20(it) .

The proof of (2.4) is complete.
By the formula of flag f-vector, we have

f(St r) (it —ir +2) + (o(ir) — 1)];(Stfr+1)

Flit, .. ip, i) = 50
and
Finy .oy i1, i)
f(n,-- virydg—1)(ig — dg—1 + 2) + (0(i¢—1) — 1) f(Sp—r)
20(it)
( F(St—r)(it—1 — iy +2) + (0(ir) — St r+1>2t—2t 1+ 2)

Qo(it_ 1) 20(“)

2000 (0(ip—1) = 1) f(St—r)
20(7&71)20(1}) :

+
Then the coefficient of f(St,r+1) in
9olit-1)9o(it) (f(zl,...,ir,z’t) _ f(il,...,ir,it_l,it))
is
294 (i) —1) = (0(ir) 1) (it —ie1+2) = (1=0ir))(ie—ir1+1—0ir 1)),

where we invoke the fact that 200-1) = 1 4 o(iy_1).
The coefficient of f(S;—,) in

2000000226 (Fliy, i) = flins iy, i0))
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is
2000=1) (4, — iy 4 2) — (ip—1 — iy + 2)(ig — g1 + 2) — 2°0=1) (0(i;_1) — 1)
= (14 0(ig—1)) (it — ir + 3 —0(i¢—1)) — (t4—1 — ip + 2) (i — i4—1 + 2)
- — (it—l — ir + 1-— O(it_l))(it — it—l +1-— O(it_l)).
This completes the proof of equation (2.5). O

We now turn to prove (2.3). By (2.4), it is easy to check that (2.3) holds
for t = 2. We next consider the case t > 2. Through rearrangement of the
sum, we have that the LHS of main (2.3) is

()" ) + (<1172 Y fligei)

1<j<t
F )Y Figipin) o+ F(S)
J<p
=17 (F60) = Flir-r,in) + (=17 30 (Fligeie) = Figyin-a,io)

Jj<t—1
(TN (Pl i) = Fligsipyiva,io))
J<p<t—1
o (=) (f(z’l,...,it_z,it) —f(S)).

By Lemma 2.5, it is easy to see that the difference between each two flag
f-vectors in the above brackets has a common factor

iy —ig—1 + 1 — o(is—1)
90(it)

Compared with the RHS of (2.3), we have only to prove the following equa-
tion.

26) (—pyrim=olen)

90(it—1)
(—1)! Z f(i5)(G—1 — 4 +210(—it01()it1)) +o(ij) — 1 I
j<t—1
27) F(S2)(i—1 —ip—o +1 —;((iit—l;)) + (o(ir—2) — 1) £(Ss)
=h(S1).
Note that
A2 = (-1 + (-0 S0 Fla) + DY fliy) + o S
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Then collecting the coefficient of (i;_1 — 0(i;_1))/2°(*~1) we find the LHS of
(2.6) is

ig—1 — 0(is— 1)~ flij)i; — 1)
e S ICARNE L B U B
j<t—1
F(S2)(ir—2 — 1) -1 o(ij) — 1 (o(ir—2) — 1)f(S3)
(=1) 20(it—1) +(=1) ;;1 oGy T 20(it—1) ‘
ol

Before proceeding further, we need to verify the following claim, thereby hoping
to finish the proof of (2.6).

Lemma 2.6.

(2.8) (=1 Z Flij)(i5 = 1) + -+ (1) f(S2) (ie—2 — 1)
+ (-1 Z ((ij) = 1) + -+ (0(ir—2) — 1) f(S3)

— (ig—2 + 0(iz—2))h(S2).

Proof. Our induction is on ¢ > 2. It is not hard to check that the case ¢t = 3 is ture.
For the induction step, assume that the result is true for t — 1, i.e.,

DN )6 — 1)+ = f(Ss)(ims — 1+ (1) Y (o(i;) — 1)

j<t—2 j<t—2
+ -+ (0(ig—3) — 1) f(Sy4)
— (ir—3 + 0(i1—3))h(Ss),

with which we rewrite the LHS of (2.8) as

(it—3 + 0(is—3))h(S3)

Applying the induction hypothesis of (2.3), we have

( )f(ZtQ tlZijaZtQ f(Sz)

Jj<t—2
ig—o —it-3+ 1 —o0(is_ 3)
20(’Lt 2)

= — (Ss)
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Then the LHS of (2.8) is

