
Volume 19, Number 3, Pages 184–195
ISSN 1715-0868

A NOTE ON TOTAL CO-INDEPENDENT DOMINATION

IN TREES

A. CABRERA-MARTÍNEZ, F.A. HERNÁNDEZ, J.M. SIGARRETA, AND I.G. YERO

Abstract. A set D of vertices of a graph G is a total dominating set
if every vertex of G is adjacent to at least one vertex in D. The to-
tal dominating set D is called a total co-independent dominating set if
V (G) \D is an independent set and has at least one vertex. The mini-
mum cardinality of any total co-independent dominating set is denoted
by γt,coi(G). In this paper, we show that, for any tree T of order n and
diameter at least three, n − β(T ) ≤ γt,coi(T ) ≤ n − |L(T )| where β(T )
is the maximum cardinality of any independent set and L(T ) is the set
of leaves of T . We also characterize the families of trees attaining the
extremal bounds above and show that the differences between the value
of γt,coi(T ) and these bounds can be arbitrarily large for some classes of
trees.

1. Introduction

Throughout this work we consider a finite simple graphG = (V (G), E(G))
of order n = |V (G)|. Given a vertex v of G, NG(v) represents the open
neighborhood of v, i.e., the set of all neighbors of v in G. The degree of
v is degG(v) = |NG(v)|. If S ⊆ V (G), then the open neighborhood of S
is NG(S) = ∪v∈SNG(v). The minimum and maximum degrees of G are
denoted by δ(G) and ∆(G), respectively. For any two vertices u and v, the
distance d(u, v) between u and v is the length of a shortest u− v path. The
diameter of G is the largest possible distance between any two vertices of
G, and is denoted by diam(G). For any other graph theory terminology we
follow the book [27].

A dominating set of a graph G is a set of vertices D ⊆ V (G) such that
every vertex of G not in D is adjacent to at least one vertex in D. The
domination number of G is the minimum cardinality of a dominating set of
G and is denoted by γ(G). Domination in graphs is a classical topic, and
nowadays one of the most active areas, of research in graph theory. This

This work is licensed under a Creative Commons “Attribution-
NoDerivatives 4.0 International” license.

Received by the editors March 28, 2022, and in revised form August 11, 2022.
2000 Mathematics Subject Classification. 05C69, 05C05.
Key words and phrases. total domination number, independence number, total co-

independent domination number, trees.

184

https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en


A NOTE ON TOTAL CO-INDEPENDENT DOMINATION IN TREES 185

fact can be seen for instance through the more than 1620 articles published
on the topic (more than 1070 of them in the last 10 years), according to the
MathSciNet database with the queries: “domination number” or “dominat-
ing sets”. The two books [16, 17] contain a significant number of the most
important results in the topic before this new century.

One interesting research activity on domination in graphs concerns its
relationship with other graph parameters. A remarkable case regards vertex
independence, i.e., sets of vertices inducing an edgeless graph. The most
natural relationship in this direction is clearly the mixing of both concepts
which gives rise to the independent domination number, i.e., the minimum
cardinality of a dominating set which is also an independent set. Indepen-
dent domination in graphs was formally introduced in [3] and [23] in the
early 1960s (a fairly complete survey on this topic was recently published in
[12]). On the other hand, some other investigations connecting domination
and independence in graphs can easily be found in the literature. We remark
here on two of them. The first one is searching for two disjoint sets in a
graph, in which one of the sets is a maximal independent set and the second
one a minimal dominating set (a particular case appears whether both sets
form a partition of the vertex set of the graph). Several studies on this topic
have been developed in the last few years. The Ph.D. thesis [21] contains
several results and citations on the subject. The second cone is related to
finding the minimum cardinality of a dominating set which intersects every
maximal independent set of a graph: independent transversal domination
(see [13], where the theme was introduced, and also [1].)

Other popular studies on domination in graphs deal with modifying the
domination property. One of the most popular parameters in this way is to-
tal domination, which differs from standard domination by the added prop-
erty of dominating all the vertices of the graph, instead of only those outside
of the set. It is then not surprising that total domination has been also re-
lated to independence in graphs. For instance, the total domination version
of independent transversal domination is already known from [8, 7]. How-
ever, not much exists concerning finding two disjoint sets in which one of
the sets is a total dominating set, and the other one, an independent set. A
closely related idea to this one above was recently published in [25], where
the concept of total co-independent dominating set was introduced. Such
work contains just a few results which are not very deep. However, the
concept is interesting and deserves a more detailed study.

