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ORTHOGONAL COLOURINGS OF TENSOR GRAPHS

KYLE MACKEIGAN

Abstract. Perfect k-orthogonal colourings of tensor product graphs
are studied in this article. First, the problem of determining if a given
graph has a perfect 2-orthogonal colouring is reformulated as a tensor
subgraph problem. Then, it is shown that if two graphs have a perfect k-
orthogonal colouring, then so does their tensor graph. This provides an
upper bound on the k-orthogonal chromatic number for general tensor
graphs. Lastly, two other conditions for a tensor graph to have a perfect
k-orthogonal colouring are given.

1. Introduction

Two proper colourings of a graph are orthogonal if when two elements are
coloured with the same colour in one of the colourings, then those elements
receive distinct colours in the other colouring. Archdeacon, Dinitz, and
Harary [2] originally studied this type of colouring, in the context of edge
colourings. Then, Caro and Yuster [4] revisited this concept, this time in the
context of vertex colouring. In this paper, the vertex variation is studied.

A k-orthogonal colouring of a graph G is a collection of k mutually or-
thogonal vertex colourings. For simplicity, a 2-orthogonal colouring is called
an orthogonal colouring. The k-orthogonal chromatic number of a graph
G, denoted by Oχk(G), is the minimum number of colours required for a
proper k-orthogonal colouring. Again for simplicity, the 2-orthogonal chro-
matic number is simply denoted by Oχ(G) and simply called the orthogonal
chromatic number.

For a graph G with n vertices, Oχk(G) ≥ ⌈
√
n ⌉. Otherwise, there are

fewer colour k-tuples than there are vertices. If G has n2 vertices and

Oχk(G) = ⌈
√
n2 ⌉ = n, then G is said to have a perfect k-orthogonal colour-

ing. A perfect 2-orthogonal colouring is simply called a perfect orthogo-
nal colouring. Perfect orthogonal colourings are of particular importance
because they have applications to independent coverings [10] and scoring
games [1].
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Due to these applications, research is focused on determining which graphs
have perfect k-orthogonal colourings. For instance, Caro and Yuster [4]
constructed graphs having perfect k-orthogonal colourings by using orthog-
onal Latin squares. Ballif [3] studied upper bounds on sets of orthogonal
colourings. Whereas Janssen and the author [7] studied perfect k-orthogonal
colourings of circulant graphs.

In this paper, the tensor graph product is used to construct graphs having
perfect k-orthogonal colourings. The tensor product of two graphs G and H,
denoted by G×H, has vertex set V (G)×V (H), and two vertices (u1, v1) and
(u2, v2) in G×H are adjacent if and only if u1u2 ∈ E(G) and v1v2 ∈ E(H).
If G is a graph that is created by the tensor product of two graphs, then G
is called a tensor graph.

For graph products, there can be a clear relationship between colourings
of the factors and colourings of the product graph. For example, it is well-
known that the chromatic number of a Cartesian graph (see Section 3 for a
formal definition) is the minimum of the chromatic numbers of the factors.
For tensor graphs, it was conjectured by Hedetniemi [5] that the same result
would be true. However, Hedetniemi’s conjecture was recently disproved by
Shitov [11].

In this paper, it is shown that for a graph G, Oχ(G) ≤ n if and only if
G is a subgraph of the tensor graph Kn × Kn. Then, it is shown that if
two graphs have a perfect k-orthogonal colouring, then so does their tensor
graph. For k = 2, only one factor is required to have a perfect orthogonal
colouring. Similarly, it is shown that this condition can be relaxed for perfect
k-orthogonal colourings. These results were first obtained in the author’s
doctoral dissertation [9].

In the language of graph homomorphisms, a t-colouring of G is a homo-
morphism f : G→ Kt. A standard fact of homomorphisms is that there are
homomorphisms ϕ and ψ such that ϕ : G → X and ψ : G → Y if and only
if ϕ×ψ : G→ X×Y . In the context of this paper, we show in Theorem 2.1
that G admits an orthogonal t-colouring if and only if G admits an injective
homomorphism G → Kt ×Kt. We recommend the reader see [6] for more
information on homomorphisms.

