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THE INTERLACING PROPERTIES OF GENERALIZED

NARAYANA POLYNOMIALS

JAMES JING YU ZHAO

Abstract. In this paper, we obtain two new interlacing properties on
the zeros of a type of generalized Narayana polynomials arising in the
study of the infinite log-concavity of the Boros–Moll polynomials. Our
tools include a criterion established by Liu and Wang and two new re-
currence relations for these Narayana polynomials. The new recurrences
are verified with the help of Maple package APCI given by Hou. Our re-
sults also imply the real-rootedness of these Narayana polynomials.

1. Introduction

Let RZ be the set of real polynomials with only real zeros. Given two
polynomials f(x), g(x) ∈ RZ, suppose u1, u2, . . . and v1, v2, . . . are the zeros
of f(x) and g(x), respectively, in nonincreasing order. We say that g(x)
interlaces f(x), denoted g(x) ≼ f(x), if either deg f(x) = deg g(x) = n and

vn ≤ un ≤ · · · ≤ v2 ≤ u2 ≤ v1 ≤ u1,

or deg f(x) = deg g(x) + 1 = n and

un ≤ vn−1 ≤ un−1 ≤ · · · ≤ v2 ≤ u2 ≤ v1 ≤ u1.

Following the notation of Liu and Wang [12], we also let a ≼ bx+ c for any
nonnegative a, b, c, and let 0 ≼ f and f ≼ 0 for any f ∈ RZ. Let PF be
the set of polynomials in RZ with nonnegative coefficients, including any
nonnegative constant for convenience. The sequence of the coefficients of
each polynomial in PF is called a Pólya frequency sequence in the theory of
total positivity, see Karlin [11] and Brenti [3]. Given a polynomial sequence
{fn(x)}n≥0, if each fn(x) ∈ PF and

f0(x) ≼ f1(x) ≼ · · · ≼ fn−1(x) ≼ fn(x) ≼ · · · ,
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then {fn(x)}n≥0 is said to be a generalized Sturm sequence.
There are many generalized Sturm sequences. For example, the sequence

of the classical Narayana polynomials {Nn(x)}n≥0, where

Nn(x) =

n∑
k=0

1

n+ 1

(
n+ 1

k

)(
n+ 1

k + 1

)
xk.(1.1)

These polynomials were extensively studied by the combinatorial commu-
nity, see for instance [1, 10, 4, 13]. Chen, Yang and Zhang [4] found the
following generalized Narayana polynomials,

Nn,m(x) =

n∑
k=0

((
n

k

)(
m

k

)
−
(

n

k + 1

)(
m

k − 1

))
xk,(1.2)

when they studied the infinite log-concavity of the Boros–Moll polynomials,
which were first introduced by Boros and Moll [2] while studying a quartic
integral. When n = m + 1, it is clear that (1.2) reduces to (1.1), namely,
Nm+1,m(x) = Nm(x). With the aid of a criterion established by Liu and
Wang [12, Theorem 2.3], Chen et al. [4, Theorem 1.4] had proved the real-
rootedness of Nn,m(x) by showing two interlacing relations on the zeros of
Nn,m(x).

Theorem 1.1 ([4, Theorem 3.2]). For any integers 0 ≤ n ≤ m, the gen-
eralized Narayana polynomial Nn,m(x) has only real zeros, and moreover,
Nn,m(x) ≼ Nn+1,m+1(x).

Theorem 1.2 ([4, Theorem 3.4]). For n ≥ m ≥ 0, the polynomial Nn,m(x)
has only real zeros. If n ≥ m+2, then Nn,m(x) has one and only one positive
zero and m negative zeros, and moreover, for m ≥ 1, the negative zeros of
Nn,m(x) and Nn+1,m+1(x) have interlacing relations. That is,

r
(m+1)
n+1,m+1< r(m)

n,m< r
(m)
n+1,m+1< · · ·< r(2)n,m < r

(2)
n+1,m+1 < r(1)n,m < r

(1)
n+1,m+1 < 0,

where {r(i)n,m}mi=1 are negative zeros of Nn,m(x) for all m ≥ 1 and n ≥ m+2.

In this paper, we obtain two new interlacing properties on the zeros of
Nn,m(x). One for n ≤ m+ 1, the other for n ≥ m+ 2. The main results of
this paper are as follows.

