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TILINGS OF A HONEYCOMB STRIP AND HIGHER

ORDER FIBONACCI NUMBERS

TOMISLAV DOŠLIĆ AND LUKA PODRUG

Abstract. In this paper, we explore two types of tilings of a hon-
eycomb strip and derive some closed-form formulas for the number of
tilings. Furthermore, we obtain some new identities involving tribonacci
numbers, Padovan numbers and Narayana’s cow sequence and provide
combinatorial proofs for several known identities about those numbers.

1. Introduction

Tilings or tessellations appear as natural solutions of many practical prob-
lems and their aesthetic appeal motivates the interest that goes way beyond
the limits of their practical relevance. In mathematics, tiling-related prob-
lems appear in almost all areas, ranging from purely recreational settings of
plane geometry all the way to the deep questions of eigenvalue count asymp-
totics for boundary-value problems in higher-dimensional spaces [12, 13].
Many of those problems, formulated in simple and intuitive terms and seem-
ingly innocuous, quickly turn out to be quite intractable in their generality.
That motivates interest in their restricted versions that might be more ac-
cessible. In this paper, we look at several such restricted problems when the
area being tiled has a given structure and the allowed tiles belong to a small
set of given shapes. In particular, we consider various problems involving
tiling a narrow strip of the hexagonal lattice in the plane with several types
of tiles made of regular hexagons. Similar problems for strips in square and
triangular lattices have been considered in several recent papers [1, 4, 5, 9].

The substrate (i.e., the area to be tiled) is a honeycomb strip Hn com-
posed of n regular hexagons arranged in two rows in which the hexagons
are numbered starting from the bottom left corner, as shown in Figure 1 for
n = 12. The number of hexagons in the strip is called its length. The choice
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of the substrate might seem arbitrary, but it provides a neat visual model
for a linear array of locally interacting units with additional longer-range
connections: the inner dual of a strip of length n is, in fact, P 2

n , the path on
n vertices with edges between all vertices at distance less than or equal to
2 in Pn. Another way to look at it is as the ladder graph with descending
diagonals, another familiar structure. Clearly, tilings with monomers and
dimers in the strip correspond to matchings in its inner dual, thus enabling
us to directly transfer known results about matchings into our context. We
refer the reader to the classical monograph by Lovász and Plummer [10] for
all necessary details on matchings.

2 4 6 8 10 12

1 3 5 7 9 11

Figure 1. A tiling of a honeycomb strip of length 12 using 4 dimers.

We start by examining the tilings of such strips by monomers (i.e., single
hexagons) and dimers made of two hexagons joined along an edge. Such
tilings have been considered recently by Dresden and Jin [4], who found
that the total number of such tilings is given by the tetranacci numbers. We
refine their results in several ways. First, in Section 2, we obtain the formula
for the number of such tilings with a specified number of dimers. Then we
consider tilings with colored monomers and dimers in Section 3. Along the
way we obtain combinatorial proofs for generalizations of several identities
involving tetranacci numbers from the paper by Dresden and Jin; we present
them in Section 4. Section 5 is devoted to another type of restricted tilings
of the honeycomb strip. There we prohibit horizontal dimers but allow
trimers of consecutive hexagons. The total number of such tilings is given
in terms of tribonacci numbers, and Padovan and Narayana’s cow numbers
appear as special cases. Combinatorial proofs of some related identities are
presented in Section 6. The paper is closed with some remarks listing some
open problems and indicating several possible directions for future work.

2. Tiling a honeycomb strip with exactly k dimers

In this section, we consider a honeycomb strip of length n and its tilings by
hexagonal monomers and dimers shown in Figure 2. We are interested in the
number of such tilings with a given number of dimers. The dimers can be in
any position; in Figure 2 we see a descending, a horizontal and an ascending
dimer, from left to right, respectively. Ascending and descending dimers will
be both called slanted when their exact orientation is not important. We
denote the number of all possible tilings of a honeycomb strip of length n
using exactly k dimers by cn,k.
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Figure 2. Monomer and three possible positions of a dimer tile.

Dresden and Jin [4] proved that the total number of all possible ways to
tile a strip with monomers and dimers hn satisfies recursion

(2.1) hn = hn−1 + hn−2 + hn−3 + hn−4

with initial values h1 = 1, h2 = 2, and h3 = 4. It makes sense to define
h0 = 1, accounting for the only possible tiling (the empty one) of the empty
honeycomb strip. Their recurrence is the same as the recurrence for the
tetranacci numbers Qn (A000078 in [11]) with shifted initial values. Hence,
hn = Qn+3. We wish to determine cn,k, the number of such tilings using
exactly k dimers, and hence n−2k monomers. It is easy to see that cn,k = 0
for k >

⌊
n
2

⌋
, since the strip with n hexagons can contain at most

⌊
n
2

⌋
dimers.

On the lower end, there is only one tiling without dimers, so cn,0 = 1 for all
n. By stacking k dimers at the beginning of the strip, it is always possible
to tile the remainder by monomers, so it follows that all cn,k for k between
1 and

⌊
n
2

⌋
will be strictly positive. Hence the numbers cn,k will be arranged

in a triangular array without internal zeros. In Table 1 we give the list of
initial values that can be easily verified.

c0,0 = 1
c1,0 = 1
c2,0 = 1 c2,1 = 1
c3,0 = 1 c3,1 = 3

Table 1. Initial values of cn,k.

In the next theorem, we give a recurrence relation for cn,k.

Theorem 2.1. Let n ≥ 4 be an integer and cn,k be the number of ways
to tile a honeycomb strip of length n by using exactly k dimers and n − 2k
monomers. Then the numbers cn,k satisfy the recurrence relation

(2.2) cn,k = cn−1,k + cn−2,k−1 + cn−3,k−1 + cn−4,k−2

with the initial conditions given in Table 1.