2. Perfect Orthogonal Colourings

In this section, perfect orthogonal colourings of tensor graphs are studied.
To start, it is shown that a graph G has Oχ(G) ≤ n if and only if is a
subgraph of Kn × Kn, which in this paper, is denoted by G ⊆ Kn × Kn.
Therefore, a graph G with m2 vertices has a perfect orthogonal colouring if
and only if it is a subgraph of Km ×Km.

Theorem 2.1. For a graph G, Oχ(G) ≤ n if and only if G ⊆ Kn ×Kn.

Proof. For 1 ≤ i, j ≤ n, let (i, j) denote the vertices of the graph Kn ×Kn.
First, suppose thatG ⊆ Kn×Kn. It will be shown thatKn×Kn has a perfect
orthogonal colouring. If this is the case, then the orthogonal colouring of
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Kn × Kn restricted to G is an orthogonal colouring of G using n colours,
giving Oχ(G) ≤ n.

Assign the vertex (i, j) the colour i in the first colouring and the colour j
in the second colouring. For example, this orthogonal colouring is applied to
K3×K3 in Figure 1. Displayed next to each vertex are the colours assigned
in the first and second colouring.

Note that this assignment of colours has no orthogonal conflicts. It re-
mains to check that there are no colour conflicts. Now, by the definition of
the tensor product, for 1 ≤ i1, i2, j1, j2 ≤ n, two vertices (i1, j1) and (i2, j2)
in Kn ×Kn are adjacent if and only if i1 ̸= i2 and j1 ̸= j2. Therefore, there
are also no colour conflicts.

(0, 0) (0, 1) (0, 2)

(1, 0)
(1, 1)

(1, 2)

(2, 0) (2, 1) (2, 2)

Figure 1. Orthogonal colouring of K3 ×K3

Now, suppose that Oχ(G) ≤ n and that (g1, g2) is an orthogonal colouring
of G using the colours {1, 2, . . . , n}. To show that G ⊆ Kn×Kn, an injective
map that preserves edges is required. Let F : G → Kn × Kn by F (v) =
(g1(v), g2(v)). It is now shown that F is injective and preserves edges.

Since (g1, g2) is an orthogonal colouring of G, each colour pair is only
assigned once. Thus, F is injective. Now, if v1v2 ∈ E(G), then g1(v1) ̸=
g1(v2) and g2(v1) ̸= g2(v2) because g1 and g2 are proper. Therefore, we
have that (g1(v1), g2(v1))(g1(v2), g2(v2)) ∈ E(Kn ×Kn) by the definition of
the edges in Kn × Kn. Thus, F preserves edges. Since F is injective and
preserves edges, G ⊆ Kn ×Kn. □

Theorem 2.1 gives a way to reformulate the problem of determining if a
graph has a perfect orthogonal colouring. This will be used later with the
following theorem to obtain an upper bound on the orthogonal chromatic
number of general tensor graphs. The following theorem shows that if one
factor has a perfect orthogonal colouring and the other has a square number
of vertices, then their tensor graph has a perfect orthogonal colouring.
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Theorem 2.2. If G has n2 vertices, H has m2 vertices, and Oχ(G) = n,
then Oχ(G×H) = nm.

Proof. Label V (G) = {vk : 0 ≤ k < n2} and V (H) = {(ui, uj) : 0 ≤ i, j <
m}. Let f = (f1, f2) be a proper orthogonal colouring of G where f1 and f2
use the colours {0, 1, . . . , n−1}. It is shown that g = (g1, g2) is an orthogonal
colouring of G×H using nm colours, where:

g1((vk, (ui, uj))) = f1(vk) + in

and

g2((vk, (ui, uj))) = f2(vk) + jn.