((it_?, +o(is_3)) — (ig_s — l)it—Q - it;i(:,lz)_ o(ir—3) + (o(ig—2) — 1)) h(Ss5)
B(Sg)o<it_2)(it_3 + O(it—3) + ;2(;}275)_2(%_2 — lp_3 — O(it_g))
(Ss) il hs O(itﬂ))(it*;o;it;)?) — o(i¢—2) — o(ir—3))

I
>

= — (it—2 + o(it—2))h(S2),
where the last equation follows from the induction hypothesis of (2.2). O

By Lemma 2.6, the LHS of (2.6) is

it—1 —o(ig—1) > it—2 + 0(it—2)

90(it—1) h(S2) — 90(it—1) B(SZ) - B(Sl)

This completes the proof. [l

Remark: By the recursive formula of flag h-vectors, it is easy to see that
h(S) > 0 for any set S. Let S = {z’l,igl...,it}. If there exists one j €
{1,2,...,t} such that ij =141 — 1, then h(S) = 0.

3. THE SUB-POSETS OF THE SQUARE POSET

In this section, we will consider certain sub-posets of the Square poset.
The first kind is the Tilt poset which is pictorially defined by Figure 6. The
Tilt poset is a sub-poset of the Square poset, in which only the points (a, b)
with a = b (mod 2) are allowed. Specifically, its elements are

{(a,b) e NxNlja=b (mod 2)}

and (a/,0') < (a,b) if and only if ' < a and ¥ < b. The second kind
arises from considering the companion sub-poset of the Square poset where
only the points (a,b) with a Z b (mod 2) are allowed. This sub-poset is
denoted by Tilt V), pictorially shown in Figure 7. The last sub-poset to
be considered is Punc as shown in Figure 8. The Punc poset is such a
sub-poset of the Squre poset that defined by removing the points (a,b) for
a=1 b=1 (mod2). In the remainder of this section, we will give the
respective flag f- and h-vectors of these sub-posets.

F1GURE 6. The Tilt poset
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Theorem 3.1. Let S = {i1,i2,...,it} be the set of rank numbers of Tilt
poset. Then

flij) = 2i;+1, f(S) = (201 + 1)(24g — 2y + 1) -+ (20 — 2041 + 1),

and

h(ij) = 25, h(S) = 2i1(2ig — 2iy — 1) -+ - (20, — 2iy_1 — 1).

Proof. By definition of the Tilt poset, it is easy to see that the number of
elements of rank 4; is 2i; + 1. Then f(i;) = 2i; + 1. Now the formula of
£(S) is true for t = 1. We then use induction on ¢t — 1, i.e., f(i1,...,5_1) =
(261 +1)(269 —2i14+1) - - (264—1 — 2442 + 1), and consider the induction step
from ¢t — 1 to t. For every element A of rank i;_1, there are (2, — 23,1 + 1)
elements of rank i, which are comparable with A. Hence, we get the formula
of f(5) by the induction hypothesis.
Since

h(ij) = f(ij) — 1 = 2ij,
and
h(ijyix) = 1= fi5) = flir) + F(ijyin) = 2i5(2ix — 265 — 1),
it remains to show that the formula of A(S) holds for ¢ > 2. Let S = Sy =

{i1,...,4t} and S, = {i1,...,%—m}, where t > 2. We use induction on m,
assuming that

(3.1)  h(Sp) = 2i1(2ig — 2y — 1)+ (20— — 2iy—m_1 — 1), for m > 0.

Then we need to prove that this equality is correct for m = 0. By the
definition of flag h-vector,

h(S) = (1) + (=)' Y Fliy) + (D)2 Flig ip) +- -+ F(5)

1<5<t J<p
t—1
= —h(S1) + (=)' i) + (=172 fligyin) + - + F(S).
j=1

If we could prove the following identity

(32) (=D + (D) D fligeie) + (1)) flig i)

1<j<t-1 J<p
+ 4 F(S) = h(S1)(2ir — 2i-1),
then the theorem follows from the fact that
h(S) = —h(S1) + h(S1)(2i; — 2i1)
= h(S1)(2iy — 2iy_1 — 1).
.2),

Before proving (3.2), we need to establish the following two necessary
identities.
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Lemma 3.2.

Fir) = F(ig ie) = —h(i;)(2i — 2ij)
and

flir, ooy, i) — fin, .oy tm i1, 0) = — f(St—r)(204—1 — 24, ) (20 — 20¢-1).