Proof. We consider an arbitrary tiling which uses k dimers and note that the
n-th hexagon can be tiled either by a dimer or by a monomer. The number of
all such tilings with the last hexagon tiled by a monomer is cn−1,k, since the
number of dimers k remains the same. If the last hexagon is part of a dimer,
then we distinguish two possible situations: either the dimer is slanted or it
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is horizontal. The number of tilings ending with a slanted dimer is cn−2,k−1

since the last dimer increases the length of a strip by two and the number
of dimers by one. If the dimer is horizontal, it means that it must cover the
(n−2)-nd and the n-th hexagon. In that case, we have two subcases: either
the (n− 1)-st hexagon is tiled by monomer, and the rest of the strip can be
tiled in cn−3,k−1 ways, or (n− 1)-st hexagon forms a dimer with (n− 3)-rd
hexagon, and rest of the strip can be tiled in cn−4,k−2 ways. Described cases
are illustrated in Figure 3 from left to right, respectively.

cn−1,k

n

cn−2,k−1

n− 1

n

cn−3,k−1

n− 1

n− 2 n

cn−4,k−2

n− 3 n− 1

nn− 2

Figure 3. All possible endings of a tiled honeycomb strip
of length n.

Since the listed cases and subcases are disjoint and describe all possible
situations, the total number of tilings is the sum of the respective counting
numbers i.e., cn,k = cn−1,k + cn−2,k−1 + cn−3,k−1 + cn−4,k−2, which proves
our theorem. □

We are now able to list the initial rows of the triangle of cn,k, which we
do in Table 2 below.

The triangle of Table 2 appears as the sequence A101350 in [11]. Its left-
most column consists of all 1’s, counting the unique tilings without dimers.
The second column seems to be given by cn,1 = 2n − 3. Indeed, the only
dimer in the tiling can cover either hexagons (i, i + 1) for 1 ≤ i ≤ n − 1 or
hexagons (i, i+ 2) for 1 ≤ i ≤ n− 2, resulting in 2n− 3 possible tilings. As
expected, the rows of the triangle sum to the (shifted) tetranacci numbers,

⌊n
2 ⌋∑

k=0

cn,k = Qn+3,

since by disregarding values k, recurrence (2.2) becomes the defining recur-
rence for the tetranacci numbers. The appearance of the Fibonacci numbers



60 TOMISLAV DOŠLIĆ AND LUKA PODRUG

n/k 0 1 2 3 4 5 6 · · · Qn

0 1 1
1 1 1
2 1 1 2
3 1 3 4
4 1 5 2 8
5 1 7 7 15
6 1 9 16 3 29
7 1 11 29 15 56
8 1 13 46 43 5 108
Table 2. The initial values of cn,k.

as the rightmost diagonal, c2n,n = Fn+1, can be readily explained by looking
at the inner dual of the strip. As mentioned before, it is the ladder graph
with the descending diagonal in each square, as shown in Figure 4 . Clearly,
tilings with n dimers correspond to perfect matchings in the inner dual. A

LnH2n

−→

Figure 4. Hexagonal strip of a length 2n and its inner dual

simple parity argument dictates that no diagonal can participate in such
a perfect matching. By omitting the diagonals we are left with a ladder
graph and it is a well-known folklore result that perfect matchings in ladder
graphs are counted by Fibonacci numbers. Somewhat less obvious is the
appearance of the convolution of Fibonacci numbers and shifted Fibonacci
numbers as the first descending subdiagonal,

c2n+1,n =

n∑
k=0

Fk+1Fn+2−k = A023610(n),

but it follows by observing that the only monomer breaks the strip into two
pieces each of which can be tiled by dimers only, and the number of such
tilings is obtained by summing the corresponding products, hence leading
to convolution. There are no formulas in the OEIS for other columns or
diagonals. In the rest of this section, we determine formulas for all elements
of the triangle cn,k.



TILINGS OF A HONEYCOMB STRIP 61

It is well known that for the Fibonacci numbers, one has

c2n,n =

n∑
m=0

(
n−m

m

)
.

By writing this as

c2n,n =

n∑
m=0

(
n−m

m

)(
n−m

0

)
,

and by noting that a similar formula

c2n+1,n =
n−1∑
m=0

(
n−m

m

)(
n−m

1

)
,

can be readily verified by induction, it becomes natural to consider

n−k∑
m=0

(
n−m

m

)(
n−m

k

)
,

as the formula for the elements on descending diagonals. By shifting the
indices n → n− k and k → n− 2k one arrives at expression for cn,k.

Theorem 2.2. The number of ways to tile a honeycomb strip of length n
using k dimers and n− 2k monomers is equal to

(2.3) cn,k =
k∑

m=0

(
n− k −m

m

)(
n− k −m

n− 2k

)
.

Theorem 2.2 can be proven by induction, but we prefer to present a
combinatorial proof. To do that we need some new terms and one lemma.

We say that a tiling of a honeycomb strip is breakable at the position k if a
given tiling can be divided into two tiled strips, the first strip of length k and
the second of length n−k. Note that breaking the strip is only allowed along
the edge of the tile. If no such k exists, we say that tiling is unbreakable.

For example, if the first two hexagons form a dimer, the tiling is unbreak-
able at position 1, since it is not allowed to break a tiling through the dimer.
As an example, Figure 5 illustrates all breakable positions of a given tiling.

2 4 6 8

1 3 5 7

Figure 5. Tiling of a honeycomb strip that is breakable at
positions 2, 3 and 7.
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Lemma 2.3. For n > 4, every tiled strip of length n is breakable into
four types of unbreakable tiled strips: length-one strip tiled with a single
monomer, length-two strip tiled with a single dimer, length-three strip tiled
with a horizontal dimer and a monomer, and length-four strip tiled with two
horizontal dimers.

Proof. Every left or right slanted dimer forms a strip of length two. When
removed, we are left with smaller strips, each of them tiled with hexagons
and horizontal dimers. Every horizontal dimer occupies positions in the form
{i, i+ 2}. If position i+ 1 is occupied by a monomer, hexagons in position
i, i+1 and i+2 form a length-three tiled strip. If position i+1 is occupied
by another horizontal dimer, that dimer can occupy positions i− 1, i+ 1 or
i+1, i+3. Either way, those two horizontal dimers form a length-four tiled
strip. After they are removed, we are left with only monomers, where each
monomer forms a simple tiled strip of length one. Those are the only four
types of unbreakable tilings. They are illustrated in Figure 6. □

Figure 6. All unbreakable types of tiled strip. The second
and the fourth can be left or right-slanted, and the third can
be upside down, depending on the parity of the position.

