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NONCRYSTALLOGRAPHIC TAIL-TRIANGLE C-GROUPS

OF RANK 4 AND INTERLACING NUMBER 2

MARK L. LOYOLA, NONIE ELVIN S. LEYRITA,
AND MA. LOUISE ANTONETTE N. DE LAS PEÑAS

Abstract. This work applies the modular reduction technique to the
Coxeter group of rank 4 having a star diagram with labels 5, 3, and
k = 3, 4, 5, or 6. As moduli, we use the primes in the quadratic integer

ring Z[τ ], where τ = 1+
√
5

2
, the golden ratio. We prove that each reduced

group is a C-group, regardless of the prime used in the reduction. We
also classify each reduced group as a reflection group over a finite field,
whenever applicable.

1. Introduction

A pair (Γ, S) consisting of a group Γ generated by a set S =
{r′0, r′1, . . . , r′n−1} of n involutions is called a C-group if it satisfies the inter-
section condition

(1.1) ⟨r′i | i ∈ I⟩ ∩ ⟨r′j | j ∈ J⟩ = ⟨r′k | k ∈ I ∩ J⟩
for every pair of subsets I, J of the indexing set N = {0, 1, . . . , n−1}. Here,
S is called the distinguished generating set of (Γ, S), and the cardinality n
of S is the rank of (Γ, S). When S is clear from context, we may refer to Γ
alone as a C-group. As a consequence of (1.1), S is necessarily a minimal
generating set of Γ, and hence the involutions r′0, r

′
1, . . . , r

′
n−1 are all distinct.

A Coxeter group is an example of a C-group [5]. As a matter of fact, by
the universal property of free groups, if the distinguished generators of a
C-group Γ satisfy the relations implied by a given Coxeter diagram D , then
Γ must be a quotient of the Coxeter group determined by D . We remark
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that any subgroup of Γ, or an arbitrary C-group for that matter, generated
by a subset of its distinguished generating set is also a C-group.

This work focuses on groups Γ = ⟨r′0, r′1, r′2, r′3⟩ of rank 4 which possess
the star diagram shown in Figure 1, where the label k of the branch connect-
ing the nodes corresponding to r′1 and r′3 is either 3, 4, 5, or 6. That is, the
order or period of the product r′ir

′
j is precisely the label of the branch con-

necting the corresponding nodes. By convention, the label 3 of the branch
connecting r′1 and r′2 is omitted from the diagram. In addition, the period
is assumed to be 2 when there is no connecting branch between two nodes.
The group Γ is an example of a tail-triangle group of rank 4 and interlacing
number 2, the order of r′2r

′
3. The construction of such groups using the

process of amalgamation have been the focus of the works [11, 12].

Figure 1. Coxeter diagram of a star group of rank 4 and
type {5, 3; k}.

For brevity, we shall refer to Γ as a star group of (rank 4 and) type {5, 3; k}
in this paper. Evidently, Γ is a smooth quotient of the star Coxeter group

(1.2) [5, 3; k] :=

〈
r0, r1, r2, r3

∣∣∣∣∣∣∣∣
r20 = r21 = r22 = r23 = e,

(r0r1)
5 = (r1r2)

3 = (r1r3)
k = e,

(r0r2)
2 = (r0r3)

2 = (r2r3)
2 = e

〉
.

By smooth, we mean that the order of the product r′ir
′
j in Γ is precisely the

order mi,j of rirj in [5, 3; k].
In general, even if n is small, determining if a set of involutions satisfies

(1.1) is a difficult problem, especially when the generated group has no
known simple structure. For one, the sheer number of subgroup intersections
that need to be checked poses a computational challenge. The next lemma,
which is a special case of [11, Lemma 4.12], significantly reduces this number.

Lemma 1.1. Let Γ be a star group of rank 4 generated by a set S =
{r′0, r′1, r′2, r′3} of four distinct involutions. For any i, j ∈ {0, 1, 2, 3}, let
Γi = ⟨r′k | k ̸= i⟩ and Γi,j = ⟨r′k | k ̸= i, j⟩. Then Γ is a C-group if and only
if the distinguished subgroups Γ0, Γ2, and Γ3 are C-groups which satisfy the
intersections

(1.3) Γ0 ∩ Γ2 = Γ0,2, Γ0 ∩ Γ3 = Γ0,3, Γ2 ∩ Γ3 = Γ2,3.
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Note that the use of Lemma 1.1 requires verifying beforehand that Γ0, Γ2,
and Γ3 are themselves C-groups. By [6, Proposition 2E16], this can be
accomplished by showing that the following intersections hold:

(1.4) Γ0,2 ∩ Γ0,3 = Γ0,2 ∩ Γ2,3 = Γ0,3 ∩ Γ2,3 = ⟨r′1⟩.
C-groups are fundamental, and hence ubiquitous, in the theory of abstract

and geometric polytopes. These groups, in fact, characterize the structure or
substructure of certain classes of highly symmetric polytopes. For instance,
the automorphism group of a regular polytope or any of its subsection is a
string C-group, that is, a C-group with a linear diagram. Conversely, given
a string C-group, one may construct a unique regular polytope having the
string C-group as its automorphism group. The interested reader is ad-
vised to consult the monograph [6] for further details on abstract polytopes
and string C-groups. In [11], Monson and Schulte discussed a combinatorial
generalization of Wythoff construction to produce an alternating semiregular
(n + 1)-polytope from the cosets of a tail-triangle C-group. The automor-
phism group of the resulting polytope is either the tail-triangle C-group itself
or properly contains this group as a normal subgroup of index 2.