Theorem 1.3. Let Nn,m(x) be given by (1.2). Then for any fixed m ≥ 0,

the sequence {Nn,m(x)}m+1
n=0 is a generalized Sturm sequence. More precisely,

for 1 ≤ n ≤ m+ 1,

Nn−1,m(x) ≼ Nn,m(x).

When n ≥ m + 2, the leading term of Nn,m(x) is −
(

n
m+2

)
xm+1 by (1.2).

So Nn,m(x) /∈ PF for n ≥ m + 2. But, we still have the following result on
the interlacing property of the zeros of Nn,m(x).



INTERLACING PROPERTIES OF GENERALIZED NARAYANA POLYNOMIALS 29

Theorem 1.4. For any integers n ≥ 3 and 1 ≤ m ≤ n− 2, we have

Nn,m−1(x) ≼ Nn,m(x).

That is,

r
(m+1)
n,m+1 < r(m)

n,m < r
(m)
n,m+1 < · · · < r(1)n,m < r

(1)
n,m+1 < 0 < r+n,m < r+n,m+1,(1.3)

where {r(i)n,m}mi=1 and r+n,m are negative zeros and positive zero of Nn,m(x),
respectively, for all m ≥ 0 and n ≥ m+ 2.

Our method is similar to that of Chen et al. [4]. However, we establish
two new recurrence relations of Nn,m(x) and hence deduce two new results,
Theorems 1.3 and 1.4.

The remainder of this paper is organized as follows. In Section 2, we give
two new recurrence relations of Nn,m(x), and show symbolic proofs based on
the extended Zeilberger algorithm. In Section 3, we complete the proofs of
our main results, Theorem 1.3 and Theorem 1.4, by using the new recurrence
relations obtained in Section 2.

2. Recurrence relations

In this section, we show two new recurrence relations of the generalized
Narayana polynomials Nn,m(x). Based on these crucial recurrence relations,
we can prove the main results of this paper, the interlacing properties of the
zeros of Nn,m(x).

The main results of this section are as follows.

Theorem 2.1. For any integer m ≥ 0, we have

(n+ 1)(m+ 2− n)Nn+1,m(x) = [(m+ 2− n)(m− n)x+ 2n(m− n)

+m+ n+ 2]Nn,m(x)

+ (x− 1)(m− n)nNn−1,m(x),(2.1)

for n ≥ 1, with initial values N0,m(x) = 1 and N1,m(x) = mx+ 1.

Theorem 2.2. For any integer n ≥ 0, we have

(m+ 3)(ax− 2)Nn,m+1(x) = (b0x
2 + b1x− 4m− 6)Nn,m(x)

+m(x− 1)(cx− 2)Nn,m−1(x)(2.2)

for m ≥ 1, where
a = (n−m)(n−m− 1),

b0 = (n−m)(n−m− 1)(n−m− 2),

b1 = (m− n)(2m2 − 2mn+ 7m− 3n+ 7)− 2n,

c = (n−m− 1)(n−m− 2),

(2.3)

with initial values Nn,0(x) = −
(
n
2

)
x+1 and Nn,1(x) = −

(
n
3

)
x2− n(n−3)

2 x+1.



30 JAMES JING YU ZHAO

The elementary proofs of Theorems 2.1 and 2.2 by hand are somewhat
tedious. So we shall show alternative proofs by using a symbolic method,
the extended Zeilberger algorithm [5], to derive these recurrences from the
expression of Nn,m(x). The extended Zeilberger algorithm was developed
by Chen, Hou, and Mu [5] on the basis of the Zeilberger algorithm [15, 14].

Let us first have a brief overview of this algorithm with the notation
and terminology of [5]. Given ℓ hypergeometric terms, namely, f1(k, p1, p2,
. . . , pν), . . . , fℓ(k, p1, p2, . . . , pν) of k with parameters p1, p2, . . . , pν such
that both

fi(k, p1, p2, . . . , pν)

fj(k, p1, p2, . . . , pν)
and

fi(k + 1, p1, p2, . . . , pν)

fi(k, p1, p2, . . . , pν)

are all rational functions of k and p1, p2, . . . , pν for any 1 ≤ i, j ≤ ℓ. The
extended Zeilberger algorithm is devised to find a hypergeometric term
g(k, p1, p2, . . . , pν) and polynomial coefficients ai(p1, p2, . . . , pν) for 1 ≤
i ≤ ℓ which are independent of k such that

a1f1(k) + a2f2(k) + · · ·+ aℓfℓ(k) = g(k + 1)− g(k),(2.4)

where ai stands for ai(p1, p2, . . . , pν), fi(k) stands for fi(k, p1, p2, . . . , pν),
and g(k) stands for g(k, p1, p2, . . . , pν) for brevity. For 1 ≤ i ≤ ℓ, let
Fi =