Proof of Theorem 2.2. We denote types of tiled strip from Figure 6 by M ,
D, T and V , from left to right, respectively. By Lemma 2.3, an arbitrary
tiling of a strip Hn of length n > 4 can be broken into those four types
of unbreakable tilings. Breaking a given tiled strip into unbreakable strips
produces a unique number of tiled strips of each type. So, let k1 denote the
number of strips ofD, k2 the number of strips of T , k3 the number of strips of
V , and since the strip has length n, what remains are n−2k1−3k2−4k3 strips
of M . Now we establish 1-1 correspondence between two sets: the first set,
that contains all tilings of a strip Hn which by breaking produce k1 strips of
typeD, k2 strips of type T , k3 strips of type V and n−2k1−3k2−4k3 strips of
type M , and the second set that contains all permutations with repetition of
a set with n−k1−2k2−3k3 elements, where there are k1 elements of type d,
k2 elements of type t, k3 elements of type v and n−2k1−3k2−4k3 elements
of type m. From an arbitrary permutation, we obtain the corresponding
tiling as follows: we replace elements v, t, d and m with tiled strips of type
V , T , D and M , respectively. For example, permutation dmdvt yields the
tiling shown in Figure 7. The way to obtain a permutation from a given
tiling is obvious.

The number of all permutation in the second set is
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d m d v t

Figure 7. Tiling that corresponds to permutation dmdvt.

(n−k1−2k2−3k3)!
k1!k2!k3!(n−2k1−3k2−4k3)!

.

One can easily verify that this expression can be written as(
n−k1−2k2−3k3

k1

)(
n−2k1−2k2−3k3

k3

)(
n−2k1−2k2−4k3

k2

)
.

Since we are interested in the number cn,k which denotes the number of ways
to tile a length-n strip that contains exactly k dimers, note that k1+k2+2k3
must be equal to k. Hence, we have

cn,k =
∑

k1+k2+2k3=k

(
n−k1−2k2−3k3

k1

)(
n−2k1−2k2−3k3

k3

)(
n−2k1−2k2−4k3

k2

)
.

By introducing a new index of summation m = k2 + k3 and by substitu-
tions k2 = m− k3 and k1 = k − k2 − 2k3 = k −m− k3 we obtain:

cn,k =

k∑
m=0

m∑
k3=0

(
n− k −m

k −m− k3

)(
n− 2k + k3

k3

)(
n− 2k

m− k3

)

=
k∑

m=0

m∑
k3=0

(
n− k −m

n− 2k + k3

)(
n− 2k + k3

n− 2k

)(
n− 2k

m− k3

)
.

Finally, by using identity
(
n
k

)(
k
m

)
=

(
n
m

)(
n−m
k−m

)
on the first two binomial

coefficients and Vandermonde’s convolution
∑
k

(
n
k

)(
r

m−k

)
=

(
n+r
m

)
(see [8]),

we arrive to

cn,k =
k∑

m=0

(
n− k −m

n− 2k

) m∑
k3=0

(
k −m

k3

)(
n− 2k

m− k3

)
=

k∑
m=0

(
n− k −m

n− 2k

)(
n− k −m

m

)
,

which concludes our proof. □

Since the row sums in Table 2 are tetranacci numbers, Theorem 2.2 gives
us identity

Qn+3 =

⌊n
2 ⌋∑

k=0

k∑
m=0

(
n− k −m

m

)(
n− k −m

n− 2k

)
.
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3. Tilings of honeycomb strip with colored dimers and
monomers

Katz and Stenson [9] used colored squares and dominos to tile (2 × n)-
rectangular board and obtained a recursive relation for the number of all
ways to tile a board. They also proved some combinatorial identities involv-
ing the number of such tilings. In this section, we do a honeycomb strip
analog. We continue to count tilings of a hexagon strip with dimers and
monomers, but we allow a different colors for monomers and b different col-

ors for dimers. Let ha,bn denotes the number of all different tilings of a strip

with n hexagons. It is convenient to define ha,b0 = 1. We start with initial

values illustrated in Figure 8. One can easily see that ha,b1 = a since we have

a colors to choose from for a monomer. Similarly, ha,b2 = a2 + b, since we
can tile a strip with two monomers in a2 ways or with one dimer in b ways.
For n = 3, note that if we use only monomers, we can choose colors in a3

ways, and if we use one dimer and one monomer, we can put the dimer in 3
different positions, and for each of those positions we can choose colors for

tiles in ab ways. Hence, ha,b3 = a3 + 3ab.

a colors

a2 colors b colors

a3 colors ab colors ab colors ab colors

Figure 8. All possible tilings for n = 1, 2, 3.

In the next theorem, we give a recursive relation for ha,bn .

Theorem 3.1. For n ≥ 4, the number of all possible tilings of the honey-
comb strip containing n hexagons with a different kinds of monomers and b
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different kinds of dimers satisfies the recursive relation

ha,bn = a · ha,bn−1 + b · ha,bn−2 + ab · ha,bn−3 + b2 · ha,bn−4

with the initial conditions ha,b0 = 1, ha,b1 = a, ha,b2 = a2 + b, and ha,b3 =
a3 + 3ab.