The main objective of this current work is to construct star C-groups
of type {5, 3; k} via the method of modular reduction. This method was
discussed in great detail by Monson and Schulte in [7] and in subsequent
works [8, 9]. It was mostly applied previously to various families of crys-
tallographic string Coxeter groups. In our case, reducing the star Coxeter
group [5, 3; k] results to a degree 4 representation of the group over some
finite field Fq, formed by taking the quotient of the quadratic integer ring
Z[τ ] by an ideal generated by a prime p in the ring. Under this representa-
tion, the images of the distinguished generators of [5, 3; k] become reflections
in some orthogonal space over Fq for the case when p is not an associate
of 2. Whenever applicable, we classify the reduced group and three of its
distinguished subgroups of rank 3 as orthogonal groups. This work further
extends the approach and techniques used in [10] to generate C-groups of
noncrystallographic types.

2. Preliminaries

We begin this section with a brief discussion of the primes in the ring
Z[τ ] followed by a review of the classification of orthogonal groups over
finite fields of odd characteristic. These preliminary concepts and associated
results will be referred to extensively in the succeeding sections of the paper.

2.1. Primes in Z[τ ]. Let τ = 1+
√
5

2 and consider the ring of integers

Z[τ ] = {a+ bτ | a, b ∈ Z}

of the quadratic number field Q(
√
5). For each element a + bτ of the ring,

one can associate a rational integer N(a + bτ) = a2 + ab − b2 called its
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norm. A unit in Z[τ ] is an element of the form ±τn, where n ∈ Z, and up
to multiplication by a unit, a prime p in the ring belongs to one of following
three classes [1]:

Class I. p = −1 + 2τ =
√
5

Class II. p is a rational prime such that p ≡ ±2 (mod 5)
Class III. p is a nonrational prime such that N(p) ≡ ±1 (mod 5) and

|N(p)| is a rational prime

Since the norm function N remains constant on a set of associates, the
primes in Class I or Class II have norms that are equal to either 0 or 4
mod 5, respectively. In addition, regardless of class, q := |N(p)| is either a
rational prime or the square of a rational prime.

A useful computational tool when dealing with the arithmetic properties
of Z[τ ] is the Legendre symbol for Z[τ ]:

(
a+ bτ

p

)
Z[τ ]

=


1 if a+ bτ is a quadratic residue modulo p,

0 if a+ bτ ≡ 0 (mod p),

−1 if a+ bτ is a non-quadratic residue modulo p.

This symbol generalizes the ordinary Legendre symbol
(
a
p

)
Z
for rational

integers and satisfies the property in the next theorem, in addition to the

fundamental properties it shares with
(
a
p

)
Z
(see [1] for a list of properties

of this generalized Legendre symbol).

Theorem 2.1. Let p = c + dτ be an odd prime in Z[τ ], that is, a prime
which is not an associate of 2. Then the following holds for any rational
integers a and b:

(
a+ bτ

p

)
Z[τ ]

=



(a
5

)
Z

if p is in Class I and b = 0,(
a2 + ab− b2

p

)
Z

if p is in Class II,(
ad2 − bcd

|c2 + cd− d2|

)
Z

if p is in Class III.

2.2. Orthogonal groups over finite fields of odd characteristic. Let
n ≥ 3 and consider an n-dimensional vector space V (n, q) over a finite field
Fq of odd order q, endowed with a nonsingular symmetric bilinear form (·)V .
Thus, relative to any basis {v0, v1, . . . , vn−1} of V (n, q), the Gram matrix
g = [(vi · vj)V ] is nonsingular and symmetric. With respect to (·)V , the full
orthogonal group

O(n, q) = {f ∈ GL(n, q) | (fv1 · fv2)V = (v1 · v2)V for all v1, v2 ∈ V (n, q)}

is defined to be the subgroup of GL(n, q) consisting of all invertible endo-
morphisms of V (n, q) that preserve (·)V .
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We recall from [14] that (·)V belongs to one of two equivalence classes
of nonsingular symmetric bilinear forms on V (n, q) under the action of
GL(n, q). When n is even, these two nonequivalent classifications give rise
to the nonisomorphic orthogonal groups denoted by O(n, q, ε), where ε = 1

or −1. Moreover, the parameter ε specifies whether (−1)
n
2 detg is a square

or a nonsquare, respectively, in F∗q , the multiplicative group of units of Fq.
On the other hand, when n is odd, we obtain only the orthogonal group
O(n, q, 0). To summarize, O(n, q) can be classified as one of the following
types of orthogonal groups over finite fields:

(2.1) O(n, q, ε) =


O(n, q, 1) if n is even and (−1)

n
2 detg ∈ (F∗q)2,

O(n, q, 0) if n is odd,

O(n, q,−1) if n is even and (−1)
n
2 detg /∈ (F∗q)2.