∑
k fi(k). Summing the telescoping relation (2.4) over k usually leads

to a homogeneous relation

a1F1 + a2F2 + · · ·+ aℓFℓ = 0.(2.5)

The extended Zeilberger algorithm has been implemented as the function
Ext Zeil in the Maple package APCI by Hou [9], which consists of three
files “apci.help”, “apci.lib”, and “apci.ind”. The calling sequence of this
function is of the form Ext Zeil([f1, f2, . . . , fℓ], k). If the algorithm is
applicable, it outputs [C,Ca2/a1, Ca3/a1, . . . , Caℓ/a1], where C is a k-free
nonzero constant.

Now we are ready to show the proofs of Theorems 2.1 and 2.2, respectively.
Proof of Theorem 2.1. To use the package APCI, we first import it in Maple
as follows.

[> with(APCI);

[AbelZ, Ext Zeil, Gosper, MZeil, Zeil, hyper simp, hyperterm, poch, qExt Zeil,

qGosper, qZeil, qbino, qhyper simp, qhyperterm, qpoch]

Observe that (2.1) is of the form (2.5) with

f1 = N(n+ 1,m, k)xk, f2 = N(n,m, k)xk, f3 = N(n− 1,m, k)xk,

where

N(n,m, k) =

(
n

k

)(
m

k

)
−
(

n

k + 1

)(
m

k − 1

)
.(2.6)

In order to prove (2.1), we continue the following set of fi:
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[> f1 :=

((
n+ 1

k

)(
m

k

)
−
(
n+ 1

k + 1

)(
m

k − 1

))
xk :

[> f2 :=

((
n

k

)(
m

k

)
−
(

n

k + 1

)(
m

k − 1

))
xk :

[> f3 :=

((
n− 1

k

)(
m

k

)
−
(
n− 1

k + 1

)(
m

k − 1

))
xk :

Then we run the command of the main function

[> Ext Zeil([f1, f2, f3], k);[
−k free3(n+ 1)(m+ 2− n)

(x− 1)(m− n)n
,

(m2x− 2mnx+ n2x+ 2mn+ 2mx− 2n2 − 2nx+m+ n+ 2)k free3
(x− 1)(m− n)n

, k free3

]
.

The above output implies that there exists some nonzero constant C free
of k such that

C · a2
a1

·Nn+1,m(x) + C · a3
a1

·Nn,m(x) + C ·Nn−1,m(x) = 0,

where
a1 = (x− 1)(m− n)n,

a2 = −(n+ 1)(m+ 2− n),

a3 = m2x− 2mnx+ n2x+ 2mn+ 2mx− 2n2 − 2nx+m+ n+ 2.

This relation is equivalent to (2.1). It is clear that N0,m(x) = 1 and
N1,m(x) = mx+ 1 by (1.2). This completes the proof. □
Proof of Theorem 2.2. In a similar manner as in the proof of Theorem 2.1,
one can reach (2.2) by setting

f1 = N(n,m+ 1, k)xk, f2 = N(n,m, k)xk, f3 = N(n,m− 1, k)xk,

where N(n,m, k) is as defined in (2.6). The details are omitted here. □

3. Proofs of the main results

This section is devoted to the proofs of the main results of this paper,
Theorem 1.3 and Theorem 1.4, the interlacing properties of the zeros of
Nn,m(x). Our proofs also imply the real-rootedness of Nn,m(x) for m ≥ 0
and n ≥ 1.

In order to complete the proofs, we need the following sufficient condition,
established by Liu and Wang [12], for determining whether two polynomials
have interlaced zeros.

Theorem 3.1 ([12, Theorem 2.1]). Let F (x), f(x), g(x) be real polynomials
satisfying the following conditions

(i) There exist real polynomials ϕ(x) and ψ(x) such that

F (x) = ϕ(x)f(x) + ψ(x)g(x),(3.1)

and degF (x) = deg f(x) or degF (x) = deg f(x) + 1.
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(ii) f(x), g(x) are polynomials with only real zeros, and g(x) ≼ f(x).
(iii) The leading coefficients of F (x) and g(x) have the same sign.