Proof. The proof is similar to the proof of Theorem 2.1, but here we must
also pay attention to the colors. We consider an arbitrary tiling and note
that n-th hexagon can either be tiled by a monomer or a dimer. In the case
when n-th hexagon is tiled by a monomer, the rest of the strip can be tiled in

ha,bn−1 ways, but the monomer can be colored in a different ways, which gives

us the total of a · ha,bn possible ways. If the last hexagon is part of a dimer,
then we distinguish two possible situations: either the dimer is slanted, or
the dimer is horizontal. The number of tilings ending in a slanted dimer is

ha,bn−2, and the last dimer can be colored in b ways. So there are b · ha,bn−2
such tilings. As in the proof of Theorem 2.1, if the dimer is horizontal, it
means that it covers the (n − 2)-nd and the n-th hexagon. In that case,
the (n − 1)-st hexagon can be tiled by monomer, we can choose colors in

ab ways, and the rest of the strip can be tiled in ha,bn−3 ways. This gives us

the ab · ha,bn−3 possible tiling in this case. The last case is if the (n − 1)-st

hexagon forms a dimer with (n − 3)-rd hexagon. There are b2 · ha,bn−4 such
tilings. All cases are illustrated in Figure 9. This gives us the relation

ha,bn−1 a colors

n

ha,bn−2 b colors

n− 1

n

ha,bn−3 ab colors

n− 1

n− 2 n

ha,bn−4 b2 colors

n− 3 n− 1

nn− 2

Figure 9. All possible endings of a colored tiling of a strip
with n hexagons.

ha,bn = a ·ha,bn−1+b ·ha,bn−2+ab ·ha,bn−3+b2 ·ha,bn−4, which proves our theorem. □

We can now list some first values of ha,bn . We can notice that the values
cn,k from the last section appear in every row as coefficients of a bivariate
polynomial. Connection between these values is given in the next theorem:
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n ha,bn

0 1
1 a
2 a2 + b
3 a3 + 3ab
4 a4 + 5a2b+ 2b2

5 a5 + 7a3b+ 7ab2

6 a6 + 9a4b+ 16a2b2 + 3b3

Table 3. Some first values of ha,bn .

Theorem 3.2. The number ha,bn of all possible tilings of the honeycomb strip
of length n with monomers of a different colors and dimers of b different
colors is given by

ha,bn =

⌊n
2 ⌋∑

k=0

cn,ka
n−2kbk =

⌊n
2 ⌋∑

k=0

k∑
m=0

(
n− k −m

m

)(
n− k −m

k −m

)
an−2kbk.

Proof. We could prove the theorem by induction, but again we present a

simple combinatorial proof. The number ha,bn denotes the number of all
possible tilings of the strip of a length n. For a fixed 0 ≤ k ≤ ⌊n2 ⌋, there are
cn,k possible ways to tile a strip with exactly k dimers, and since this tiling

has k dimers and n − 2k monomers, the colors can be selected in an−2kbk

ways which gives a total of cn,ka
n−2kbk possible tilings. Since every tiling of

the strip can contain 0, 1, ... ,
⌊
n
2

⌋
− 1 or

⌊
n
2

⌋
dimers, the overall number of

tilings is the sum of these cases, that is

ha,bn =

⌊n
2 ⌋∑

k=0

cn,ka
n−2kbk.

□

4. Some (generalized) combinatorial identities involving
tetranacci numbers

In this section, we generalize several of the identities obtained by Dresden
and Jin [4] to the case of colored tilings of a honeycomb strip. All of the
following identities reduce to the mentioned identities of Dresden and Jin
by setting a = b = 1.

Theorem 4.1. For every m,n ≥ 0

ha,bm+n = ha,bm ha,bn + ha,bm−1

(
bha,bn−1 + abha,bn−2 + b2ha,bn−3

)
+ ha,bm−2

(
abha,bn−1 + b2ha,bn−2

)
+ b2ha,bn−1h

a,b
m−3.
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Proof. We consider a tiling of a honeycomb strip containing m+n hexagons.

We have ha,bm+n such tilings. On the other hand, there are ha,bm · ha,bn tilings
that are breakable at position m, as shown in the Figure 10. All other tilings

ha,bm ha,bn

Figure 10. Breakable tiling at position m.

are unbreakable at position m. If that is the case, unbreakability can occur
because of the right-inclined, left-inclined or horizontal dimer crossing the
line of the break. Figure 11 shows all possible situations that can occur if
tiling is not breakable at position m. Note that any tiling of a honeycomb
strip is breakable if n > 4. Summing all these cases gives us the proof of the

ha,bm−1 ha,bn−1b colors ha,bm−2 ha,bn−1ab colors

ha,bm−1 ha,bn−2ab colors ha,bm−3 ha,bn−1b2 colors

ha,bm−2 ha,bn−2b2 colors ha,bm−1 ha,bn−3b2 colors

Figure 11. Layouts that can occur if tiling is not breakable
at position m.
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theorem. □

Our second identity counts tilings of the strip containing at least one
dimer.

Theorem 4.2. For every integer n ≥ 1,

(4.1) ha,bn − an = bha,bn−2 + 2b
n∑

k=3

ak−2ha,bn−k + b2
n∑

k=3

ak−3ha,bn−k−1.

Proof. We prove the result by double-counting all the ways to tile a strip

using at least one dimer. On one hand, there are ha,bn −an such tilings, since
the only tiling without dimers uses only monomers, and we can choose colors
in an ways. The other way to count such tilings keeps track of the position
where the first dimer occurs. Since the dimer covers two positions in the
strip, we use the larger number to determine its position. For example, a
dimer occupying hexagons 1 (or 2) and 3 has position 3. First, we start with
slanted dimers. If the position of the first dimer is k for k ≥ 2, the first part
of the strip consists of k− 2 monomers and the rest of the strip can be tiled

in ha,bn−k ways, which gives us total of

b

n∑
k=2

ak−2ha,bn−k

ways. We must now consider the horizontal dimer case. Note that the
horizontal dimer cannot have positions 1 and 2. If the position of a dimer
is k for k ≥ 3, then the dimer occupies hexagons k − 2 and k. We have
two subcases, depending on whether the (k − 1)-st hexagon is tiled by a
monomer or by a dimer. In the second case, it must be paired with (k+1)-
st hexagon, since position k is first to occur. In the first subcase, dimer and
monomer can be colored in ab ways, the first part of the strip consisting of
k − 3 monomers can be colored in ak−3 ways, and the rest of the strip can

be tiled in ha,bn−k ways, which gives us the total of

b
n∑

k=3

ak−2ha,bn−k

ways. The latter subcase involves two dimers, the first occupying hexagons
k − 2 and k, and the second covering k − 1 and k + 1. These dimers can be
colored in b2 ways, the first part of the strip consisting of k − 3 monomers

can be colored in ak−3 ways, and the rest can be tiled in ha,bn−k−1 ways. Since
all the cases are disjoint, the overall number is the sum of the respective
counting numbers, which proves our theorem. □

We conclude this section with a pair of identities counting tilings of the
strip containing at least one monomer.
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Theorem 4.3. For every integer n ≥ 0 we have

(4.2) ha,b2n − bnFn+1 = a
n∑

k=0

bkha,b2n−2k−1Fk+2

and

(4.3) ha,b2n−1 = a
n∑

k=0

bkha,bn−2k−1Fk+2.