Given a nonzero anisotropic vector v in V (n, q), that is, a vector v such
that (v · v)V ̸= 0, we define the involutory map

rv(x) = x− 2
(x · v)V
(v · v)V

v

in O(n, q, ε) and call it the reflection with root v. Note that for any nonzero
scalar α ∈ Fq, we have rv = rαv. The reflection rv negates the space

spanned by v and fixes pointwise the orthogonal complement v⊥. Clearly,
det rv = −1. Reflections play an integral role in the theory of orthogonal
groups since an arbitrary element in O(n, q, ε) can be written as a product
of reflections [3].

An essential map in the theory of orthogonal groups is the spinor norm
θ : O(n, q, ε) → F∗q/(F∗q)2 which sends an element r = rvk1 rvk2 · · · rvkm writ-

ten as a product of reflections in O(n, q, ε) to the coset of F∗q containing
the product (vk1 · vk1)V (vk2 · vk2)V · · · (vkm · vkm)V . This map is a surjective
homomorphism and does not depend on the reflections used in the factor-
ization [3]. Consequently, if rv is a reflection in the orthogonal group, then
it must belong to either the subgroup

(2.2)

O1(n, q, ε) = ⟨rv | (v · v)V ∈ (F∗q)2⟩
or

O2(n, q, ε) = ⟨rv | (v · v)V /∈ (F∗q)2⟩,

which we shall encounter again in the next section. We note that when n
is odd, these two subgroups are nonisomorphic. When n is even, on the
other hand, these two subgroups are isomorphic and, in fact, conjugate in
GL(n, q) [7].

For n = 3 or 4, Table 1 summarizes the orders of the groups described
above. Observe, in particular, that the special subgroup O1(n, q, ε) or
O2(n, q, ε) is an index 2 subgroup of the full orthogonal group O(n, q, ε).

In this work, we are mainly concerned with a subgroup G of O(4, q, ε)
generated by a set of four distinct reflections r0, r1, r2, r3 with roots v0,
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v1, v2, v3, respectively, that satisfy the relations implicit in the Coxeter
diagram of [5, 3; k] with k = 3, 4, 5, or 6. That is, the pairwise products of
distinct reflections r0r1, r1r2, r1r3 have orders 5, 3, k, respectively, while
the rest have order 2. We impose the condition that G must act irreducibly
on the ambient space V (4, q). Given that the diagram of the generating
reflections is connected, this imposition is equivalent to condition that the

Cartan matrix c =

[
2
(vj · vi)V
(vi · vi)V

]
is nonsingular [7]. Thus, we may safely

assume that the roots v0, v1, v2, v3 form a basis for V (4, q).

Group Order

Ap
3 24

Bp
3 48

Hp
3 120

[3, 6](s,0), s ≥ 2 12s2

O(3, q, 0) 2q(q2 − 1)

O1(3, q, 0)
q(q2 − 1)

O2(3, q, 0)

O(4, q, 1) 2q2(q2 − 1)2

O1(4, q, 1)
q2(q2 − 1)2

O2(4, q, 1)

O(4, q,−1) 2q2(q2 + 1)(q2 − 1)

O1(4, q,−1)
q2(q2 + 1)(q2 − 1)

O2(4, q,−1)

Table 1. Relevant groups in the classification of the reduc-
tion modulo an odd prime p of the star Coxeter group [5, 3; k]
and its distinguished subgroups of rank 3.

3. Modular Reduction of [5, 3; k] with k = 3, 4, 5, 6

Given a basis {a0, a1, a2, a3} for the real vector space R4, define the sym-
metric bilinear form

(ai · aj) = − cos
π

mi,j
,

where mi,j denotes the exponent of the product rirj in the group presen-
tation (1.2). Consider the rescaled basis vectors vi = ciai for i = 0, 1, 2, 3,
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where

(3.1) c0 = 2, c1 = 2τ, c2 = 2τ, c3 =


2τ if k = 3,

2
√
2τ if k = 4,

2τ2 if k = 5,

2
√
3τ if k = 6,

and define the involutory endomorphisms ri(x) = x−2
(x · vi)
(vi · vi)

vi of R4. The

matrices which represent these involutions with respect to the rescaled basis
B = {v0, v1, v2, v3} are

(3.2)

r0 =


−1 τ2 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, r2 =

1 0 0 0
0 1 0 0
0 1 −1 0
0 0 0 1

, r3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 −1

,

r1 =


1 0 0 0
1 −1 1 ρk
0 0 1 0
0 0 0 1

, where ρk =


1 if k = 3,

2 if k = 4,

τ2 if k = 5,

3 if k = 6.

These matrices, whose entries clearly lie in Z[τ ], generate a subgroup G of
GL(4,R) that is isomorphic to the star Coxeter group [5, 3; k] (see §5.3–5.4
of [5]).