More formally, a set D ⊆ V (G) is a total dominating set of G if every
vertex in V (G) is adjacent to at least one vertex in D. The total domination
number of G is the minimum cardinality of any total dominating set of G
and is denoted by γt(G). A γt(G)-set is a total dominating set of cardinality
γt(G). For more information on total domination see the survey [18]. On the
other hand, a set S of vertices is independent if S induces an empty graph.
The independence number of G is the largest cardinality of an independent
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set of G and is denoted by β(G). An independent set of cardinality β(G) is
called a β(G)-set.

A total dominating set D of a graph G is called a total co-independent
dominating set if the set of vertices of the subgraph induced by V (G) \ D
is independent and not empty. The minimum cardinality among all total
co-independent dominating sets of G is denoted by γt,coi(G). A total co-
independent dominating set of cardinality γt,coi(G) is a γt,coi(G)-set. These
concepts were previously introduced and barely studied in [25], and also
recently and more deeply, in [4, 5]. A slightly different version of this pa-
rameter was introduced in [20], and also recently studied in [22], where the
condition of V (G) \ D being not empty was not required. In these latter
works, the total co-independent domination number is called the total outer-
independent domination number. Even so, both parameters almost always
behave in the same manner, we prefer to continue using the terminology of
[25]. The results on this parameter would lead one to deduce some conclu-
sions about the existence of partitions of the vertex set of a graph into a
total dominating set and an independent set, as already mentioned.

Let T be a tree. A leaf of T is a vertex of degree one. A support vertex
of T is a vertex adjacent to a leaf and not itself a leaf, and a semi-support
vertex is a vertex adjacent to a support vertex that is neither a leaf nor
a support vertex. By an isolated support vertex of T we mean an isolated
vertex of the subgraph induced by the support vertices of T . The set of
leaves is denoted by L(T ), the set of support vertices is denoted by S(T ),
and the set of semi-support vertices is denoted by SS(T ). Moreover, S∗(T )
is the set of isolated support vertices of T . Also, a double star is a tree with
exactly two adjacent vertices of degree larger than or equal to two and the
remaining vertices are leaves.

Studies on characterizing domination related parameters in trees have
been very popular in the last decade. One can find in the literature several
works showing all the trees satisfying diverse properties. For instance, to
just name a few of them, we remark some on examples, which are not likely
an exhaustive list of the most remarkable and/or recent cases.

• In [26] it was proved that for any tree T of order n and l leaves,
γt(T ) ≥ (n − l + 2)/2, and all the trees achieving such bound are
given.

• In [24], a characterization of the family of trees with equal total
domination and paired-domination numbers was given.

• In [14], a characterization of trees with equal domination and inde-
pendent domination numbers was presented.

• In [10] it was proved that the restrained domination number of a tree
T of order n is bounded below by ⌈(n + 2)/3⌉ and all the extremal
trees achieving this lower bound were constructively characterized.
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• In [2], a constructive characterization of the trees for which the Ro-
man domination number strongly equals the weak Roman domina-
tion number was given.

• In [19], trees with equal total domination and game total domination
number were characterized.

• In [6], a constructive characterization of vertex cover Roman trees
was given, that is, trees whose outer independent Roman domination
number equals twice its vertex cover number.

• In [9], three different characterizations concerning weak Roman dom-
ination in trees were presented.

Other styles of characterizations of domination parameters in trees were
presented in [11, 15]. In this sense, in the present work we propose to improve
the visibility of this new parameter, namely the total co-independent domi-
nation number, throughout characterizing several families of trees achieving
some specific values of this mentioned parameter.

The total co-independent domination number of a graph G has been intro-
duced in [25], where a few of its combinatorial properties were determined.
Among them, a couple of almost trivial bounds in terms of β(G) and the
order of G were proved for γt,coi(G). As an example, for any graph G of
order n, n − β(G) ≤ γt,coi(G) ≤ n − 1. It is readily seen that such bounds
could be improved in a number of situations. For instance, in the case of a
tree T , this can be done for the upper bound as we next show.