Proof. The number of tilings of the 2n-strip only by dimers is bnFn+1. Hence,

the number of tilings containing at least one monomer is ha,bn − bnFn+1. On
the other hand, we can count such tilings based on the position of the first
monomer. First, we consider the odd positions in the strip. If the first
monomer occurs at position 2k + 1, for some 0 ≤ k ≤ n − 1, the first part
of the strip is tiled only by dimers, and that can be done in bkFk+1 ways,
the monomer can be colored in a ways, and the rest of the strip can be tiled

in ha,b2n−2k−1 ways. Figure 12 illustrates this case. Since the monomer can

bkFk+1 ha,b2n−2k−1

a colors

2k+1

Figure 12. The hexagon occurs at position 2k + 1.

occur at any position 2k + 1 for 0 ≤ k ≤ n − 1, the total number of ways
that monomer occurs at odd position is

a
n−1∑
k=0

bkha,b2n−2k−1Fk+1.

Now we consider the even positions. The case is similar, but there are
some different details. If the first monomer occurs at position 2k for 1 ≤
k ≤ n, then all 2k − 1 hexagons must be tiled with dimers. For this to
be possible, the (2k + 1)-st hexagon must be tiled by the same dimer as
(2k − 1)-st. This dimer and monomer can be colored in ab ways. The first
part of the strip containing 2k − 2 hexagons can be tiled only by dimers

and in bk−1Fk ways, and the rest of the strip in ha,b2n−2k−1 ways. This case is
illustrated in Figure 13.
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bk−1Fk ha,b2n−2k−1a colors

b colors

2k

2k+12k−1

Figure 13. The hexagon occurs at position 2k.

The overall number of ways that a monomer occurs at even position is

ab
n−1∑
k=0

bk−1ha,b2n−2k−1Fk,

and the total number of tilings is the sum of these two cases. Since ha,b−1 = 0
and F0 = 0, the first sum can be extended to k = n and the second to k = 0.

ha,b2n − bnFn+1 = a
n−1∑
k=0

bkha,b2n−2k−1Fk+1 + ab
n∑

k=1

bk−1ha,b2n−2k−1Fk

= a
n∑

k=0

bkha,b2n−2k−1Fk+1 + a
n∑

k=0

bkha,b2n−2k−1Fk

= a
n∑

k=0

bkha,b2n−2k−1Fk+2.

The proof of the second identity is similar. When the length of the strip

is odd, i.e. 2n− 1, the left hand side is ha,bn , since it cannot be tiled only by
dimers, and the proof for the right-hand side is the same, hence the theorem
follows.

□

5. Tiling of a honeycomb strip and tribonacci numbers

The tribonacci numbers (sequence A000073 in OEIS [11]) are the sequence
of integers starting with T0 = 0, T1 = 0 and T2 = 1 and defined by recursive
relation

(5.1) Tn = Tn−1 + Tn−2 + Tn−3, for n ≥ 3.

For the reader’s convenience, we list the first few values of the sequence in
Table 4.

In this section we are still interested in counting all tilings of a honeycomb
strip of a given length, but now by using different types of tiles. We still
allow monomers and slanted dimers, but we prohibit horizontal dimers. In
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n 0 1 2 3 4 5 6 7 8 9 10
Tn 0 0 1 1 2 4 7 13 27 44 81

Table 4. The first few values of tribonacci numbers.

addition, we allow trimers of consecutively numbered hexagons. By pro-
hibiting horizontal dimers we effectively suppress longer-range connections
represented by horizontal edges in the inner dual. Also, by allowing trimers
of the form {i− 1, i, i+ 1} we abandon the context of matchings and instead
work with packings in the inner dual. The allowed tiles are illustrated in
Figure 14.

Figure 14. The allowed types of tiles.

Let gn denote the number of ways to tile a hexagonal strip of length n
by using only the allowed tiles. It is convenient to define g0 = 1, and it is
immediately clear that g1 = 1, g2 = 2.

Theorem 5.1. Let gn denote the number of all ways to tile a honeycomb
strip of length n by using only the allowed type of tiles. Then

gn = Tn+2,

where Tn denotes n-th tribonacci number.

Proof. We start with an arbitrary tiling of a strip. There are three disjoint
cases involving the n-th hexagon. If the hexagon is tiled by a monomer,
then the rest of the strip can be tiled in gn−1 ways. If it is covered by a
dimer, there are gn−2 such tilings, and finally, if the rightmost hexagon is
covered by a trimer, the are gn−3 such tilings. By summing the respective
numbers we obtain a recurrence that is the same as the defining recurrence
for the tribonacci numbers, and the initial values determine the value of the
shift. □

In the next part, we refine our results by counting the number of tilings
with a fixed number of trimers, dimers or monomers. We denote these
numbers by tn,k, un,k and vn,k, respectively, where n, as usual, denotes the
length of a strip, and k the number of tiles of a certain kind. We can also

fix the number of all types of tiles. Let gk,ln denotes the number of all ways
to tile a strip of a length n using exactly k trimers, l dimers and n− 3k− 2l
monomers. We list some first values in the Table 5. From the definition it is
clear that tn,k = 0 for k >

⌊
n
3

⌋
, un,k = 0 for k >

⌊
n
2

⌋
and vn,k = 0 for k > n.

It is also convenient to define t0,0 = u0,0 = v0,0 = 1. For these sequences we
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can obtain recursive relations in the obvious way, by considering the state
of the last hexagon to see whether it is covered by a trimer, by a dimer, or
by a monomer. The recursive relations are:

(5.2) tn,k = tn−1,k + tn−2,k + tn−3,k−1,

(5.3) un,k = un−1,k + un−2,k−1 + un−3,k

and

(5.4) vn,k = vn−1,k−1 + vn−2,k + vn−3,k.