Reducing the entries of the matrices in (3.2) modulo a prime p in Z[τ ]
yields the group

Gp = ⟨r0, r1, r2, r3⟩p := ⟨ri mod p | i = 0, 1, 2, 3⟩

which acts on the 4-dimensional space spanned by B over the finite field
Fq = Z[τ ]/(p) of order q = |N(p)|. In this context, Gp is called a modular
reduction of G. In the ensuing discussions, we consider the case when p is
an even prime (an associate of 2) separately from the case when p is an odd
prime (not an associate of 2).

3.1. p is an even prime. We may assume, without loss of generality, that
p = 2. In this case, since q = |N(2)| = 4, all entries of ri mod p lie in the
finite field F4. Calculations using GAP [2] reveals that, for k = 3, 4, 5, 6, the
reduced group G2 is isomorphic to the semidirect product C4

2 ⋊A5 of order
960. In addition, G2 is a smooth quotient of [5, 3; k], except when k = 6. In
this exceptional case, the order of the product r1r3 mod 2 is 3, and not 6.

The isomorphism types of the distinguished subgroups G2
0, G

2
2, and G2

3

are listed in Table 2. Notice that the entries in the table for k = 3 and
k = 6 are exactly the same. This is expected since for both values of k, we
have ρk ≡ 1 (mod 2). Finally, it can be easily verified using GAP that these
distinguished subgroups satisfy the intersection condition (1.3) for each of
the various cases of k.
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We summarize the above results in the following theorem:

Theorem 3.1. The group G2, generated by the reductions modulo 2 of the
matrices r0, r1, r2, r3 in (3.2), is a C-group that is isomorphic to the semidi-
rect product C4

2 ⋊A5.

k G2 G2
0 G2

2 G2
3

3

C4
2 ⋊A5

S4 A5

A5

4 S4
(C4

2 ⋊ C5)⋊ C2

5 A5

6 S4 A5

Table 2. The reduction of G ≃ [5, 3; k] modulo 2.

3.2. p is an odd prime. Let p = c + dτ be an odd prime in Z[τ ]. If
the form (·)p := (·) mod p is nonsingular, which ultimately depends on the
prime p used in the reduction, then ri mod p represents a reflection with root
vi. Consequently, Gp becomes a reflection group whose Gram and Cartan
matrices are the reductions modulo p of

(3.3) g =


4 −2τ2 0 0

−2τ2 4τ2 −2τ2 −2τ2ρk
0 −2τ2 4τ2 0
0 −2τ2ρk 0 4τ2ρk

, c =


2 −τ2 0 0
−1 2 −1 −ρk
0 −1 2 0
0 −1 0 2


with determinants

(3.4) detg = 26τ4ρk(1− τ2ρk), det c = 22τ−2(1− τ2ρk),

respectively. Moreover, a series of straightforward calculations shows that
Gp is a smooth quotient of [5, 3; k] for k = 3, 4, 5, 6.

The following theorem states that Gp is either the full orthogonal group
O(4, q, ε) or the special reflection group O1(4, q, ε) described in the previous
section.

Theorem 3.2. Let p be an odd prime in Z[τ ], and suppose that the reduc-
tions modulo p of the matrices g and c in (3.3) are nonsingular. Then the
group Gp, generated by the reductions modulo p of the matrices r0, r1, r2, r3
in (3.2), is an orthogonal group of type either O(4, q, ε) or O1(4, q, ε), where

ε =
(
detg
p

)
Z[τ ]

.

Proof. To prove the theorem, we employ [7, Theorem 3.1], which here implies
that Gp must be one of the following irreducible reflection groups:

• the orthogonal group O(4, q′, ε), O1(4, q
′, ε), or O2(4, q

′, ε), where
q′ > 1 is a divisor of q; or
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• the reduction modulo p of the standard representation of the finite
irreducible Coxeter group A4, B4, D4, F4, or H4.

From [7, Table 1], we see that the order of the product of two reflections in
any of the reduced groups Ap

4, B
p
4, D

p
4, F

p
4 is at most 4. Since the product r0r1

mod p in Gp has order 5, we immediately rule out these four crystallographic
Coxeter groups. We also rule out Hp

4 since it cannot be generated by four
reflections with a star diagram of type {5, 3; k}, as can be routinely checked
using GAP. Consequently, Gp must have an orthogonal group type.

The unit entry τ2 in r0 implies that q′ = q. That is, Gp must be an
orthogonal group over Fq itself, and not over a proper subfield. In addition,
since the root v0 satisfies (v0 · v0)p = 4 mod p, which is clearly a square in
F∗q for any p, then Gp must be either O(4, q, ε) or O1(4, q, ε). □

From the Gram matrix g in (3.3), we see that (v0 · v0), (v1 · v1), and
(v2 · v2) are all squares in Z[τ ]. Thus, determining whether Gp has type
O1(4, q, ε) or O(4, q, ε), respectively, rests on whether the reduction modulo
p of (v3 · v3) = 4τ2ρk is a square or not in F∗q . This is, of course, equivalent
to determining whether δ :=

(
ρk
p

)
Z[τ ]

evaluates to 1 or −1, respectively. In

particular, if k = 3 or 5, then δ = 1, regardless of p.