Theorem 1.1. For any tree T of order n and diam(T ) ≥ 3,

n− β(T ) ≤ γt,coi(T ) ≤ n− |L(T )|.
Proof. The lower bound was already given in [25]. Moreover, the upper
bound follows by the fact that the set V (T )\L(T ) is a total co-independent
dominating set, since T has diameter at least three. □

One can immediately think about characterizing the trees achieving the
bounds for the total co-independent domination number given above. This
is accomplished in the next section. In order to easily proceed with our
exposition, we say that a tree T belongs to the family Tβ, if γt,coi(T ) =
n−β(T ) and that T is in the family TL, if γt,coi(T ) = n− |L(T )|. Note that
TL = Tβ if and only if L(T ) is a β(T )-set.

2. The characterizations

In order to provide a constructive characterization of the trees belonging
to the family Tβ we need to introduce some operations to be made over a
tree. In this regard, by attaching a path P to a vertex v of T we mean
adding the path P and joining v to a vertex of P .

Operation O1: Attach a path P1 to a vertex of T which is in some
γt,coi(T )-set.

Operation O2: Attach a path P2 to a vertex of T which is in some
γt,coi(T )-set.



188 A. CABRERA-MARTÍNEZ, F.A. HERNÁNDEZ, J.M. SIGARRETA, AND I.G. YERO

Operation O3: Attach a path P4 to a vertex v of T which is in some
γt,coi(T )-set, by joining v to a leaf of P4.

Operation O4: Attach a path P4 to a vertex v of T which is in some
β(T )-set, by joining v to a support vertex of P4.

Let T be the family of trees defined as T = {T | T is P4 or is a tree
obtained from P4 by a finite sequence of operations O1, O2, O3, O4}. We
first show that every tree in the family T belongs to the family Tβ.

Lemma 2.1. If T ∈ T , then T ∈ Tβ.

Proof. We proceed by induction on the number r(T ) of operations required
to construct the tree T . If r(T ) = 0, then T = P4 and T ∈ Tβ. This
establishes the base case. Hence, we now assume that k ≥ 1 is an integer
and that each tree T ′ ∈ T with r(T ′) < k satisfies that T ′ ∈ Tβ. Let T ∈ T
be a tree with r(T ) = k. Then, T can be obtained from a tree T ′ ∈ T with
r(T ′) = k − 1 by one of the operations O1, O2, O3 or O4. We shall prove
that T ∈ Tβ. To this end, as T ′ ∈ Tβ, let D′ be a γt,coi(T

′)-set containing
no leaves and let B′ = V (T ′) \D′ be a β(T ′)-set containing all leaves. We
consider the following situations.

Case 1. T is obtained from T ′ by operation O1. Assume T is obtained
from T ′ by adding the vertex u and the edge uv, where v ∈ D′. Notice that
u is a leaf of T and that B′ ∪{u} is a β(T )-set, otherwise there would be an
independent set in T ′ with one vertex more than in B′, since only one vertex
has been added to T ′ (to obtain T ) that would increase the value for β(T ) by
more than one. On the other hand, D′ is a total co-independent dominating
set of T . Thus, γt,coi(T ) ≤ |D′| = |V (T )|− (β(T ′)+1) = |V (T )|−β(T ), and
by Theorem 1.1, γt,coi(T ) = |V (T )| − β(T ), which means T ∈ Tβ.

Case 2. T is obtained from T ′ by operation O2. Assume T is obtained
from T ′ by adding the path u1u2 and the edge u1v where v ∈ D′. Note that
the vertex u2 is a leaf of T , and that u1 is its support vertex. So, B′ ∪ {u2}
is a β(T )-set, otherwise there would be an independent set in T ′ with one
vertex more than in B′, since only one vertex from the pair u1, u2 could be
added to any independent set of T ′ to get an independent set of T of larger
cardinality than that of B′. It is now not difficult to see that D = D′∪{u1}
is a total co-independent dominating set of T . Hence, γt,coi(T ) ≤ |D| =
|D′|+1 = |V (T ′)|−β(T ′)+1 = |V (T )|−2− (β(T )−1)+1 = |V (T )|−β(T ).
Therefore, by Theorem 1.1, γt,coi(T ) = |V (T )| − β(T ) and T ∈ Tβ.