First, it is shown that g has no orthogonal conflicts. Let vk1 , vk2 ∈ V (G) and
let (ui1 , uj1), (ui2 , uj2) ∈ V (H). If g((vk1 , (ui1 , uj1))) = g((vk2 , (ui2 , uj2))),
then:

f1(vk1) + i1n = f1(vk2) + i2n(2.1)

and

f2(vk1) + j1n = f2(vk2) + j2n.(2.2)

Without loss of generality, suppose that i1 < i2. Then it follows that:

f1(vk1) + i1n < n+ i1n

≤ i2n

≤ f1(vk2) + i2n.

Therefore, f1(vk1) + i1n < f1(vk2) + i2n, which contradicts equation (2.1),
thus i1 = i2. A similar argument shows that j1 = j2. Substituting i1 = i2
and j1 = j2 into equations (2.1) and (2.2), gives f1(vk1) = f1(vk2) and
f2(vk1) = f2(vk2). Hence, vk1 = vk2 because f is an orthogonal colouring of
G. Thus, (vk1 , (ui1 , uj1)) = (vk2 , (ui2 , uj2)).

It remains to show that g1 and g2 are proper colourings of G×H. Suppose
that vk1vk2 ∈ E(G) and (ui1 , uj1)(ui2 , uj2) ∈ E(H). If i1 = i2 = i, then since
f1 is a proper colouring of G, g1((vk1 , (ui1 , uj1))) = f1(vk1) + in ̸= f1(vk2) +
in = g1((vk2 , (ui2 , uj2))). Thus, there are no colour conflicts between these
vertices.

Now, without loss of generality, suppose that i1 < i2. Then it follows
that g1((vk1 , (ui1 , uj1))) = f1(vk1) + i1n < n + i1n ≤ i2n ≤ f1(vk2) + i2n =
g1((vk1 , (ui2 , uj2))). Hence, g1((vk1 , (ui1 , uj1))) < g1((vk1 , (ui2 , uj2))). Thus,
there are no colour conflicts between these vertices. Therefore, g1 is a proper
colouring. A similar argument shows that g2 is proper. Thus, g is an
orthogonal colouring of G × H. Since G × H has n2m2 vertices and g
uses nm colours, Oχ(G×H) = nm. □

Theorem 2.2 provides a method for constructing perfect orthogonal colour-
ings out of graphs that have perfect orthogonal colourings. On the other
hand, Theorem 2.1 gives that Kn × Kn is the maximum graph with n as
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its orthogonal chromatic number. Combining these two results provides an
upper bound on the orthogonal chromatic number of general tensor graphs.

Corollary 2.3. If Oχ(G) = n and Oχ(H) = m, then Oχ(G×H) ≤ nm.

Proof. Since Oχ(G) = n and Oχ(H) = m, G ⊆ Kn×Kn and H ⊆ Km×Km

by Theorem 2.1. Therefore, G × H ⊆ (Kn × Kn) × (Km × Km). Since
|V (Kn×Kn)| = n2, |V (Km×Km)| = m2, and Oχ(Kn×Kn) = n, Oχ((Kn×
Kn)× (Km ×Km)) = nm by Theorem 2.2. Therefore, (Kn ×Kn)× (Km ×
Km) ⊆ Knm × Knm by Theorem 2.1. Thus, G × H ⊆ Knm × Knm, and
Theorem 2.1 gives that Oχ(G×H) ≤ nm. □

Corollary 2.3 gives an upper bound on the orthogonal chromatic number
of tensor graphs in the case where the orthogonal chromatic numbers of the
factors are known. However, this upper bound can be far from the exact
orthogonal chromatic number. For instance, Oχ(Kn) = n, so Corollary 2.3
gives Oχ(Kn ×Kn) ≤ n2. However, by Theorem 2.1, Oχ(Kn ×Kn) = n.

On the other hand, Corollary 2.3 gives a good upper bound for the bi-
partite double cover graphs, G × K2, where G has an optimal orthogonal
colouring. These graphs are of interest for other types of colourings [8]. For
example, consider the cycle graph C9 which by [7] has Oχ(C9) = 3. Then
by Corollary 2.3, Oχ(C9 × K2) ≤ 6. Which is only one off of the correct
orthogonal chromatic number, illustrated in Figure 2.