Example 3.3. Let k = 6. Then G = ⟨ri | i = 0, 1, 2, 3⟩ is isomorphic to
the star Coxeter group [5, 3; 6]. From (3.4), we have detg = 26τ4(−3τ4)
and det c = 22τ−2(−τ4). For an odd prime p in Z[τ ], we use Theorem 3.2,
whenever applicable, to classify the type of the reduced group Gp according
to the class where p belongs.

The equalities

ε =

(
detg

p

)
Z[τ ]

=

(
−3

p

)
Z[τ ]

,

(
det c

p

)
Z[τ ]

=

(
−1

p

)
Z[τ ]

, and δ =

(
3

p

)
Z[τ ]

,

which follow from the properties of the Legendre symbol for Z[τ ] will be
useful. It follows that the only time Theorem 3.2 cannot be applied is when
p is a prime in Class II that is an associate of 3. This special case will have
to be handled separately.

Class I. Up to associates, p = −1 + 2τ =
√
5. By Theorem 2.1, we have

ε =

(
−3

5

)
Z
= −1 and δ =

(
3

5

)
Z
= −1,

which gives us Gp ≃ O(4, 5,−1).
Class II. Up to associates, p is a rational prime such that p ≡ ±2 (mod 5).

We consider two subcases:
(a) If p is an associate of 3, then a computation in GAP shows

that Gp ≃ C2× [C6
3 ⋊ (C2×A5)] is a group of order 174,960

with distinguished subgroups Gp
0 ≃ (C3 × C3) ⋊ D6, Gp

2 ≃
C4
3 ⋊D10, and Gp

3 ≃ C2 ×A5.
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(b) If p is not an associate of 3, on the other hand, then by
Theorem 2.1, we have

ε =

(
9

p

)
Z
= 1 and δ =

(
9

p

)
Z
= 1,

which gives us Gp ≃ O1(4, p
2, 1).

Class III. In this class, p is a nonrational prime with q ≡ ±1 (mod 5). By
Theorem 2.1, we have

ε =

(
−3

q

)
Z
=

(
−1

q

)
Z

(
3

q

)
Z

and δ =

(
3

q

)
Z
,

which can be easily calculated using the relation(
3

q

)
Z
=

(
−1

q

)
Z

(q
3

)
Z
,

where (
−1

q

)
Z
=

{
1 if q ≡ 1 (mod 4),

−1 if q ≡ −1 (mod 4),

and (q
3

)
Z
=

{
1 if q ≡ 1 (mod 3),

−1 if q ≡ −1 (mod 3),

implied by the Law of Quadratic Reciprocity for Z. Combining
these results with the assumption that q ≡ ±1 (mod 5) and using
the Chinese Remainder Theorem yield

Gp ≃


O(4, q, 1) if q ≡ 19, 31 (mod 60),

O(4, q,−1) if q ≡ 29, 41 (mod 60),

O1(4, q, 1) if q ≡ 1, 49 (mod 60),

O1(4, q,−1) if q ≡ 11, 59 (mod 60).

Performing a series of computations for k = 3, 4, 5 that is similar to what
we have accomplished for k = 6 above yields the classification of Gp in
Table 3. Observe that the only other case in which Gp is not an orthogonal
group is when k = 5 and p is a prime in Class I. In this case, one can easily
verify that the corresponding Gram matrix is singular.

It is important to state that the classification of Gp depends not only on
the prime p used in the reduction, but also on the choice of scaling factors
considered from the very beginning to rescale the basis {a0, a1, a2, a3} to
obtain {v1, v2, v3, v4}. For instance, in the case k = 3, if we multiply each ci
in (3.1) by a factor of

√
2, we get G

√
5 ≃ O2(4, 5,−1) in place of O1(4, 5,−1),

and Gp ≃ O
(
4, q,

(
cd
q

)
Z

)
in place of O1

(
4, q,

(
cd
q

)
Z

)
whenever p = c+ dτ

is a prime in Class III with q ≡ 11, 19, 21, 29 (mod 40).
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k Restrictions on p Gp Gp
0 Gp

2 Gp
3

3

I none O1(4, 5,−1)

Ap
3 Hp

3

Hp
3

II
p ≡ 13, 17 (mod 20) O1(4, p2, 1)

p ≡ 3, 7 (mod 20) O1(4, p2,−1)

III none O1

(
4, q,

(
cd
q

)
Z

)

4

I none O(4, 5, 1)

Bp3

O(3, 5, 0)

II
p ≡ 13, 17 (mod 20) O1(4, p2, 1)

O1(3, p2, 0)
p ≡ 3, 7 (mod 20) O1(4, p2,−1)

III
q ≡ 11, 19, 21, 29 (mod 40) O

(
4, q,

(
2cd
q

)
Z

)
O(3, q, 0)

q ≡ 1, 9, 31, 39 (mod 40) O1

(
4, q,

(
2cd
q

)
Z

)
O1(3, q, 0)

5

I none C3
5 ⋊ (C2 ×A5)

Hp
3

O1(3, 5, 0)

II
p ≡ 3, 7 (mod 20) O1(4, p2, 1)

O1(3, p2, 0)
p ≡ 13, 17 (mod 20) O1(4, p2,−1)