Case 3. T is obtained from T ′ by operation O3. Assume T is obtained
from T ′ by adding the path P4 = h1u1u2h2 to a vertex v ∈ D′ by the
edge vh1. By using some similar reasons as in the case above, it is easily
seen that B = B′ ∪ {h1, h2} is a β(T )-set and that D = D′ ∪ {u1, u2} is a
total co-independent dominating set of T . So, γt,coi(T ) ≤ |D| = |D′| + 2 =
|V (T ′)|−β(T ′)+2 = (|V (T )|−4)−(β(T )−2)+2 = |V (T )|−β(T ). Therefore,
by Theorem 1.1, γt,coi(T ) = |V (T )| − β(T ) and T ∈ Tβ.

Case 4. T is obtained from T ′ by operation O4. Assume T is obtained
from T ′ by adding a path P4 = h1u1u2h2 to a vertex v of T ′, which is in some
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β(T ′)-set, throughout the edge vu1. Note that the set B = B′∪{h1, h2} is an
independent set of T . Moreover, since there can be at most two vertices of
the path P4 in any β(T )-set, it must happen that B is a β(T )-set, otherwise
there would be an independent set in T ′ of cardinality larger than β(T ′),
which is not possible. Now, it is readily seen that D = D′ ∪ {u1, u2} is a
total co-independent dominating set in T . Thus, γt,coi(T ) ≤ |D| = |D′|+2 =
|V (T ′)|−β(T ′)+2 = (|V (T )|−4)−(β(T )−2)+2 = |V (T )|−β(T ). Therefore,
again as above, by Theorem 1.1, γt,coi(T ) = |V (T )| − β(T ) and T ∈ Tβ. □

We now turn our attention to the opposite direction concerning the lemma
above. In this sense, from now on we shall need the following terminology
and notation in our results. Given a tree T and a set S ⊊ V (T ), by T − S
we denote a tree obtained from T by removing from T all the vertices in S
and all its incident edges (if S = {v} for some vertex v, then we simply write
T − v). For an integer r ≥ 2, by Qr we mean a graph which is obtained
from a path Pr+2 = vss1s2 . . . sr by attaching a path P1 to every vertex of
Pr+2 − v. In Figure 1 we show the example of Q5.

s

v

s1 s2 s3 s4 s5

Figure 1. The structure of the tree Q5.

We next show that every tree of the family Tβ belongs to the family T .
To this end, we need the following observation.

Observation 2.2. Let T be a tree of order at least three. If B is a β(T )-set,
then for every v ∈ B there exists a vertex u ∈ B such that d(v, u) ≤ 3.

Lemma 2.3. If T ∈ Tβ, then T ∈ T .

Proof. We proceed by induction on the order n ≥ 4 of the trees T ∈ Tβ. If
T is a double star, then T can be obtained from P4 by repeatedly applying
operation O1. This establishes the base case. We assume that k > 4 is an
integer and that each tree T ′ ∈ Tβ with |V (T ′)| < k satisfies that T ′ ∈ T .

Let T be a tree such that T ∈ Tβ and |V (T )| = k. Let (D,B) be a
partition of V (T ) where D is a γt,coi(T )-set containing no leaves and B is a
β(T )-set containing all leaves. We analyze the following situations.

Case 1: |S(T )| < |L(T )|. We consider a support vertex v that is adjacent
to at least two leaves. Let h ∈ N(v)∩L(T ) and T ′ = T −h. Since h ∈ B, it
follows B′ = B \{h} is an independent set in T ′, which is moreover a β(T ′)-
set, since otherwise we would get an independent set of larger cardinality
in T than β(T ), which is not possible. Moreover, it is easily seen that D is
also a total co-independent dominating set of T ′. Thus, γt,coi(T

′) ≤ |D| =
γt,coi(T ) = |V (T )| − β(T ) = |V (T ′)| + 1 − (β(T ′) + 1) = |V (T ′)| − β(T ′).
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So, by Theorem 1.1 , γt,coi(T
′) = |V (T ′)| − β(T ′) and T ′ ∈ Tβ. Now, by the

induction hypothesis T ′ ∈ T . Therefore, since T can be obtained from T ′

by operation O1, it follows T ∈ T .

