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FAIR PARTITIONS OF THE PLANE INTO

INCONGRUENT PENTAGONS

DIRK FRETTLÖH AND CHRISTIAN RICHTER

Abstract. Motivated by a question of R. Nandakumar, we show that
the Euclidean plane can be dissected into mutually incongruent convex
pentagons of the same area and the same perimeter.

1. Background and main result

In his fruitful mathematical blog R. Nandakumar posed the following
question [7, post of December 10, 2014]. Can the plane R2 be tiled by tri-
angles having the same area and perimeter such that no two triangles are
congruent to each other? In the present paper a tiling of R2 always means
a family of mutually non-overlapping polygons whose union is R2. We call
a tiling fair if all its members have the same area and perimeter (cf. [1]).
Congruence is meant with respect to Euclidean isometries including reflec-
tions. Kupavskii, Pach and Tardos [6] have shown that the answer to the
above question is negative. Frettlöh [2], the first named author of the present
paper, had already noted that the answer is negative when the tilings are
vertex-to-vertex, i.e., when the intersection of any two tiles is either a com-
mon side, a common vertex, or empty.

Nandakumar proposed to weaken the condition of equality of perimeters
[7], and Frettlöh (and in parts also Nandakumar) opened the question by
also considering tilings with convex n-gons, n = 4, 5, 6 [2]. This has triggered
the construction of several families of tilings by mutually incongruent convex
polygons of equal area [2, 5, 3, 4]. See also Nandakumar’s post of August
2, 2021, concerning tilings of the plane as well as the link there to previous
posts [7].

Given the non-existence of fair tilings of R2 by incongruent triangles from
[6], the authors of the present note constructed a fair tiling by incongruent
convex quadrangles [4], which seems to be the first example of a fair tiling
of R2 by convex n-gons. Here we solve the case n = 5.
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Theorem 1.1. There is a fair tiling of R2 by pairwise incongruent convex
pentagons.

Our examples for the cases n = 4, 5 are not vertex-to-vertex. The follow-
ing questions remain open. Are there fair vertex-to-vertex tilings by incon-
gruent convex quadrangles (or pentagons)? Are there fair vertex-to-vertex
tilings by incongruent convex quadrangles arbitrarily close to the vertex-to-
vertex tiling by unit squares? Are there fair tilings by incongruent convex
hexagons (vertex-to-vertex or not)? Are there fair tilings by incongruent
convex hexagons arbitrarily close to the regular honeycomb tiling? It seems
to us that all these questions have positive answers.

2. Proof of Theorem 1.1

Our proof is based on the method of tiling a tile [2]: We start with a
periodic tiling of the plane by clusters of seven regular hexagons of side
length 1; see the left-hand part of Figure 1. Lemma 2.1 produces a certain
tiling of the plane into hexagons by subdividing the clusters; see the right-
hand part of Figure 1. Then Lemma 2.2 splits each hexagon into three
pentagons; see Figure 2.

Given ε > 0, we call two real numbers ε-close if their absolute differ-
ence does not exceed ε. Two convex n-gons are called ε-close if there is a
bijection between their vertices such that the Euclidean distance between
corresponding vertices is at most ε. Two tilings by convex n-gons are called
ε-close if there is a bijection between them such that the distances between
corresponding vertices of corresponding n-gons do not exceed ε.

A side figure of a convex polygon consists of a side of that polygon together
with the two adjacent inner angles. In particular, a side figure is determined
up to congruence by the length of the side and the two sizes of the adjacent
angles.

Lemma 2.1. For every ε > 0, there exists a tiling of the plane such that

(i) the tiling is ε-close to a periodic tiling by regular hexagons of side
length 1,

(ii) all tiles are hexagons of area 3
√
3

2 (which is the area of a regular
hexagon of side length 1),

(iii) in every tile three side figures over non-adjacent sides are marked,
(iv) all marked side figures within the tiling are mutually incongruent.

Proof. We start by arranging the periodic tiling by regular hexagons of side
length 1 into clusters of seven hexagons; see the left-hand part of Figure 1.
The final tiling shall be obtained by perturbing the original one within every
single cluster. That perturbation is done inductively, cluster by cluster. In
every cluster we mark 21 side figures as in the right-hand part of Figure 1.
Then we perturb the coordinates of the points A, B and C by sufficiently
small amounts. We keep the boundary of the cluster as well as the topology
of the tiling within the cluster unchanged. The choice of A fixes the side
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Figure 1. A tiling of the plane by congruent clusters of
seven regular hexagons and perturbations within a single
cluster.

marked by a. By condition (ii), the choice of B fixes the sides marked by b,
and C fixes those marked by c. This ensures (i), (ii) and (iii).