Suppose that ψ(r) ≤ 0 for each zero r of f(x). Then F (x) has only real
zeros and f(x) ≼ F (x).

Remark 3.2. It should be mentioned that the result of Theorem 3.1 still
holds if ϕ(x) and ψ(x) are rational functions of x, provided F (x), f(x), and
g(x) are polynomials in x and the original conditions are satisfied. This can
be obtained by a similar argument of the proof of Theorem 3.1 given by Liu
and Wang [12].

Now we are ready to give a proof of Theorem 1.3.
Proof of Theorem 1.3. Note that the coefficients of xk in Nn,m(x), namely

N(n,m, k) =

(
n

k

)(
m

k

)
−
(

n

k + 1

)(
m

k − 1

)
=

(
n+ 1

k + 1

)(
m+ 1

k

)
(m− n)k +m+ 1

(n+ 1)(m+ 1)
,(3.2)

are nonnegative for 0 ≤ n ≤ m. Thus each Nn,m(x) is a polynomial
with nonnegative coefficients for 0 ≤ n ≤ m. By (1.2), it is clear that
Nm+1,m(x) = Nm,m(x), the classical Narayana polynomial, which had been
proved to be real-rooted [12]. So Nm,m(x), Nm+1,m(x) ∈ PF and Nm,m(x) ≼
Nm+1,m(x). It remains to prove that {Nn,m(x)}mn=0 is a generalized Sturm
sequence.

By (1.2) and (3.2), each polynomial Nn,m(x) has only nonnegative coef-
ficients. By Theorem 2.1

N0,m(x) = 1, N1,m(x) = mx+ 1,

and hence N0,m(x), N1,m(x) ∈ PF, and

N0,m(x) ≼ N1,m(x), m ≥ 0.

For 1 ≤ n ≤ m − 1, assume Nn−1,m(x) ≼ Nn,m(x), we aim to prove
that Nn,m(x) ≼ Nn+1,m(x). For this purpose, let us consider the recurrence
relation (2.1). Since n ≤ m− 1, the recurrence (2.1) can be rewritten as

Nn+1,m(x) =
(m+ 2− n)(m− n)x+ 2n(m− n) +m+ n+ 2

(n+ 1)(m+ 2− n)
Nn,m(x)

+
(x− 1)(m− n)n

(n+ 1)(m+ 2− n)
Nn−1,m(x), n ≥ 1.(3.3)

Observe that (3.3) is in the form of (3.1) where

F (x) = Nn+1,m(x), f(x) = Nn,m(x), g(x) = Nn−1,m(x),
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and

ϕ(x) =
(m+ 2− n)(m− n)x+ 2n(m− n) +m+ n+ 2

(n+ 1)(m+ 2− n)
,

ψ(x) =
(x− 1)(m− n)n

(n+ 1)(m+ 2− n)
.

Clearly, each Nn,m(x) is a polynomial with degree n for 0 ≤ n ≤ m. It
is easy to verify that the conditions in (i),(ii), and (iii) of Theorem 3.1 are
satisfied for 1 ≤ n ≤ m − 1. Moreover, ψ(x) ≤ 0 for any x ≤ 0, hence
ψ(r) ≤ 0 for any zero r of f(x) since f(x) is a polynomial with nonnegative
coefficients. Then by Theorem 3.1, we obtain that f(x) ≼ F (x), namely
Nn,m(x) ≼ Nn+1,m(x) for 1 ≤ n ≤ m− 1.

It is clear that Nn,m(x) ∈ PF for 0 ≤ n ≤ m + 1 with m ≥ 0, and hence

{Nn,m(x)}m+1
n=0 is a generalized Sturm sequence for any fixed m ≥ 0. That

is, Nn−1,m(x) ≼ Nn,m(x) for 1 ≤ n ≤ m+ 1. This completes the proof. □
We proceed to prove Theorem 1.4.

Proof of Theorem 1.4. Let n ≥ m+2 and m ≥ 0. Clearly, each Nn,m(x) is
a polynomial with degree m+ 1. Moreover, each Nn,m(x) has one and only
one positive zero which has been proved in [4, Theorem 3.4] by applying
Descartes’s Rule (see [6]).

By the Chu–Vandermonde convolution (see [7] or [8, §5.1]), we have

Nn,m(1) =

(
n+m

n

)
−
(
n+m

n− 2

)
=
m+ 2− n

m+ 2

(
n+m+ 1

n

)
≤ 0, n ≥ m+2.