Case 2: |S(T )| = |L(T )| and |SS(T )| = 0. In this case we note that
V (T ) = S(T ) ∪ L(T ) and it is easily observed that |S(T )| ≥ 3, S(T ) is a
γt,coi(T )-set and L(T ) is a β(T )-set. Let s ∈ S(T ) such that |N(s)∩S(T )| =
1 (note that such s always exists) and let h ∈ L(T ) be the leaf adjacent
to s. First notice that the vertex x ∈ N(s) ∩ S(T ) must have at least
two neighbors in S(T ), otherwise T is P4, which is not possible. Hence,
we observe that B′ = B \ {h} is an independent set of T ′ = T − {h, s}.
Moreover, by reasoning similar to the case above, B′ is also a β(T ′)-set.
On the other hand, S(T ′) = S(T ) \ {s} is clearly a total co-independent
dominating set of T ′. So, γt,coi(T

′) ≤ |S(T ′)| = |S(T )| − 1 = |V (T )| −
|L(T )| − 1 = |V (T ′)| + 2 − (|L(T ′)| + 1) − 1 = |V (T ′)| − β(T ′). Thus, by
Theorem 1.1, γt,coi(T

′) = |V (T ′)| − β(T ′) and T ′ ∈ Tβ. By the induction
hypothesis T ′ ∈ T . Since T can be obtained from T ′ by operation O2, we
get T ∈ T .

Case 3: |S(T )| = |L(T )| and |SS(T )| > 0. Herein we denote by P (x, y)
the set of vertices on the unique path between x and y, including x and y.
Let h, h′ be two leaves at the maximum possible distance in T such that
there is v ∈ SS(T ) ∩ P (h, h′) with d(v, h) = 2 or d(v, h′) = 2. Without loss
of generality assume that d(v, h) = 2 and let s be the support adjacent to h.
Since |S(T )| = |L(T )|, we observe that N(s) ⊆ S(T )∪ {h, v} and also every
support vertex is adjacent to exactly one leaf. We have now some possible
scenarios.

Case 3.1 |N(s)∩S(T )| = 1. Hence, by the maximality of the path P (h, h′),
it must happen that T has an induced subgraph isomorphic to a graph
Qr, as previously described, obtained from the vertices v, s, h and some
supports, say s1, s2, . . . , sr ∈ S(T ), with the leaves h1, h2, . . . , hr, adjacent
to the supports s1, s2, . . . , sr, respectively.

Assume r = 1. Note that s, s1 ∈ D and h, h1 ∈ B. We first consider
v ∈ D. Let T ′ = T −{h1, s1}, D′ = D \ {s1} and B′ = B \ {h1}. Clearly, B′

is a β(T ′)-set. Also, we note that D′ is a total co-independent dominating
set of T ′. So, γt,coi(T

′) ≤ |D′| = |D| − 1 = (|V (T )| − |B|) − 1 = (|V (T ′)| +
2)− (β(T ′) + 1)− 1 = |V (T ′)| − β(T ′). Thus, by Theorem 1.1, γt,coi(T

′) =
|V (T ′)| − β(T ′) and T ′ ∈ Tβ. By inductive hypothesis T ′ ∈ T , and since T
can be obtained from T ′ by operation O2, we obtain T ∈ T .

We now consider v ∈ B. Let T ′ = T − {s, h, s1, h1}, D′ = D \ {s, s1} and
B′ = B \ {h, h1}. We can again deduce B′ is a β(T ′)-set since at most two
vertices of {s, h, s1, h1} can belong to any independent set of T . Moreover,
D′ is a total co-independent dominating set of T ′. So, γt,coi(T

′) ≤ |D′| =
|D|−2 = (|V (T )|−|B|)−2 = (|V (T ′)|+4)−(β(T ′)+2)−2 = |V (T ′)|−β(T ′)
and, by Theorem 1.1, we get γt,coi(T

′) = |V (T ′)| − β(T ′), which leads to
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T ′ ∈ Tβ. By inductive hypothesis T ′ ∈ T , and together with the fact that T
can be obtained from T ′ by operation O4, the required result T ∈ T follows.

Assume now that r ≥ 2. Since s, s1, . . . , sr ∈ D and h, h1, . . . , hr ∈ B, if
T ′ = T − {hr, sr}, then it is readily seen that B′ = B \ {hr} is a β(T ′)-set
and that D′ = D \ {sr} is a total co-independent dominating set of T ′. By
using a similar procedure as above (r = 1) we obtain T ′ ∈ T and, due to
that T can be obtained from T ′ by operation O2, it follows T ∈ T .

Case 3.2 |N(s) ∩ S(T )| > 1. We note that this case is analogous to that
one above whether |N(s) ∩ S(T )| = 1 and r ≥ 2.