(0, 0)

(1, 1)

(2, 2)

(3, 3)

(4, 4)

(0, 1)

(1, 2)

(2, 3)

(3, 4)

(4, 0)

(0, 2)

(1, 3)

(2, 4)

(3, 0)

(4, 1)

(0, 3)

(1, 4)

(3, 1)

Figure 2. Orthogonal colouring of C9 ×K2

This concludes this section’s study of perfect orthogonal colourings of ten-
sor graphs. It remains an open problem to determine the correct orthogonal
chromatic number of bipartite double cover graphs. Studying the maximal
case, Kn ×K2, may yield an improved upper bound.

3. Perfect k-Orthogonal Colourings

To start this section, it is shown that if two graphs have a perfect k-
orthogonal colouring, then so does their tensor graph. The main idea behind
the proof of this result is to create colour classes for the tensor graph out of
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the colour classes of the factors. Then, the goal is to show that these new
colour classes only share at most one element, and thus give an orthogonal
colouring.

Theorem 3.1. If G has n2 vertices with Oχk(G) = n and H has m2 vertices
with Oχk(H) = m, then Oχk(G×H) = nm.

Proof. For 0 ≤ r < k and 0 ≤ i < n, let Gr,i be the ith colour class in the rth
colouring ofG. Then, for 0 ≤ r < k and 0 ≤ j < m, letHr,j be the jth colour
class in the rth colouring of H. Next, let Ir,i,j = {(u, v) | u ∈ Gr,i, v ∈ Hr,j}.
It will be shown that Cr = {Ir,i,j | 0 ≤ i < n, 0 ≤ j < m} is a partition of
G×H into nm independent sets. That is, Cr is a proper colouring of G×H
using nm colours.

First, it is shown that Ir,i,j is an independent set. Let (u1, v1), (u2, v2) ∈
Ir,i,j . Then u1, u2 ∈ Gr,i and v1, v2 ∈ Hr,j . However, Gr,i and Hr,j are inde-
pendent sets, thus u1u2 ̸∈ E(G) and v1v2 ̸∈ E(H). Thus, (u1, v1)(u2, v2) ̸∈
E(G ×H). Now, let (u, v) ∈ V (G ×H). Since {Gr,i | 0 ≤ i < n} is a par-
tition of G, u ∈ Gr,i for some i. Similarly, v ∈ Hr,j for some j. Therefore,
(u, v) ∈ Ir,i,j .

Now, suppose that (u, v) ∈ Ir,i1,j1 and (u, v) ∈ Ir,i2,j2 . If i1 ̸= i2 then
u ∈ Gr,i1 and u ∈ Gr,i2 . However, this contradicts that {Gr,i | 0 ≤ i < n}
is a colouring of G. Similarly, if j1 ̸= j2, then v ∈ Hr,j1 and v ∈ Hr,j2 .
However, this contradicts that {Hr,j1 | 0 ≤ j < m} is a colouring of H.
Therefore, there is a unique set Ir,i,j that contains (u, v). Thus, Cr is a
proper colouring of G×H using nm colours.

It remains to show that each of the colourings are mutually orthogonal.
Consider Ir1,i1,j1 and Ir2,i2,j2 where r1 ̸= r2. If (u, v) ∈ Ir1,i1,j1 and (u, v) ∈
Ir2,i2,j2 , then u ∈ Gr1,i1 and u ∈ Gr2,i2 . However, |Gr1,i1 ∩ Gr2,i2 | = 1, so
let u be this unique vertex. Similarly, v ∈ Hr1,j1 and v ∈ Hr2,j2 . However,
|Hr1,j1 ∩ Hr2,j2 | = 1, so let v be this unique vertex. Therefore, there is a
unique vertex (u, v) in both Ir1,i1,j1 and Ir2,i2,j2 . Hence, each of the Cr are
mutually orthogonal. □

Interestingly, the orthogonal colouring created in Theorem 3.1 works for
Cartesian graphs as well. The Cartesian graph product of two graphs G and
H, denoted by G□H, has vertex set V (G)×V (H), and two vertices (u1, v1)
and (u2, v2) in G□H are adjacent if and only if u1 = u2 and v1v2 ∈ E(H)
or if v1 = v2 and u1u2 ∈ E(G). It is also a perfect k-orthogonal colouring
for the strong product graph. The strong product of two graphs G and
H, denoted G ⊠ H, vertex set V (G) × V (H) and edge set E(G ⊠ H) =
E(G□H) ∪ E(G×H).