Evidently, Nn,m(1) = 0 only for n = m + 2. Denote by r+n,m the positive
zero of Nn,m(x). It follows that

0 < r+n,m ≤ 1, for m ≥ 0, n ≥ m+ 2,(3.4)

where the equality holds only for n = m+ 2.
We continue the proof of Theorem 1.4. Let n ≥ m+ 2. By Theorem 2.2,

we have

Nn,0(x) = −
(
n

2

)
x+ 1, Nn,1(x) = −

(
n

3

)
x2 − n(n− 3)

2
x+ 1.

Clearly, Nn,0(x) has only one positive zero r+n,0 = 2/n(n − 1), and Nn,1(x)

has two real zeros, say, r
(1)
n,1 and r+n,1, where r

(1)
n,1 < 0 < r+n,1. In view of

Nn,1(r
+
n,0) =

4(n+ 1)

3n(n− 1)
> 0, n ≥ 3,

it follows that r
(1)
n,1 < r+n,0 < r+n,1. That is,

Nn,0(x) ≼ Nn,1(x), n ≥ 3.

Moreover, Nn,1(x) has one positive zero r+n,1, and one negative zero r
(1)
n,1, for

n ≥ 3.
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For n ≥ 4 and 1 ≤ m ≤ n− 3, suppose Nn,m−1(x) ≼ Nn,m(x). It suffices
to show that Nn,m(x) ≼ Nn,m+1(x). To this end, we will use Theorem
2.2 and Theorem 3.1 together with Remark 3.2. By Theorem 2.2, when
x ̸= 2/(n−m)(n−m− 1), the recurrence relation (2.2) can be rewritten as

Nn,m+1(x) =
b0x

2 + b1x− 4m− 6

(m+ 3)(ax− 2)
Nn,m(x) +

m(x− 1)(cx− 2)

(m+ 3)(ax− 2)
Nn,m−1(x).

(3.5)

Observe that the recurrence (3.5) is of the form of (3.1) where

F (x) = Nn,m+1(x), f(x) = Nn,m(x), g(x) = Nn,m−1(x),

and

ϕ(x) =
b0x

2 + b1x− 4m− 6

(m+ 3)(ax− 2)
, ψ(x) =

m(x− 1)(cx− 2)

(m+ 3)(ax− 2)
,

where a, b0, b1, c are given by (2.3). It is easy to verify that the conditions in
(i),(ii), and (iii) of Theorem 3.1 and Remark 3.2 are satisfied. So it remains
to prove that ψ(r) ≤ 0 for each zero r of f(x), that is to prove

ψ(r) =
m(r − 1)((n−m− 1)(n−m− 2)r − 2)

(m+ 3)((n−m)(n−m− 1)r − 2)
≤ 0(3.6)

for 1 ≤ m ≤ n− 3 and any r whenever Nn,m(r) = 0.
Since Nn,m(x) has only real zeros, it follows from (3.4) that

r(m)
n,m < r(m−1)

n,m < · · · < r(2)n,m < r(1)n,m < 0 < r+n,m < 1

where {r(k)n,m}mk=1 and r+n,m stand for the negative zeros and the positive zero
of Nn,m(x), respectively.

By a result [16, Theorem 3.1] given by Zhao, we have for m ≥ 1 and
n ≥ m+ 3,

r+n,m <
2

(n−m)(n−m− 1)
.

So for m ≥ 1 and n ≥ m+ 3, we get

(n−m)(n−m− 1)r − 2 < 0, (n−m− 1)(n−m− 2)r − 2 < 0

for all zeros r of Nn,m(x). This means that the inequality in (3.6) holds
strictly for each zero r of Nn,m(x). Hence by Theorem 3.1 and Remark 3.2,
the polynomial F (x), that is Nn,m+1(x), has only real zeros and Nn,m(x) ≼
Nn,m+1(x) for 1 ≤ m ≤ n− 3.

By the fact that each polynomial Nn,m(x) has one and only one positive
zero, it follows that Nn,m(x) has one positive zero and m negative zeros for
any n ≥ m+ 2 and (1.3) holds true. This completes the proof. □

The following result is an immediate consequence of Theorem 1.4.

Corollary 3.3. The negative zeros of Nn,m(x) interlace the negative zeros
of Nn,m+1(x) for n ≥ m+ 3 and m ≥ 0.
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