Case 3.3: |N(s) ∩ S(T )| = 0. Clearly, s has degree two. Also, it must
happen v, s ∈ D and h ∈ B. Assume the subgraph induced by P (h, h′)
is h s v u1u2 . . . s

′ h′, where h, h′ ∈ L(T ) and s, s′ ∈ S(T ). By the choice
of P (h, h′), it follows that N(v) ⊆ S(T ) ∪ {u1}. We consider again some
possible scenarios.

Case 3.3.1: |N(v) ∩ S(T )| > 1. In this case, the vertex v is also totally
dominated by another support different from s. We note that u1 ∈ B,
because B∪{v} would be an independent set of cardinality larger than that
of B. Hence, we consider the tree T ′ = T −{h, s} and the sets D′ = D \{s},
B′ = B \ {h}. It can be deduced as above that B′ is a β(T ′)-set. Moreover,
D′ is a total co-independent dominating set of T ′. So, γt,coi(T

′) ≤ |D′| =
|D|−1 = (|V (T )|−|B|)−1 = (|V (T ′)|+2)−(β(T ′)−1)−1 = |V (T ′)|−β(T ′).
Thus, by Theorem 1.1, we obtain γt,coi(T

′) = |V (T ′)| − β(T ′), which means
T ′ ∈ Tβ, and by inductive hypothesis T ′ ∈ T . Furthermore T can be
obtained from T ′ by operation O2, which allows to claim T ∈ T .

Case 3.3.2: |N(v) ∩ S(T )| = 1. Clearly s, v have degree two. We firstly
consider the case when N(u1) = {v, u2}. By Observation 2.2 we note that
u1 ∈ B, and consequently u2 ∈ D since T ∈ Tβ. Let T ′ = T − {h, s, v, u1},
D′ = D \ {v, s} and B′ = B \ {h, u1}. Now, similarly to Case 3.1 (whether
r = 1 and v ∈ B) we can deduce B′ is a β(T ′)-set. Also, D′ is a total
co-independent dominating set of T ′. So, γt,coi(T

′) ≤ |D′| = |D| − 2 =
(|V (T )| − |B|)− 2 = (|V (T ′)|+ 4)− (β(T ′) + 2)− 2 = |V (T ′)| − β(T ′), and,
by Theorem 1.1, γt,coi(T

′) = |V (T ′)| − β(T ′). Thus, T ′ ∈ Tβ. Hence, the
inductive hypothesis T ′ ∈ T together with the fact that T can be obtained
from T ′ by operation O3, we deduce T ∈ T .

On the other hand, assume that there is a vertex w ∈ N(u1) \ {v, u2}.
Since u1 ∈ B, it must be also that w ∈ D, and consequently w has a neighbor
belonging to D (which is clearly not u1). Moreover, by the maximality
of P (h′, h), we note that w /∈ SS(T ) because B′ = B \ {u1} ∪ {v, w} is
an independent set of cardinality larger than that of B. Hence, it follows
w ∈ S(T ) \ S∗(T ).

Let x ∈ V (T ) be a leaf adjacent to the support w. We note that T
have an induced subgraph isomorphic to a graph Qr, obtained from the
vertices u1, w, x and some supports, say w1, w2, . . . wr ∈ S(T ), with the
leaves x1, x2, . . . , xr, adjacent to the supports w1, w2, . . . wr, respectively.
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By using a similar procedure to that of Case 3.1, it follows T ∈ T which
completes the proof. □

As an immediate consequence of Lemma 2.1 and Lemma 2.3 we have the
following characterization.

Theorem 2.4. Let T be a tree. Then T ∈ Tβ if and only if T ∈ T .

We next see that all the operations O1 to O4 are required in the char-
acterization above. First, it is easy to see that operation O1 is required to
obtain a double star from the path P4. The examples given in Figure 2 show
that operations O2, O3 and O4 are also required.

(I) (II) (III)

Figure 2. The tree (I) can only be obtained from P4 by
a sequence of operations O3, O3 or O4, O3; the tree (II) can
only be obtained from P4 by a sequence of operations O4, O4

or O3, O4 and the tree (III) can only be obtained from P4 by
the operation O2.

We next characterize those trees T satisfying that T ∈ TL. Before, we
need to introduce the following result.