In order to obtain (iv), we do the perturbations within each cluster such
that the marked side figures of the resulting tiles are mutually incongruent
as well as incongruent to those in the previously perturbed clusters. These
incongruences are based on the sizes of their inner angles. (The possibility
of changing side lengths gives even more flexibility for the shapes of the
other side figures, but we do not need it here.) First, the point A is moved
orthogonally to side a by some small amount. This changes the two angles
of that side with the boundary of the cluster in a continuous and monotone
manner. Thus we can choose them to differ from all (finitely many) angles
in previously fixed side figures.

Then the point B can be moved orthogonally to the side connecting B
with the boundary of the cluster. Again, this changes the two angles of
that side with the boundary of the cluster in a continuous and monotone
manner, hence we can choose them to differ from all (finitely many) angles
in previously fixed side figures. Because of the equal area condition, the
remaining parameters for each A and B (in the direction of the respective
sides connecting them with the boundary of the cluster) fix the height of the
lower right hexagon (in case of A) and the height of the upper right hexagon
(in the case of B), respectively. In other words, these two parameters deter-
mine the position of the corner marked ⋆ and allow all positions of ⋆ within
a small disk around its unperturbed position. All remaining angles at sides
marked b (nine altogether) depend continuously on these two parameters.
By moving ⋆ within a small disk we can change the relevant five of these
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Figure 2. A dissection of a nearly regular hexagon into pentagons.

angles (the three angles at ⋆ plus the two angles at the right-hand end of
the side connecting ⋆ with the boundary of the cluster) in a continuous and
monotone manner, hence we can avoid all (finitely many) angles occurring
in the tiling so far.

In more detail: By moving ⋆ up and down we can choose the two angles
at the right end of the side connecting ⋆ with the boundary of the cluster
different from all angles occurring in the tiling so far (avoiding finitely many
angles). This can be done (rather, must be done) in a manner such that
this side is not the perpendicular bisector of A and B. This ensures that
the angles β1 and β2 at this side at ⋆ are different. Then, by moving ⋆ left
and right we can continuously change the three angles β1, β2, β3 at ⋆. The
third angle is 2π − β1 − β2, so it suffices to make β1 and β2 and their sum
different from all other angles occurring so far. Increasing β1 continuously
means decreasing β2 continuously. The uncountably many choices allow us
to choose β1, β2 and β1+β2 different from all finitely many values occurring
so far.

Analogous observations can be made for C and the remaining angles. □

Lemma 2.2. For every µ > 0, there exists ε > 0 such that the following
is satisfied. Let H be a hexagon that is ε-close to a regular hexagon of side
length 1 and let three side figures over non-adjacent sides of H be marked.
Then H splits into three pentagons of the same area and of perimeter u =
2+3

√
2−

√
6, each one possessing one of the marked side figures of H. The

sizes of the inner angles of each pentagon, in successive order, are µ-close to
2π
3 , 2π

3 , 7π
12 ,

2π
3 and 5π

12 , where the sides between inner angles of sizes µ-close

to 2π
3 represent the marked side figures of H.

Proof. Figure 2 illustrates a dissection of a hexagon H with three marked
side figures into three pentagons P1, P2 and P3. It is described by the vector
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of parameters

v = (x1, . . . , x6, y1, . . . , y6, a0, . . . , a3, b0, . . . , b3) ∈ R20.

The displayed situation is unperturbed, based on v = v0 =
(
x01, . . . , b

0
3

)
with(

a00, b
0
0

)
= (0, 0),

and for i = 1, . . . , 6,(
x0i , y

0
i

)
=

(
cos

(i− 1)π

3
, sin

(i− 1)π

3

)
,

and for i = 1, 2, 3,(
a0i , b

0
i

)
=

3
√
2−

√
6

2

(
cos

(1 + 8(i− 1))π

12
, sin

(1 + 8(i− 1))π

12

)
i.e.

(
a01, b

0
1

)
=

(√
3

2
,
−3 + 2

√
3

2

)
,

(
a02, b

0
2

)
=

(
−3 +

√
3

2
,
3−

√
3

2

)
,

(
a03, b

0
3

)
=

(
3− 2

√
3

2
,
−
√
3

2

)
.

Then H is regular with side length 1, the angles between the sides(
a00
b00

)(
a0i
b0i

)
,

for i = 1, 2, 3, and the respective diagonals of H are of size π
12 , and the

pentagons are congruent and have perimeter u. We shall see that, for all
(x1, . . . , x6, y1, . . . , y6) sufficiently close to(

x01, . . . , x
0
6, y

0
1, . . . , y

0
6

)
,

there exist values (a0, . . . , a3, b0, . . . , b3) close to(
a00, . . . , a

0
3, b

0
0, . . . , b

0
3

)
,

describing a dissection into pentagons P1, P2, P3 of the same area and with
perimeter u.

We formulate our claim in terms of equations fi(v) = 0, i = 1, . . . , 8.
First note that

(
a1
b1

)
lies on the straight line through

(
x1

y1

)
and

(
x2

y2

)
; i.e.,

det

((
a1
b1

)
−
(
x1
y1

)
,

(
x2
y2

)
−
(
x1
y1

))
= 0.