III none O1

(
4, q,

(
2cd+d2

q

)
Z

)
O1(3, q, 0)

6

I none O(4, 5,−1) [3, 6](5,0) O(3, 5, 0)

II
p = 3 C2 × [C6

3 ⋊ (C2 ×A5)]
[3, 6](p,0)

C4
3 ⋊D10

p ̸= 3 O1(4, p2, 1) O1(3, p2, 0)

III

q ≡ 19, 31 (mod 60) O(4, q, 1)

[3, 6](q,0)

O(3, q, 0)
q ≡ 29, 41 (mod 60) O(4, q,−1)

q ≡ 1, 49 (mod 60) O1(4, q, 1)
O1(3, q, 0)

q ≡ 11, 59 (mod 60) O1(4, q,−1)

Table 3. The reduction of G ≃ [5, 3; k] modulo p = c+ dτ ,
an odd prime in Z[τ ].

The next theorem classifies the types of the distinguished subgroups Gp
0,

Gp
2, and Gp

3 of rank 3.

Theorem 3.4. Let p be an odd prime in Z[τ ], and let Gp
i , where i =

0, 2, or 3, be the distinguished subgroup of Gp that is generated by the re-
ductions modulo p of the matrices rj with j ̸= i in (3.2). Then the following
statements hold:

(1) Gp
0 is the reduction modulo p of the standard representation of the

finite irreducible Coxeter group A3, B3, or H3, if k = 3, 4, or 5,
respectively; or is the automorphism group [3, 6](s,0) of the regular
torus {3, 6}(s,0), if k = 6, where s = 5, p, q according as p is in Class
I, II, III, respectively.

(2) Gp
2 is an orthogonal group of type O(3, q, 0) or O1(3, q, 0), except

when k = 6 and p is an associate of 3.
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(3) Gp
3 is the reduction modulo p of the standard representation of the

finite irreducible Coxeter group H3.

Proof. Except for the case i = 0 and k = 6, or the case i = 2, k = 6, and
p is an associate of 3, the reductions modulo p of the submatrices obtained
by deleting the (i+1)st row and the (i+1)st column of g and c in (3.3) are
nonsingular. Consequently, except for these aforementioned cases, Theorem
3.1 of [7], where n = 3, may be applied. The smoothness of Gp as a quotient
of the group [5, 3; k] is enough to conclude that Gp

0 or Gp
3 corresponds to one

of Ap
3, B

p
3, and Hp

3. On the other hand, using a series of arguments similar to
what we have used in the proof of Theorem 3.2 above, we obtain the desired
conclusion for Gp

2.
Thus, only the distinguished subgroup Gp

0 when k = 6 remains to be
classified. First, note that Gp

0 is a finite smooth quotient of [3, 6], the auto-
morphism group of the tessellation {3, 6} of the Euclidean plane by regular
triangles. It follows from the list of finite quotients of the Coxeter group [3, 6]
(see [13, Table I]) that Gp

0 is isomorphic to either [3, 6](s,0) ≃ (Cs×Cs)⋊D6,
the automorphism group of the regular torus {3, 6}(s,0), or to [3, 6](s,s) ≃
(C3s × Cs) ⋊ D6, the automorphism group of the regular torus {3, 6}(s,s)
(see [6] for further details on these regular toroidal polyhedra). In either
group decomposition, x mod p and x−1y mod p are the generators of the
cyclic factors, where x = r1r3r1r3r1r2, y = r3r1r3r2r1r2, while r1 mod p
and r3 mod p are the generators of the dihedral factor. To show that Gp

0
corresponds to the first decomposition, we verify that the generators of the
cyclic factors have the same order.

A quick calculation shows that for any positive integer s, we have

xs =


1 0 0 0
4s2 1 + 2s −4s 0

2s2 − 2s s 1− 2s 0
2s2 s −2s 1

 .

It follows that if s is the order of x mod p, then s must be the smallest
non-negative odd rational prime that is divisible by p. That is, s = 5, p, q
according as p is in Class I, II, III, respectively. The same conclusion applies
to x−1y mod p whose sth power is given by

(x−1y)s =


1 0 0 0
4s2 1− 4s 2s 6s

2s2 + s −2s 1 + s 3s
2s2 + s −2s s 1 + 3s

 .

Thus, x mod p and x−1y mod p have the same order, completing the proof.
□

From [4, 6], we see that Ap
3, B

p
3, H

p
3, and [3, 6](s,0) are all string C-groups.

The first three correspond to the tetrahedron {3, 3}, the octahedron {3, 4}
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or its dual cube {4, 3}, and the icosahedron {3, 5} or its dual dodecahedron
{5, 3}, respectively. The orders of these groups are listed in Table 1.

Applying Theorem 3.4 and employing an approach similar to what we
demonstrated in Example 3.3 lets us classify the distinguished subgroup Gp

2.
We summarize the results of the calculations together with the classification
of Gp

0 and Gp
3 in Table 3. Observe that the only time in which Gp

2 is not a
reflection group for a nonsingular space is when k = 6 and p is an associate
of 3.