Theorem 2.5. [25] A total co-independent dominating set D of a graph G is
minimal if and only if for each vertex v ∈ D, one of the following conditions
is satisfied.

(i) There exists a vertex u ∈ V (G) such that N(u) ∩D = {v}.
(ii) There exists w ∈ V (G) \D adjacent to v.

Theorem 2.6. Let T be any tree with diam(T ) ≥ 3. Then T ∈ TL if and
only if the following conditions are satisfied.

(i) V (T ) = L(T ) ∪ S(T ) ∪ SS(T ).
(ii) Every vertex v ∈ SS(T ) has a neighbor u ∈ S∗(T ) such that N(u) \

L(T ) = {v}.

Proof. We first assume that T ∈ TL. Let D = V (T ) \ L(T ) be a γt,coi(T )-
set. If there exists a vertex v ∈ D \ (SS(T ) ∪ S(T )), then D \ {v} is a
total co-independent dominating set of T . Hence, γt,coi(T ) ≤ |D \ {v}| =
|D| − 1 = |V (T )| − |L(T )| − 1, which contradicts the fact that T ∈ TL.
Therefore, D = S(T )∪SS(T ) and as a consequence, it follows that V (T ) =
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L(T )∪S(T )∪SS(T ), as desired. Now, let v ∈ SS(T ). Since D is a γt,coi(T )-
set and v is not adjacent to a leaf, by Theorem 2.5, there exists a vertex
u ∈ D such that N(u) ∩ D = {v}. As a consequence, u ∈ S∗(T ) and
N(u) \ L(T ) = {v}, as desired.

On the other hand, we assume that conditions (i) and (ii) hold. Let
D′ be a γt,coi(T )-set containing no leaves. By definition, it follows that
S(T ) ⊆ D′. Now, we proceed to prove that SS(T ) ⊆ D′. Let v ∈ SS(T ). By
condition (ii) there exists a vertex u ∈ N(v)∩S∗(T ) such that N(u)\L(T ) =
{v}. As u ∈ D′, N(u) ∩ D′ ̸= ∅ and D′ ⊆ V (T ) \ L(T ), it follows that
v ∈ D′, as required. Therefore, S(T ) ∪ SS(T ) ⊆ D′, which implies that
|V (T )| − |L(T )| = |S(T )|+ |SS(T )| ≤ |D′| = γt,coi(T ). By the upper bound
given in Theorem 1.1 we obtain that γt,coi(T ) = |V (T )|−|L(T )|, i.e., T ∈ TL,
which completes the proof. □

An interesting question that arises from the Theorems 2.4 and 2.6 is the
following. Can the differences γt,coi(T ) − (|V (T )| − β(T )) and (|V (T )| −
|L(T )|) − γt,coi(T ) be as large as possible? We next give an affirmative
answer to that question. In this sense, the following family of trees F is
required. Given two integers b, d, a tree Tb,d ∈ F is defined as follows.

• We begin with a tree T of order b + d with vertex set V (T ) =
{u1, . . . , ub, v1, . . . , vd}.

• Attach two paths P1 to every vertex of T .
• Attach a star S3 to every vertex ui ∈ V (T ), i ∈ {1, . . . , b}, by adding
an edge between ui and a leaf of the star S3.

• Attach a star S3 with a subdivided edge to every vertex vi ∈ V (T ),
i ∈ {1, . . . , d}, by adding an edge between vi and the leaf correspond-
ing to the subdivided edge.

An example of a tree of the family F is given in Figure 3.

u1 u2 v1 v2 v3

Figure 3. The tree T2,3 by taking T as the path P5.

We next give several properties of the trees of the family F , which are
straightforward to observe and, according to this fact, the proofs are left to
the reader.

Observation 2.7. Let b, d be any two positive integers. Then,

(i) Tb,d has order 7b+ 8d,
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(ii) Tb,d has 4b+ 4d leaves,
(iii) β(Tb,d) = 5b+ 5d,
(iv) γt,coi(Tb,d) = 3b+ 3d.

According to the results above, for any positive integers b, d we see that
the tree Tb,d ∈ F satisfies the following relationships, which gives an answer
to our previous question.

• γt,coi(Tb,d)− (|V (Tb,d)| − β(Tb,d)) = b.
• (|V (Tb,d)| − |L(Tb,d)|)− γt,coi(Tb,d) = d.
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