This amounts to

(2.1) f1(v) = (a1 − x1)(y2 − y1)− (x2 − x1)(b1 − y1) = 0.
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Similarly,

f2(v) = (a2 − x3)(y4 − y3)− (x4 − x3)(b2 − y3) = 0,(2.2)

f3(v) = (a3 − x5)(y6 − y5)− (x6 − x5)(b3 − y5) = 0.(2.3)

The (signed) area of a convex pentagon p1, . . . , p5 is

area(p1, . . . , p5) =
1

2

(
det(p2 − p1, p3 − p1) + det(p3 − p1, p4 − p1)

+ det(p4 − p1, p5 − p1)
)
.

The equality of the areas of the pentagons P1, P2 and P3 of our dissection
is expressed by the equations

f4(v)(2.4)

= area
((

a0
b0

)
,
(
a2
b2

)
,
(
x4

y4

)
,
(
x5

y5

)
,
(
a3
b3

))
− area

((
a0
b0

)
,
(
a1
b1

)
,
(
x2

y2

)
,
(
x3

y3

)
,
(
a2
b2

))
= 0.

f5(v)(2.5)

= area
((

a0
b0

)
,
(
a3
b3

)
,
(
x6

y6

)
,
(
x1

y1

)
,
(
a1
b1

))
− area

((
a0
b0

)
,
(
a1
b1

)
,
(
x2

y2

)
,
(
x3

y3

)
,
(
a2
b2

))
= 0.

The perimeter of a pentagon p1, . . . , p5 is

perim(p1, . . . , p5) = ∥p2−p1∥+∥p3−p2∥+∥p4−p3∥+∥p5−p4∥+∥p1−p5∥,
where ∥·∥ denotes the Euclidean norm. Now the coincidences of the perime-
ters of P1, P2 and P3 with u read as

f6(v) = perim
((

a0
b0

)
,
(
a1
b1

)
,
(
x2

y2

)
,
(
x3

y3

)
,
(
a2
b2

))
− u = 0,(2.6)

f7(v) = perim
((

a0
b0

)
,
(
a2
b2

)
,
(
x4

y4

)
,
(
x5

y5

)
,
(
a3
b3

))
− u = 0,(2.7)

f8(v) = perim
((

a0
b0

)
,
(
a3
b3

)
,
(
x6

y6

)
,
(
x1

y1

)
,
(
a1
b1

))
− u = 0.(2.8)

One easily checks that the equations (2.1)–(2.8) are satisfied for
v = v0. Moreover, symbolic calculations of a computer algebra system, such
as Maple 2019, show that

det


∂f1
∂a0

(v0) · · · ∂f1
∂a3

(v0) ∂f1
∂b0

(v0) · · · ∂f1
∂b3

(v0)
...

...
...

...
∂f8
∂a0

(v0) · · · ∂f8
∂a3

(v0) ∂f8
∂b0

(v0) · · · ∂f8
∂b3

(v0)


=

−162 + 486
√
2 + 81

√
3− 270

√
6

8
̸= 0.

Thus the implicit function theorem says that the system of Equations (2.1)–
(2.8) has a unique solution for a0, . . . , a3, b0, . . . , b3 depending on the val-
ues x1, . . . , x6, y1, . . . , y6 and that (a0, . . . , a3, b0, . . . , b3) is arbitrarily close
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to
(
a00, . . . , a

0
3, b

0
0, . . . , b

0
3

)
, whenever the vector (x1, . . . , x6, y1, . . . , y6) is suffi-

ciently close to
(
x01, . . . , x

0
6, y

0
1, . . . , y

0
6

)
. That is, an arbitrary, but sufficiently

small perturbation of the regular hexagon with vertices(
x01
y01

)
, . . . ,

(
x06
y06

)
provides a respectively small perturbed version of the original tiling with pa-
rameters v0. Indeed, the closeness to v0 and Equations (2.1)–(2.3) guarantee
that the perturbed (given and dependent) parameters describe a tiling into
three pentagons. Moreover, the inner angles of the pentagons are µ-close
to 2π

3 , 2π
3 , 7π

12 ,
2π
3 and 5π

12 , provided the perturbation is sufficiently small.
Equations (2.4) and (2.5) ensure that the tiles are of the same area. By
Equations (2.6)–(2.8), the pentagons have perimeter u. □

Proof of Theorem 1.1. We apply Lemma 2.2 to all hexagons of a tiling ob-
tained by Lemma 2.1. This gives a tiling of the plane by convex pentagons of

area
√
3
2 and of perimeter 2+3

√
2−

√
6. If µ is sufficiently small, congruence

of two pentagons implies that their side figures at the sides connecting inner
angles of sizes µ-close to 2π

3 must be congruent. But all these side figures are
marked side figures of the tiling given by Lemma 2.1 and in turn mutually
incongruent. □
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