4. Star C-groups of type {5, 3; k} with k = 3, 4, 5, 6

We have already shown earlier that each of the reduced groups Gp is a star
C-group when p is an even prime. We now prove that the same statement
holds when p is an odd prime. The key to proving this result, which we state
more formally in a forthcoming theorem, relies on the following lemma:

Lemma 4.1. Let p be an odd prime in Z[τ ] such that the group Gp, gener-
ated by the reductions modulo p of the matrices r0, r1, r2, r3 in (3.2), is an
orthogonal group of type O(4, q, ε) or O1(4, q, ε). Then Gp = ⟨r0, r1, z, r3⟩p,
where z = rr2r13 , r

(r3r1r2)5

0 , rx
iy

3 according as k = 4, 5, 6, respectively. Here,
ab denotes the conjugate bab−1.

Proof. To prove the lemma, it suffices to show that replacing r2 mod p by z
mod p still results in an orthogonal group of the same type as Gp.

(a) k = 4, z = rr2r13 , m0,z > 2

(b) k = 5, z = r
(r3r1r2)

5

0 , m1,z > 2 (c) k = 6, z = rx
iy

3 , m1,z > 2

Figure 2. Coxeter diagram of Gp
r2←z = ⟨r0, r1, z, r3⟩p. The

root of z mod p is 2c1+2c2+c3, c0+(4+4τ)c1+(2+2τ)c2+
(4+6τ)c3, 6c1+3c2+4c3 according as k = 4, 5, 6, respectively.

In Figure 2, we illustrate the diagram of the group Gp
r2←z := ⟨r0, r1, z, r3⟩p

for the indicated value of k. Since the diagram is connected, we apply an
analog of Theorem 3.2 to Gp

r2←z, and conclude that Gp
r2←z is an orthogonal

group of type either O(4, q, ε) or O1(4, q, ε). A series of computations similar
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to what we did in Example 3.3 shows that Gp and Gp
r2←z have the exact same

orthogonal group type. Consequently, Gp = Gp
r2←z = ⟨r0, r1, z, r3⟩p. □

The following theorem states the main result of this section.

Theorem 4.2. For any odd prime p in Z[τ ], the group Gp, generated by the
reductions modulo p of the matrices r0, r1, r2, r3 in (3.2), is a C-group.

Proof. To prove the theorem, we make use of Lemma 1.1 and show that Gp
0,

Gp
2, and Gp

3 are string C-groups which satisfy the intersections Gp
0 ∩ Gp

2 =
Gp

0,2, G
p
0 ∩Gp

3 = Gp
0,3, and Gp

2 ∩Gp
3 = Gp

2,3.

By Theorem 3.4 and the remark that follows, we conclude that Gp
0 and Gp

3
are string C-groups, regardless of p. We shall show that the same is true for
Gp

2. This is equivalent to showing that Gp
0,2 ∩Gp

2,3 = ⟨r1⟩p by (1.4). Clearly,

the order 2 subgroup ⟨r1⟩p is contained in the intersection Gp
0,2∩Gp

2,3. Since

Gp
2 is a smooth quotient of the Coxeter group [5, k], where k = 3, 4, 5, or

6, then Gp
0,2 and Gp

2,3 must be distinct dihedral groups of order 2k and 10,
respectively. By order consideration, their intersection must have order 2.
Hence, Gp

0,2 ∩Gp
2,3 must be contained in ⟨r1⟩p as well.

It then remains to show that the required intersections are satisfied. We
shall discuss the proof that Gp

0 ∩ Gp
2 = Gp

0,2 completely. The proofs of the
remaining two follow similar arguments and will be omitted for economy.
The main strategy is to assume that Ip0,2 := Gp

0 ∩ Gp
2 is a subgroup of Gp

0

that properly contains Gp
0,2, then use the subgroup structure of Gp

0 to derive
a contradiction. For k = 4, 5, 6, this erroneous assumption coupled with
Lemma 4.1 will lead to the conclusion that Gp = Gp

2, thereby contradicting
Table 3 which implies that Gp

2 must be a proper subgroup of Gp, and hence
cannot contain r2 mod p. This series of contradictions forces the conclusion
that Ip0,2 = Gp

0,2. The details and contradiction derived for each value of k
are discussed below:

k = 3. We have Gp
0 ≃ Ap

3 and Gp
0,2 ≃ D3. SinceD3 is a maximal subgroup of

Ap
3, then Ip0,2 = Gp

0. This clearly contradicts the fact that r2 mod p,

which is an element of Gp
0, is not in Ip0,2.

k = 4. We have Gp
0 ≃ Bp

3 and Gp
0,2 ≃ D4. The only subgroup of

Gp
0 that properly contains Gp

0,2 and does not contain r2 mod p is

⟨r1, rr2r13 , r3⟩p. If Ip0,2 = ⟨r1, rr2r13 , r3⟩p, then rr2r13 mod p must be in

Gp
2, implying that Gp

2 = ⟨r0, r1, rr2r13 , r3⟩p. An application of Lemma
4.1 yields the contradiction that Gp = Gp

2.
k = 5. The case where p is a prime in Class I, and hence an associate of√

5, can be easily shown to satisfy the required intersection condition
(with the aid of GAP, for example). It remains to show that the same
intersection condition is satisfied whenever p is in Class II or III. We
have Gp