We can now list some first values of the corresponding triangles: The

n/k 0 1 2
0 1
1 1
2 2
3 3 1
4 5 2
5 8 5
6 13 10 1
7 21 20 3
8 34 38 9

n/k 0 1 2 3 4
0 1
1 1
2 1 1
3 2 2
4 3 3 1
5 4 6 3
6 6 11 6 1
7 9 18 13 4
8 13 30 27 10 1

tn,k un,k

n/k 0 1 2 3 4 5 6 7 8
0 1
1 0 1
2 1 0 1
3 1 2 0 1
4 1 2 3 0 1
5 2 3 3 4 0 1
6 2 6 6 4 5 0 1
7 3 7 12 10 5 6 0 1
8 4 12 16 20 15 6 7 0 1

vn,k
Table 5. Initial values for tn,k, un,k and vn,k.

first and the second triangle of Table 5 are not in the OEIS, while the third
one appears as A104578 [11], the Padovan convolution triangle. The same
arguments as the ones used on cn,k show that the rows of those triangles do
not have internal zeros, with the obvious exception of the zeros appearing
in the first descending subdiagonal of vn,k.

Before we go any further, we introduce two closely related sequences de-
fined by Fibonacci-like recurrences of length three, the Narayana’s cows
sequence (A000930) and the Padovan sequence (A000931). We denote the
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n-th element of these sequences by Nn and Pn, respectively. The initial val-
ues are N0 = N1 = N2 = 1 and P0 = 1, P1 = P2 = 0, and for n ≥ 3 we have
recursive relations Nn = Nn−1 +Nn−3 and Pn = Pn−2 +Pn−3. We refer the
reader to [11] for more details about those sequences. In particular, we draw
the reader’s attention to the fact that there are several other sequences re-
ferred to as the Narayana numbers, for example A001263, a very important
triangle of numbers refining the Catalan numbers and appearing in many
different contexts. In the rest of this paper, when we refer to Narayana’s
numbers, we always mean A000930.

We now take a closer look at sequences tn,0, un,0 and vn,0, i.e., at the
number of tilings where one type of tile is omitted. The sequence tn,0 =
Fn+1, since such tilings contain only slanted dimers and monomers; since
such tilings correspond to matchings in the path on n vertices, they are
counted by Fibonacci numbers.

The sequence un,0 counts the number of all ways to tile a length-n strip
by using only monomers and trimers, hence its elements satisfy the defining
recurrence for the Narayana’s cow sequence. Similarly, since the elements
of the sequence vn,0 are the numbers of all different tilings where monomers
are omitted, they satisfy Padovan’s recursion. We have un,0 = Nn and
vn,0 = Pn+3. In the next three theorems, we present connections between
the number of tilings and the above listed sequences. It turns out that the el-
ements of the three triangles of Table 5 can be expressed by convolution-like
formulas involving the Fibonacci, the Narayana’s and the Padovan num-
bers. Such formulas could have been anticipated from the second column
of triangle tn,k which seems to be the (shifted) self-convolution of Fibonacci
numbers and also from the name of the entry A104578 in OEIS.

Theorem 5.2. For n ≥ 0, the number of ways to tile a strip with n hexagons
using exactly k trimers is

(5.5) tn,k =
∑

i0,...,ik≥0
i0+···+ik=n−2k+1

Fi0 · · ·Fik .

Proof. If there are no trimers in the tiling, one can only use dimers or
monomers to tile a strip and the number of ways to do that is tn,0 = Fn+1.
If we use exactly k trimers, those trimers divide our strip into k+1 smaller
strips. In this sense we allow the strip to be of a length 0 if two trimers
are adjacent; the sub-strips of length 0 can also appear at the beginning or
at the end of a strip. We have a strip with n hexagons which is tiled with
k trimers, so there are n − 3k hexagons left to tile. Since the position of
each trimer is arbitrary, the lengths of strips between and around them can
vary from 0 to n− 3k, but the sum of the lengths must be constant, that is
i0 + i1 + · · ·+ ik = n− 3k. Each of those smaller strips can be tiled only by
dimers or monomers, hence in tij ,0 ways, where 0 ≤ j ≤ k. Summing this
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over all positions of the trimers we have:

tn,k =
∑

i0,...,ik≥0
i0+···+ik=n−3k

ti0,0 · · · tik,0

=
∑

i0,...,ik≥0
i0+···+ik=n−3k

Fi0+1 · · ·Fik+1

=
∑

i0,...,ik≥0
i0+···+ik=n−2k+1

Fi0 · · ·Fik .

□

Note that Theorem 5.2 allows us to express the tribonacci numbers as a
double sum

(5.6) Tn+2 =
n∑

k=0

tn,k =
n∑

k=0

∑
i0,...,ik≥0

i0+···+ik=n−2k+1

Fi0 · · ·Fik .

Theorem 5.3. For n ≥ 0, the number of ways to tile a strip with n hexagons
using exactly k dimers is

(5.7) un,k =
∑

i0,...,ik≥0
i0+···+ik=n−2k

Ni0 · · ·Nik .

Proof. We already know that the number of tilings with no dimers is un,0 =
Nn. Now we look at the tilings of the strip with n hexagons that have exactly
k dimers. That leaves us with n − 2k hexagons to be tiled by monomers
and trimers. As in the proof of Theorem 5.2, we note that k dimers divide
the strip into k + 1 smaller strips, each of the length 0 ≤ ij ≤ n− 2k. Each
smaller strip can be tiled in Nij ways, and after summing over all possible
positions of k dimers we have

un,k =
∑

i0,...,ik≥0
i0+···+ik=n−2k

Ni0 · · ·Nik .

□

The next result gives a new combinatorial interpretation of the sequence
A104578 of [11].