Corollary 3.2. If G has n2 vertices with Oχk(G) = n and H hasm2 vertices
with Oχk(H) = m, then Oχk(G□H) = nm and Oχk(G⊠H) = nm.

Proof. Let Ir,i,j be the same set as in Theorem 3.1. Then, note that Ir,i,j is
an independent set in G□H and G ⊠ H. Therefore, this result follows by
applying the proof of Theorem 3.1. □
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Theorem 3.1 gives a method to construct perfect k-orthogonal colourings
when both factors have a perfect k-orthogonal colouring. This is now used
to find an upper bound on the k-orthogonal chromatic number of tensor
product graphs. Recall Theorem 2.1, which gives a way to reformulate
the problem as a subgraph question. Unlike perfect orthogonal colourings,
for perfect k-orthogonal colourings, there are multiple graphs required to
reformulate the problem.

Caro and Yuster [4] showed that a graph has a perfect k-orthogonal colour-
ing if and only if it is a subgraph of a graph obtained by removing k edge-
disjoint Kn-covers from Kn2 . Let Kn2 [k] denote this family of graphs. Thus,
for k = 2, Theorem 2.1 gives that Kn2 [2] = Kn ×Kn. Therefore, using the
same argumentation as Corollary 2.3, but using this family of graphs, the
following upper bound is obtained.

Corollary 3.3. If Oχk(G) = n and Oχk(H) = m. then Oχk(G×H) ≤ nm.

Proof. Suppose that Oχk(G) = n. Then G ⊆ Ḡ and H ⊆ H̄ for some Ḡ ∈
Kn2 [k] and H̄ ∈ Km2 [k]. Then, since Ḡ has n2 vertices with Oχk(G) = n
and H̄ has m2 vertices with Oχk(H̄) = m, Oχk(Ḡ× H̄) = nm by Theorem
3.1. Therefore, since G×H ⊆ Ḡ× H̄, Oχk(G×H) ≤ nm by restricting the
k-orthogonal colouring. □

Corollary 3.3 gives an upper bound on the k-orthogonal chromatic number
of tensor graphs in the case where the orthogonal chromatic number of
the factors are known. Similar to Corollary 2.3, this gives better upper
bounds the closer the k-orthogonal chromatic number of the factors are to
being perfect k-orthogonal chromatic numbers. To conclude this paper, the
following theorem gives one more method to construct perfect k-orthogonal
colourings of tensor graphs.

Theorem 3.4. If G has n2 vertices, H has p2 vertices where p is a prime,
and Oχk(G) = n with k ≤ p, then Oχk(G×H) = np.

Proof. Label V (H) = {(ui, uj) : 0 ≤ i, j < p}. For 0 ≤ r < k and 0 ≤ s < n,
let Ir,s be the sth colour class in the rth colouring of G. Then, for 0 ≤ j < p,
let Īr,s,j = {(v, (ui, u(ir+j)(mod p))) | v ∈ Ir,s, 0 ≤ i < p}. The goal is to show

that Cr = {Īr,s,j | 0 ≤ s < n, 0 ≤ j < p} is a partition of G × H into
np independent sets. That is, Cr is a proper colouring of G × H using np
colours.

First, it is shown that each Īr,s,j is an independent set. Since each Ir,s is
an independent set in G, for each v1, v2 ∈ Ir,s, v1v2 ̸∈ E(G). Thus by the def-
inition of the tensor graph, (v1, (ui, u(ir+j)(mod p)))(v2, (ui, u(ir+j)(mod p))) ̸∈
E(G × H). Therefore, each Īr,s,j is an independent set. Next, it is shown
that Cr is a partition of G×H.