0 ≃ Hp
3 and Gp

0,2 ≃ D5. The only subgroup of Gp
0 that satisfies

the requirements is ⟨r1, (r3r1r2)5, r3⟩p. If Ip0,2 = ⟨r1, (r3r1r2)5, r3⟩p,
then (r3r1r2)

5 mod p must be in Gp
2. It follows that G

p
2 contains the
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subgroup ⟨r0, r1, r(r3r1r2)
5

0 , r3⟩p. A second application of Lemma 4.1
yields the same contradiction as in the previous case.

k = 6. The case where p is an associate of 3 can be easily shown to satisfy
the required intersection condition as well. We now assume that p
is not an associate of 3. In this case, we have Gp

0 ≃ (Cs × Cs)⋊D6

and Gp
0,2 ≃ D6. Since s is a rational prime, a subgroup Gp

0 that

properly contains Gp
0,2 and that does not contain r2 mod p must

be of the form ⟨w, r1, r3⟩p, where w is either x or xiy for some
0 ≤ i ≤ s− 1. If Ip0,2 = ⟨x, r1, r3⟩p, then r2 = r1r3r1r3r1x, implying

that r2 mod p is in Ip0,2. If Ip0,2 = ⟨xiy, r1, r3⟩p, on the other hand,

then Gp
2 contains the element rx

iy
3 mod p, and hence contains the

subgroup ⟨r0, r1, rx
iy

3 , r3⟩p. A final application of Lemma 4.1 yields
the exact same contradiction as in the previous two cases.

□

The strategy used in the proof above relied on the property that, for
each value of k, at least two of the distinguished subgroups Gp

0, Gp
2, Gp

3
have relatively simple structure and possess subgroups that can be easily
enumerated either manually or with the aid of GAP. In fact, when p is
an associate of the prime

√
5 or 3, then the same proof strategy can be

employed to show that the reduction modulo p of the star Coxeter group
[5, 3;∞] is a C-group. In this case, we may use the scaling factor c3 = 4τ ,
which corresponds to ρ∞ = 4, to obtain the rescaled basis vector v3 = 4τa3.
With this scaling, the order of r1r3 mod p becomes 5 or 3, and we obtain a
star C-group of type {5, 3; 5} or {5, 3; 3}, respectively.

5. alternating semiregular 4-polytopes from Gp

By applying the method of Wythoff construction developed in [11] to any
star C-group Gp in Table 2 and Table 3, one may construct an alternating
semiregular 4-polytope S. Such a polytope possesses a 5-fold rotational
symmetry and has possibly two distinct types of regular polyhedral cells P
and Q, with two of each alternating around an edge. The types of P and
Q depend on which node in the diagram of G is ringed. We briefly describe
two examples below:

Example 5.1. Let us take the Coxeter group G ≃ [5, 3; 3] and discuss the
resulting alternating semiregular 4-polytope S for each of two specific prime
moduli.

(1) For the even prime p = 2, we recall from §3.1 that the reduced group
G2 is isomorphic to the group C4

2 ⋊ A5 of order 960. If we ring the
node labeled 2 in the Coxeter diagram for G (see Figure 3a), then
S will have 16 vertices (the right cosets of G2

2), 120 edges (the right
cosets of G2

1), 160 triangular subfacets (the right cosets of G2
0,3), 16
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hemi-icosahedral cells P = {3, 5}5 (the right cosets of G2
3), and 40

tetrahedral cells Q = {3, 3} (the right cosets of G2
0).

(a) (b)

Figure 3. Coxeter diagram of the group G ≃ [5, 3; 3] with
a ringed node.

Each vertex of S is surrounded by six hemi-icosahedra and ten
tetrahedra. Moreover, each edge of S is incident to a pair of hemi-
icosahedral cells and a pair of tetrahedral cells which are arranged
alternately around it. Finally, since S has two types of cells, [11,
Proposition 4.8(b)] implies that S is a 2-orbit non-regular 4-polytope
whose automorphism group is G2.

(2) For the odd prime p =
√
5, we see in Table 3 that the reduced group

G
√
5 is the orthogonal group O1(4, 5,−1) of order 15,600. If we ring

the node labeled 0 this time (see Figure 3b), then S will have 650

vertices (the right cosets of G
√
5

0 ), 1,950 edges (the right cosets of

G
√
5

1 ), 1,560 pentagonal subfacets (the right cosets of G
√
5

2,3), and 260

dodecahedral cells P = Q = {5, 3} (the right cosets of G
√
5

3 and G
√
5

2 ).
Four such cells surround an edge of S.

Observe that, unlike in the previous case, S has only one type
of cell this time. Indeed, since the map which swaps r2 mod p and
r3 mod p, and fixes r0 mod p and r1 mod p induces an automor-

phism of G
√
5, Proposition 4.8(a) of [11] implies that S is a regu-

lar 4-polytope of type {5, 3, 4} whose vertex-figure is the octahedron
{3, 4}. Furthermore, its automorphism group is isomorphic to the

much larger group G
√
5 ⋊ C2.
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