Theorem 5.4. For n ≥ 0, the number of ways to tile a strip with n hexagons
using exactly k monomers is

(5.8) vn,k =
∑

i0,...,ik>0
i0+···+ik=n+2k+3

Pi0 · · ·Pik .
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Proof. The proof will be analogous to the two previous proofs. The number
of tilings with no monomers is vn,0 = Pn+3. A monomer does not divide
our strip, but if it first appears in position i, we will consider strips left and
right from it. We count the number of tilings of the strip Hn that have
exactly k monomers. That leaves us n − k untiled hexagons. Omitting k
hexagons leaves k+1 smaller strips, each of the length 0 ≤ ij ≤ n−k. Each
smaller strip can be tiled in Pij+3 ways, and after summing over all possible
positions of k monomers we have

vn,k =
∑

i0,...,ik≥0
i0+···+ik=n−k

Pi0+3 · · ·Pik+3

=
∑

i0,...,ik>0
i0+···+ik=n+2k+3

Pi0 · · ·Pik .

□

Now we turn our attention to the number of tilings of a strip of length n
with a fixed number of tiles of each type. Recall that the number of tilings
consisting of k trimers, l dimers and n − 3k − 2l monomers is denoted by

gk,ln . In the next theorem, we give a closed-form formula for gk,ln .

Theorem 5.5. For n ≥ 0, the number of ways to tile a strip with n hexagons
using exactly k trimers, l dimers and n− 2k − l monomers is

(5.9) gk,ln =

(
n− 3k − l

l

)(
n− 2k − l

k

)
.

Proof. Consider a set consisting of all arbitrary tilings of a length-n strip
that have exactly k trimers, l dimers and n− 3k − 2l monomers. To prove
this theorem, we establish a 1-1 correspondence between that set and the
set of all permutations of n − 2k − l elements where we have k elements t,
l elements d and n − 3k − 2l elements m. From an arbitrary permutation,
we obtain the corresponding tiling as follows: we replace each element t
with a trimer, each element d with a dimer, and each element m with a
monomer. In this manner, we obtained a tiling of a strip of length n with
the prescribed number of tiles of each type. For example, the permutation
tmdmt corresponds to the tiling shown in the Figure 15. In an obvious way,

Figure 15. Tiling corresponding to the permutation tmdmt.

we can also obtain a permutation from a given tiling. Since the total number
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of permutations of this set is (n−2k−l)!
k!l!(n−3k−2l)! , we arrive to:

gk,ln =
(n− 2k − l)!

k! l! (n− 3k − 2l)!
· (n− 3k − l)!

(n− 3k − l)!

=
(n− 3k − l)!

l! (n− 3k − 2l)!
· (n− 2k − l)!

k! (n− 3k − l)!

=

(
n− 3k − l

l

)(
n− 2k − l

k

)
.

□

From Theorem 5.5 we arrive to yet another identity for tribonacci num-
bers:

(5.10) Tn+2 =

⌊n
3 ⌋∑

k=0

⌊n−3k
2 ⌋∑

l=0

(
n− 3k − l

l

)(
n− 2k − l

k

)
.

Specially, if we set k = 0 in the first equation we have

tn,0 =

⌊n
2 ⌋∑

l=0

(
n− l

l

)(
n− l

0

)

=

⌊n
2 ⌋∑

l=0

(
n− l

l

)
= Fn+1.

Since Theorem 5.5 gives us the number of all tilings using the prescribed
number of tiles of each type, we can express values tn,k and un,k in a new
way by summing over l and k, respectively.

Corollary 5.6. For n ≥ 0,

(5.11) tn,k =

⌊n−3k
2 ⌋∑

l=0

(
n− 3k − l

l

)(
n− 2k − l

k

)
,

and

(5.12) un,l =

⌊n−2l
3 ⌋∑

k=0

(
n− 3k − l

l

)(
n− 2k − l

k

)
.

6. Some combinatorial identities involving tribonacci numbers

In this section, we prove in a combinatorial way, several identities involv-
ing the tribonacci, Narayana’s, Padovan and Fibonacci numbers. We begin
with a well-known identity for tribonacci numbers and we give it a new
combinatorial interpretation:
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Theorem 6.1. For n ≥ 4,

Tn + Tn−4 = 2Tn−1.

Proof. Let Gn denotes the set of all tilings of a length-n strip, Mn, Dn and Tn
the tilings ending with a monomer, dimer or trimer, respectively. As before,
the cardinal number of the set Gn is gn. It is clear that Gn = Mn∪̇Dn∪̇Tn.
To prove the theorem we have to establish 1-1 correspondence between sets
Gn−2 ∪ Gn−6 and Gn−3 × {0, 1}.

To each tiling from the set Gn−3 we add a monomer at the end to obtain
an element of Mn−2. Thus, we obtained bijection between the sets Gn−3 and
Mn−2. In this way, we have used all the tilings of the set Gn−3 once. Now
we take the tilings from the set Gn−3 again, and if it ends with a trimer, i.e.
if it is an element of Tn−3, we remove it to obtain a tiling of length n − 6,
i.e., element of a set Gn−6. If it ends with a dimer (an element of Dn−3),
we remove it and replace it with a trimer to obtain an element from Tn−2.
Finally, if the tiling is an element of Mn−3, we replace the last monomer
with a dimer, to obtain an element of Dn−2. In this way, we have used every
tiling of a length n− 3 twice and obtained all tilings of a length n− 2 and
n−6 exactly once. The diagram that visualizes 1-1 correspondence between
the two sets is shown in Figure 16.

Gn−2

Mn−2

Dn−2

Tn−2

Gn−6

Gn−3

Gn−3

Mn−3

Dn−3

Tn−3

Figure 16. 1-1 correspondence between sets Gn−2 ∪ Gn−6

and Gn−3 × {0, 1}.

It follows that gn−2 + gn−6 = 2gn−3, and since gn = Tn+2, the theorem
follows. □

For the next few identities, it is useful to recall the definition of breaka-
bility. We say that a tiling of a honeycomb strip is breakable at the position
k if given tiling can be divided into two tiled strips, the first one containing
the leftmost k hexagons and the second one containing the rest.

Our next identity differentiates tilings based on the breakability.

Theorem 6.2. For any integers m,n ≥ 1 we have the identity

Tm+n = TmTn + Tm+1Tn+1 + Tm−1Tn + TmTn−1.