Proof. By the formulae of flag f-vectors, it is easy to check that

Fie) = f(ij,i0) =2i¢ + 1 — (26 + 1)(24p — 24 + 1)
= — 2i;(2i — 2i;)
= — h(ij)(2i — 2i),

and
Flrs . ip i) — firy . s ipii_1, i)
=f i, yir) (20 — 2ir +1) = (2ie-1 — 26y + 1)(2ir — 201 + 1))
= — f(Syp)(2ip—1 — 20) (20 — 2i4—1).
Lemma 3.2 is proved. O

We now turn to prove (3.2). By Lemma 3.2, it is easy to check that (3.2)
holds for t = 2. Next we consider the case ¢t > 2. By a rearrangement of the
sum of, the LHS of (3.2) is

t—1
(=D ) + (=172 Flig,ie)
j=1

+ (=D > fligaip i) + -+ F(S)

J<p<t—1
=) (£ = Flir-rie) ) + (<12 37 (Figoie) = Fligoieorin))
J<t—1
FEUT DT (Flgigeie) = Fligiprivsin)) 4+
J<p<t—1

_(ﬂhV”JF%%y—ﬂsg.

By Lemma 3.2, it is easy to see that the difference between two flag f-vectors
in each of the above bracket has a common factor 2i; —2i;_1. Compared with
the RHS of (3.2), obviously it remains to prove the following equation

(33)  h(S1) =(=1)" x 2ip—1 + (=)' Y Fi5)(20-1 — 205) + -

j<t—1

+ F(S2) (21 — 2ip_a).
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Collecting the coefficients of 2i;_1, the RHS of (3.3) is

24— 1h Sa) + Z f ij)21;
j<t—1
Z Jz(ij?ip)%p +ot (= )JZ(52>221: 2
J<p<t—1

We now turn to prove our second claim.

Lemma 3.3.

(3.4) Z f( ij)2i; + Z f( ijyip)2ip

j<t—1 J<p<t—1
o (1) f(S2) 269 = —h(S2) (2it—2 + 1)

Proof. We use induction on ¢ > 2. It is not hard to check that the case t = 3
is ture. For the induction step, assume that the result is true for t — 1, i.e.,

DY fig)2i
J<t—2

+ (=072 Y fligip)2ip + -+ (—1) £(S3)26-3

Jj<p<t—2
— h(S3) (i3 +1)

Then the LHS of (3.4) is
h(S3)(2i—3 + 1)

+ 20y [ (—1)"f(ie—2) Z flij,t—2) <= f(S2)

j<t—

Applying the induction hypothesis of (3.2), we have
(—1)"f(ir—2) TS fligi) = flin, - yi2)

j<t—2
= — h(S3)(2is_o — 2is_3).
Then the LHS of (3.4) is
h(S3)(2i—3 + 1) — 2iy_2h(S3) (20— — 2i4_3)
= — h(S2)(2ir—2 + 1),
where the last equation follows from (3.1). O
Hence the RHS of (3.3) is
2y 1h(S2) — h(S2)(2is_o 4+ 1) = h(S2)(2is_1 — 2is_o — 1) = h(Sy).
This completes the proof. ([l
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Corollary 3.4. The number of saturated chains of the Tilt poset from (0,0)
to level n is 3".

The flag f- and h-vectors of the poset Tilt ) can be obtained in the
similar way with the Tilt poset and, likewise, those of the Punc poset can
be obtained in the similar way with the Rhomb poset. Hence we omit the
proofs of the following two theorems.

FIGURE 7. The Tilt™ poset

Theorem 3.5. Let S = {i1,i2,...,9:} be the set of rank numbers of the
Tilt V) poset. Then

flij) = 2i;+2, f(S) = (201 +2)(26g — 2y + 1) -+ (20 — 2041 + 1),
and
h(ij) = 2i; +1, h(S) = (2i1 4+ 1)(2i2 — 2iy — 1) -+ (26 — 201 — 1).

Corollary 3.6. The number of saturated chains of the Tilt V) poset from
level O (the bottom elements) to level n is 2 - 3™.

FicUrE 8. The Punc poset and its Hasse diagram

Theorem 3.7. Let S = {iy,...,i1} and Sy, = {i1,42,...,5t—m} be the sets
of rank numbers of the Punc poset. Define

v 1, i odd
olir) = { 0, 1 even
where k =1,...,t. Then

fli =2 o) ) =

f(S1) (i —dt—1 +2 — o(it—1) — o(it))
91—o(it) ’

h(ij) = —3 B(S):h(sl)(z’t—z’t121—_02&)—0(%1);1(52)'
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Corollary 3.8. The number of saturated chains of the Punc poset from level
0 (the bottom element) to level n is 2721,
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