Consider a vertex (v, (ux, uy)) in G × H. Since {Ir,s | 0 ≤ s < n} is
a partition of G, v ∈ Ir,s for some s. Now, notice that for 0 ≤ j < p,
{(ui, u(ir+j)(mod p)) | 0 ≤ i < p} is a partition of H. Therefore, (ux, uy) is
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in one of these sets. In particular, this occurs for i = x and j = y − r.
Therefore, there is a unique set Īr,s,j that contains (v, (ux, uy)). Thus, Cr is
a partition of G×H into independent sets.

Now it remains to show that each of the colourings are mutually orthog-
onal. That is, it remains to show for r1 ̸= r2, s1, s2 and j1, j2 fixed, that
|Īr1,s1,j1 ∩ Īr2,s2,j2 | = 1. Since |Ir1,s1 ∩ Ir2,s2 | = 1, let v be this vertex. There-
fore, if it can be shown that |{(ui1 , ui1r1+j1)|0 ≤ i1 < p}∩{(ui2 , ui2r2+j2)|0 ≤
i2 < p}| = 1, then we are done. Since r1 ̸= r2, the only way (ui1 , ui1r1+j1) =
(ui2 , ui2r2+j2) is if i1 = i2. Thus, call this i. Now, consider the following
equation.

(ir1 + j1)(mod p) = (ir2 + j2)(mod p)

This equation simplifies to the following equation.

i(r1 − r2)(mod p) = (j2 − j1)(mod p)

Since k ≤ p, and r1 ̸= r2, r1 − r2 ̸= 0(mod p). Thus, r1 − r2 = r
and j2 − j1 = j. Since p is a prime, Zp has no zero divisors. Therefore,
ir(mod p) = j(mod p) has a unique solution, call this unique solution (i, j).
Thus, (v, (i, j)) is the unique element in the Īr1,s1,j1 ∩ Īr2,s2,j2 . Hence, the
colourings are all mutually orthogonal. Since each of these colourings using
np colours, and G×H has n2p2 vertices, Oχ(G×H) = np as desired. □

Acknowledgement

The author would like to thank his supervisor, Jeannette Janssen, for her
helpful comments and suggestions on this paper.

References

1. S. D. Andres, M. Huggan, F. Inerney, and R. J. Nowakowski, The orthogonal colouring
game, Theoretical Computer Science 795 (2019), 312–325.

2. D. Archdeacon, J. H. Dinitz, and F. Harary, Orthogonal edge colorings of graphs,
Congressus Numerantium 47 (1985), 49–67.

3. S. C. Ballif, Upper bounds on sets of orthogonal colorings of graphs, Discrete Mathe-
matics 313 (2013), no. 20, 2195–2205.

4. Y. Caro and R. Yuster, Orthogonal colorings of graphs, the electronic journal of com-
binatorics (1999), R5–R5.

5. S. T. Hedetniemi, Homomorphisms of graphs and automata., Tech. report, MICHI-
GAN UNIV ANN ARBOR COMMUNICATION SCIENCES PROGRAM, 1966.

6. P. Hell and J. Nesetril, Graphs and homomorphisms, vol. 28, OUP Oxford, 2004.
7. J. Janssen and K. MacKeigan, Orthogonal colourings of cayley graphs, Discrete Math-

ematics 343 (2020), no. 11, 112079.
8. , Total colouring of some cartesian and direct product graphs, Contributions to

Discrete Mathematics 15 (2020), no. 1, 67–71.
9. K. MacKeigan, An exploration of orthogonal colourings, Ph.D. thesis, Dalhousie Uni-

versity, 2021.
10. , Independent coverings and orthogonal colourings, Discrete Mathematics 344

(2021), no. 8, 112431.
11. Y. Shitov, Counterexamples to hedetniemi’s conjecture, Annals of Mathematics 190

(2019), no. 2, 663–667.



362 KYLE MACKEIGAN

Department of Mathematics, Dalhousie University
E-mail address: kyle.m.mackeigan@gmail.com


	1. Introduction
	2. Perfect Orthogonal Colourings
	3. Perfect k-Orthogonal Colourings
	Acknowledgement
	References