Proof. We consider an arbitrary tiling of a strip of length m+ n− 2. If the
tiling is breakable at position m− 1, we divide it into two strips of a length
m−1 and n−1. Hence, the total number of tiling in this case is gm−1gn−1. If



78 TOMISLAV DOŠLIĆ AND LUKA PODRUG

the tiling is not breakable at position m− 1, that means that either a dimer
or a trimer is blocking it. If the dimer is preventing the tiling from breaking,
there are strips of lengthsm−2 and n−2 on each side, so the total number of
tilings in this case is gm−2gn−2. If the trimer is blocking it, it can reduce the
length of the left or of the right strip by two. So the total number of tilings in
this case is gm−3gn−2+gm−2gn−3. By summing the contributions of all these
cases we obtain gm+n−2 = gm−1gn−1 + gm−2gn−2 + gm−3gn−2 + gm−2gn−3,
and by using the equality gn = Tn+2 we have Tm+n = TmTn + Tm+1Tn+1 +
Tm−1Tn + TmTn−1. □

The next identity was proved by Frontczak [7] by using generating func-
tions. Here we provide a combinatorial interpretation.

Theorem 6.3. For any integer n ≥ 0 we have the identity

Tn+2 =
n+1∑
k=0

FkTn−k.

Proof. We prove this theorem by counting all ways to tile a strip by using at
least one trimer. The total number of ways to tile a length-n strip without
trimers is tn,0 = Fn+1, hence the number of tilings having at least one
trimer is Tn+2 − Fn+1. On the other hand, we can count the same tilings
by observing where the first trimer appears. If the leftmost trimer occupies
hexagons {i, i+ 1, i+ 2}, we say that the position of trimer is i. So, all
possible positions range from 1 to n−2. If a trimer first appears at position
k, the leftmost k− 1 hexagons are tiled only by monomers and dimers, and
the number of all ways to do that is Fk. The rest of the strip, of length
n−k−2, can be tiled in Tn−k ways. By summing over all possible positions
of the leftmost trimer, we have

Tn+2 − Fn+1 =
n−2∑
k=1

FnTn−k.

By using Tn−3 = Tn − Tn−1 − Tn−2, one can extend the tribonacci numbers
to negative integers and obtain T−1 = 1. Since T1 = T0 = 0, the sum above
can be extended to obtain

Tn+2 =
n+1∑
k=1

FkTn−k,

which concludes our proof. □

In their recent paper, Dresden and Tulskikh [6] proved a generalized for-
mula for the collection of convolution formulas involving sequences that
satisfy similar recurrences. Our last two identities can be derived from that
formula but again here we present a combinatorial interpretation.
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Theorem 6.4. For any integer n ≥ 0 we have the identity

Tn+2 =
n∑

k=0

NkTn−k +Nn.

Proof. We prove this theorem by counting all ways to tile a strip by using
at least one dimer. The proof is analogous to the previous one. The total
number of ways to tile a strip of length n without dimers is un,0 = Nn, hence
the number of tilings having at least one dimer is Tn+2 −Nn. Similarly as
before, we can count the same thing by observing where the leftmost dimer
appears. If the leftmost dimer occupies hexagons {i, i+ 1}, we say that its
position is i. So, all possible positions range from 1 to n − 1. If a dimer
first appears at position k, the leftmost k− 1 hexagons can be tiled in Nk−1

ways. The rest of the strip is of length n−k−1 and it can be tiled in Tn−k+1

ways. By summing over all possible positions of the leftmost dimer we have

Tn+2 −Nn =

n−1∑
k=1

Nk−1Tn−k+1.

Some rearranging of indices and fact that T0 = T1 = 0 bring us to

Tn+2 −Nn =

n∑
k=0

NkTn−k

and our proof is over. □

Theorem 6.5. For any integer n ≥ 0 we have the identity

Tn+2 =

n∑
k=1

Pk+2Tn−k+2 + Pn+3.

Proof. Analogously as in two previous theorems, we prove this theorem by
counting all ways to tile a strip by using at least one monomer. The number
of ways to tile a strip of length n with at least one monomer is gn − vn,0 =
Tn+2 − Pn+3. Now we can count the same thing by observing the position
of the leftmost monomer. All possible positions for the first monomer range
from 1 to n. If it first appears at position k, the first part of the strip, i.e.,
the leftmost k−1 hexagons, can be tiled in Pk+2 ways. The rest of the strip
is of length n − k and can be tiled in Tn−k+2 ways. By summing over all
possible positions of the leftmost monomer we have

Tn+2 − Pn+3 =
n∑

k=1

Pk+2Tn−k+2,

which concludes our proof. □
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7. Concluding remarks

In this paper, we have considered various ways of tiling a narrow honey-
comb strip of a given length with different types of tiles. We have refined
some previously known results for the total number of tilings of a given type
by deriving formulas for the number of such tilings with a prescribed number
of tiles of a given type. We have also considered tilings with colored tiles
and obtained the corresponding formulas. Along the way, we have provided
combinatorial interpretations for some known identities and established a
number of new ones. Also, we have provided closed-form expressions for
several triangles of numbers appearing in the OEIS.

In order to keep this contribution at a reasonable length, we have omitted
many interesting problems related to the considered ones. In particular, we
have not considered any jamming-related scenarios, i.e., the tilings that are
suboptimal with respect to the number of large(r) tiles. The existence of
connections of our tilings with such problems is indicated by the appearance
of Padovan numbers in both contexts [3]. Further, we have not examined
statistical properties such as the expected number of tiles in a random tiling
of a strip of a given length in the way done in ref. [2]. We have not looked at
the asymptotic behavior of the counting sequences. Each of the mentioned
omissions could be an interesting topic for further research.

Another interesting direction would be to look in more detail at triangles
cn,k, tn,k, un,k, and vn,k. We have shown that their rows (with one trivial
exception) do not have internal zeros. By inspection of the first few rows of
cn,k, tn,k, and un,k one can observe that the rows seem to be also unimodal
and even log-concave. It would be interesting to investigate whether those
properties hold for the whole triangles. Both properties are violated in rows
of vn,k, but the violations seem to be restricted to the right end. What
happens if the rightmost three elements are omitted? Also, the position
of the maximum presents an interesting challenge. Finally, more interesting
identities could be derived by looking at ascending and descending diagonals
of different slopes in those triangles. We hope that at least some of the listed
problems will be addressed in our future work.
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